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Abstract 

Emergency Medical Services (EMSs) provide necessary urgent medical care and transport patients to the nearest 
medical center for treatment. Due the to nature of the service, response time is of utmost importance for reducing 
mortality and alleviating human suffering. Moreover, the availability of service at the time of the call is another 
planning factor that should be considered. In fatal traffic accidents, for instance, the probability of death increases 
dramatically as a function of response time. Therefore, locating EMS stations and allocating ambulances to emergency 
calls requires careful and analytical planning. In this study, we aim to determine the locations and sizes of EMS 
stations in Istanbul. We formulate a multi-objective integer programming model that finds optimal locations of service 
stations and the number of ambulances to be stationed while satisfying response time and availability constraints. Our 
model also addresses allocation decisions where each demand point (subdistrict) is allocated to an EMS station that 
will ensure predetermined service levels in terms of response time and availability. In order to determine the number 
of ambulances to be located at a station, historical EMS calls are analyzed. To ensure a particular level of availability, 
the problem is formulated as a Q-coverage problem where the total number of ambulances to be stationed at an EMS 
station is driven by the demand (EMS calls) of subdistricts that are covered. The objectives of the model are to 
minimize the total cost of opening EMS stations and to minimize the total demand weighted distance of subdistricts 
to EMS stations. We solve the problem for the Anatolian side of Istanbul. 
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1. Introduction
Being a critical part of the modern health system, the Emergency Medical Service (EMS) aims at providing urgent 
medical care and transporting patients to the nearest medical center for treatment. An efficient EMS system is expected 
to respond to emergency calls rapidly and provide timely treatment because response time is of utmost importance for 
reducing mortality and alleviating human suffering. Considered as an essential performance measure for the EMS, the 
response time is the time between an emergency call and arrival of the ambulance to the scene (Olivos and Caceres 
2022). In fatal traffic accidents, for instance, the probability of death increases dramatically as a function of response 
time. Therefore, locating EMS stations and allocating ambulances to emergency calls require careful and analytical 
planning.  

The trade-offs between efficiency vs. equity and service quality vs. cost pose additional challenges for decisions 
pertaining to EMS planning. The conventional emergency vehicle location problem deals with locating the vehicles 
to proper stations so as to provide adequate coverage to the demand. Along with the coverage, the number of vehicles 
to be located at a particular station is another decision to be made. Due to high costs of emergency vehicles, i.e., 
ambulances, allocating a large number of vehicles to stations is not a viable option. Therefore, optimally locating a 
limited (or minimum) number of ambulances to improve the responsiveness of the EMS system is an important 
problem faced by the healthcare authorities (Moeini et al. 2015). 

Based on the decision-making levels, decisions pertaining to EMS management can be classified into (i) strategic, (ii) 
tactical, and (iii) operational decisions (Belanger et al. 2019). Strategic level decisions involve determining the 
locations of EMS stations and the number of ambulances to allocate these stations (sizing). Along with strategic 
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decisions, tactical-level decisions consist of locating stand-by or backup EMS stations and crew pairing/scheduling. 
Strategic and tactical decisions are static in nature because once implemented, the relevant decisions remain 
unchanged. Conversely, researchers considered that real-time data might be beneficial for tailoring strategic and 
tactical decisions. Due to the inherent temporal fluctuations in demand for EMS, relocating ambulances during the 
day based on real-time data or short-term forecasts might improve the efficiency of the system. These dynamic 
decisions such as relocating ambulances and dispatching them correspond to operational level decisions. Nowadays 
researchers focus on developing new methodologies that consider real-time data to address operational level decisions. 
 
The response time is a function of the availability of ambulances and the distance of the EMS station to the demand 
point. In this respect, these two factors should be considered when making decisions regarding EMS location and 
sizing. Countries enforce different standards for ambulance response time while some do not enforce any standard at 
all. For instance, National Health Service (NHS) England implements response time standards based on triage 
categories. According to these standards, response time to 90% of all Category 1 incidents, which corresponds to life-
threatening conditions such as cardiac or respiratory arrest, should be less than 15 minutes. Similar standards for 
Category 2 (a serious condition, such as stroke or chest pain, which may require rapid assessment and/or urgent 
transport), Category 3 (an urgent problem, such as an uncomplicated diabetic issue, which requires treatment and 
transport to an acute setting), and Category 4 (a non-urgent problem, such as stable clinical cases, which requires 
transportation to a hospital ward or clinic) incidents are 40 minutes, 2 hours, and 3 hours, respectively (NHS North 
East Ambulance Service  2022). In other countries such as USA and Canada, the responsibility for determining 
response time standards belongs to municipalities. As an example, according to San Francisco’s Emergency Medical 
Services Agency, ambulances should arrive at the scene of a life-threatening emergency medical incident within 10 
minutes at least 90% of the time (City and Country of San Francisco 2022). Consequently, a common standard for 
ambulance response time is assumed to be between 10-15 minutes for 90% of life-threatening emergency calls.  
 
EMS location-allocation and sizing problem is an inherently multi-objective problem. While availability and response 
time requirements enforce opening as many EMS stations with numerous ambulances as possible, budget limitations 
impose vice versa. Hence, trade-offs between these two objectives should be considered when making pertaining 
decisions. As we will discuss in section 2, most of the studies addressing EMS location and sizing problems consider 
only one objective, in particular, the response time. However, as the economic depression continues to strike many 
countries after the COVID-19 outbreak, cost turns out to be an important planning factor that cannot be neglected. In 
this respect, in order to find locations and sizes of EMS stations in the Anatolian side of Istanbul, we formulate a 
multi-objective integer programming model that finds optimal locations of service stations and the number of 
ambulances to be stationed while satisfying response time and availability constraints. Our model also addresses 
allocation decisions where each demand point (subdistrict) is allocated to an EMS station that will ensure 
predetermined service levels in terms of response time and availability. The EMS call demand for each subdistrict is 
estimated based on historical data. To ensure a particular level of availability, the problem is formulated as a Q-
coverage problem where total number of ambulances to be stationed at an EMS station is driven by the demand (EMS 
calls) of subdistricts that are covered. Having two conflicting objectives, we also implement a posteriori approach and 
generate a representative set of non-dominated solutions to provide decision support to healthcare planners. This 
approach helps healthcare planners understand the problem structure and compare results yielded by different 
objective weights as in the sensitivity analysis. To that end, our model addresses strategic and tactical-level decisions 
for EMS planning.  
 
The paper is organized as follows: in section 2 we provide a review of the relevant literature. In section 3 we make a 
formal problem definition and present a model formulation. Section 4 of the paper presents and discusses 
computational results. Finally, in section 5, we conclude.  
 
2. Literature Review 
EMS location-allocation problem has been well studied in the literature. In general, this problem has been addressed 
in the context of the facility location problem. Early versions approached the EMS location-allocation problem either 
as a set covering problem where the aim is to find the minimum number of facilities to serve demand points or maximal 
coverage problems where covered demands are maximized by the limited number of EMS facilities. These early 
versions are single coverage models, in other words, the model assumes that a vehicle is always available once an 
emergency call arrives. Considering the unrealistic nature of this assumption, multiple coverage or back-up coverage 
models have been developed. The study of Daskin and Stern (1981) was the first one to apply the multiple coverage 
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concept to EMS location problems. This idea has paved the way for Q-coverage models where a demand is covered 
by at least Q facilities. Essentially, Q-coverage models in the context of EMS location-allocation and sizing problem 
aim to provide ambulance availability by increasing the robustness of the solution.  
 
The demand for EMS is inherently involves uncertainty.  In order to hedge against uncertainty, robust and stochastic 
programming models have been proposed in the literature. Among those, Beraldi and Bruni (2009) focused on 
determining the optimal location and sizing of emergency stations so as to assure a given quality of service.  In their 
study, they proposed a two-stage stochastic model for solving the problem. They presented a heuristic solution method 
to solve the problem in reasonable times. Boujemaa et al. (2013) developed a two-stage stochastic optimization model 
to determine the locations of ambulance stations and allocations to demand points. Their model aims to minimize 
overall costs of operation while providing a predetermined response time. Their first stage decisions involve location 
and number of ambulances to station decisions while second stage decisions address allocations. They applied their 
model to locate EMSs in the northern region of Tunisia. Zhang and Li (2015) proposed a probabilistic model utilizing 
chance constraints for locating and sizing EMSs. In an effort to solve the model efficiently, they transformed the 
model into a conic quadratic mixed-integer program and solved it with commercial solvers. They also add valid 
inequalities to improve the model. They showed the applicability of their model with a case study in Beijing, China. 
Adapting a robust probabilistic approach, Navazi et al. (2018) formulated a bi-objective model to address several 
decisions regarding EMS location and allocation problem, namely, (i) locating EMS stations, (ii) allocating the 
accident-prone points to EMS stations, (iii) determining hospital bed capacities for critical patients, and (iv) deciding 
inventory levels at opened stations. Their bi-objective model minimizes total setup costs while minimizing the time 
average of receiving medical service for all points. They utilize the 𝜖𝜖-constraint method to solve the problem. Focusing 
on the availability of ambulances and long-term operational costs, Liu et al. (2019) proposed a distributionally robust 
model for determining the location, number of ambulances, and demand assignment in for EMSs by minimizing the 
expected cost. They developed a second-order conic representable program to approximate their model. They utilized 
an outer approximation algorithm for solving the model efficiently.  
 
To hedge against temporal fluctuations in demand for EMS, some researchers have focused on operational level 
decisions such as relocating and dispatching ambulances. Considering the variations in travel times of ambulances, 
Shmid and Doerner (2010) proposed a multi-period covering model for locating and relocating ambulances to respond 
emergency calls. Their model takes into account coverage of EMSs with respect to the time of the day. They presented 
a mixed-integer program that aims at optimizing coverage at various points in time simultaneously. They utilized a 
variable neighborhood search heuristic for solving the problem. Referring it dynamic redeployment problem, Moeini 
et al. (2015) proposed a mathematical model that can control the movements and locations of ambulances in order to 
provide a better coverage of demand points by accounting for the demand fluctuation patterns during a given period 
of time. The objective of the model is to maximize the coverage of demand points and to minimize the relocation costs 
of vehicles. They applied their approach to French EMS. Amorim et al. (2019) proposed an integrated strategic and 
tactical planning decision methodology for locating and allocating ambulances to EMSs. Their approach consists of 
two stages: in the first stage a scenario-based optimization model determines locations of EMSs and allocates 
ambulances to these EMSs. Then, in the second stage, the neighborhood of the optimal solution found in the firsts 
stage is explored to find better solution based on empirical data. Solution methodology is applied to case of Porto. In 
their study, Belander et al. (2020) considered determining the location of available ambulances and their dispatching 
policy. Their model addresses both static decisions (location) and dynamic decisions (dispatching). The availability 
of ambulances is estimated with a simulation framework. Hence, they propose a recursive simulation-optimization 
approach that consists a mathematical model and discrete event simulation.  
 
Compared to single objective models proposed for EMS location and sizing problems, relatively few studies 
considered multiple objectives simultaneously. However, EMS location and sizing problem inherently involves 
multiple objectives that should be accounted for. Among existing studies, Navazi et al. (2018) formulated a bi-
objective model to address several decisions regarding EMS location and allocation problem by adapting a robust 
probabilistic approach. In a recent study, Janosikova et al. (2021) discussed the objectives of the mathematical models 
proposed in the literature for locating EMSs and allocating ambulances to these locations. They stated that simplifying 
assumptions may have adverse effects on the real life circumstances. Later, they propose a bi-objective mathematical 
model where objectives aim at providing accessibility for high-priority patients within a short time limit and minimize 
average response time to all patients, respectively. They compared results of their model with those of the p-median 
model having a single response time objective. Olivos and Caceres (2022) formulated a multi-objective optimization 
model to locate ambulances to improve EMS in Antofagasta, Chile. They considered mean response time, maximum 
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response time, and uncovered demand as the objectives. They solved the model with the 𝜖𝜖-constraint method and 
generated a Pareto set of efficient solutions. They utilized historical data from the years 2015 and 2016 to estimate 
demand.  
 
We also refer the interested reader to the study of Belanger et al. (2019) for a detailed review of the topic. In this study, 
the authors presented an excellent review summarizing and discussing modeling approaches that address problems 
regarding ambulance location and relocation, and dispatching decisions. They concentrate on recent approaches that 
consider tactical and operational decisions and their interactions. The authors provide mathematical models and 
solution approaches proposed in the literature by discussing their evolution through time.  
 
3. Problem Definition and Formulation 
Istanbul, the largest city in Turkey, occupies two different continents. One part of Istanbul lies in Europe and the other 
part lies in Asia. Lying in the Asia continent, the Anatolian side of Istanbul has 270 subdistricts. The healthcare 
authority in Istanbul desires to determine the locations of EMS stations and the number of ambulances to allocate to 
these EMSs on the Anatolian side of Istanbul. A total of 230 candidate locations are determined. Even though there is 
a current location layout of existing EMS stations, healthcare authority would like to ignore it and make a location 
plan from scratch in order to improve the responsiveness of the EMS system. The response time is a function of the 
availability of ambulances and the distance of the EMS station to the demand point. Hence, established EMS stations 
should have an adequate number of ambulances to meet emergency demands and a demand point should be within a 
predefined distance (or coverage) of an EMS station. To increase the availability of ambulances, a backup coverage 
is also stipulated. Therefore, a demand point would be covered by two EMS stations. This requirement also yields 
allocation decisions where each demand point would be allocated to two EMS stations.  
 
Locations and number of emergency calls are important for EMS location planning. Sarıyer et al. (2017) analyzed all 
calls reaching EMS system during the first six months of 2013 in İzmir, the third largest city of Turkey. Their analyses 
revealed that the number of calls from a demand point, i.e., a district, is highly correlated with population. The 
correlation coefficient between the number of calls and the population of a district is calculated as 0.924. Based on 
the historical data obtained by Sarıyer et al. (2017), the number of daily emergency calls from a district is 0.012% of 
the population. In this respect, we calculated the daily demand for EMS of each subdistrict based on its population. 
Moreover, locations of demands for emergency calls are assumed to be centroids of these subdistricts.  
 
Availability of service is closely related to the number of ambulances allocated to an EMS station and the time of the 
call. Consecutive emergency calls may saturate available ambulances at an EMS station, however, we expect the 
emergency calls to be scattered during the time of the day. Even though at some time periods the frequency of calls is 
expected to be higher than the rest of the day (such as daytime vs. night), the probability that all emergency calls occur 
at the same time or in a short time period is low. To that end, when determining the number of ambulances to allocate 
to an EMS station, we impose that the total number of ambulances allocated to EMS stations that cover a demand 
point should meet one-fourth of the total demand.  
 
To ensure an admissible response time, we enforce a predefined distance between an EMS station and allocated 
demand point. As we discuss in Section 1, a common standard for ambulance response time is considered to be 
between 10-15 minutes for 90% of life-threatening emergency calls. Assuming that the average travel speed of an 
ambulance is 75 km/h, a maximum distance of 17 km. ensures that any emergency will be responded in less than 14.5 
min., provided that an ambulance is available at the EMS station. Hence, we ensure that allocated EMSs are within 
17 km. of the centroid of the district.  
 
We consider two conflicting objectives for the optimization model. The first objective is the total cost of establishing 
EMS stations. The total cost consists of the cost of opening (installing) EMS stations and the acquisition cost of 
ambulances. Even though existing ambulances can be redeployed for the new EMS setup, the idea is to deploy the 
existing ones to other cities, hence, we assume that all ambulances will be acquired. Installing a new EMS station is 
$50.000 and the acquisition cost of an ambulance is $200.000. To clarify, EMS stations do not provide healthcare to 
patients requiring immediate medical care, rather, they provide utilities for the ambulances and allocated healthcare 
personnel. The second objective minimizes the total demand weighted distance of subdistricts to the EMS stations. To 
that end, the integer programming model for the EMS location-allocation and sizing problem is given below. 
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Indices and Sets 
𝑖𝑖 ∈ 𝐼𝐼: indice and set of candidate locations for EMS stations 
𝑗𝑗 ∈ 𝐽𝐽: indice and set of demand points (subdistricts) 
𝑔𝑔 ∈ 𝐺𝐺: indice and set of objectives 
 
Parameters 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓: fixed cost of opening and EMS station 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎: cost of acquisition of an ambulance  
𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑓𝑓: maximum coverage distance for admissible response time 
𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖: distance from demand point j to candidate location i 
𝑑𝑑𝑖𝑖: daily ambulance demand of demand point j 
𝑄𝑄: minimum # of allocations required 
𝑤𝑤𝑔𝑔: weight of objective g 
𝜃𝜃𝑔𝑔: normalization factor for objective 𝑔𝑔 
 
Decision Parameters 

𝑦𝑦𝑓𝑓 = �1, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑖𝑖𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 𝑖𝑖 𝑖𝑖𝑐𝑐 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑
0, 𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑒𝑒𝑤𝑤𝑖𝑖𝑐𝑐𝑐𝑐   

𝑥𝑥𝑓𝑓𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 𝑗𝑗 𝑖𝑖𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑑𝑑 𝑏𝑏𝑦𝑦 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 𝑖𝑖
0, 𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑒𝑒𝑤𝑤𝑖𝑖𝑐𝑐𝑐𝑐   

𝑧𝑧𝑓𝑓: # of ambulances to be located at location I 
 
The Model 

Φ1 =�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑦𝑦𝑓𝑓
𝑓𝑓∈𝐼𝐼

+ �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑧𝑧𝑓𝑓
𝑓𝑓∈𝐼𝐼

 

 
(1) 

Φ2 =  ��𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖𝑥𝑥𝑓𝑓𝑖𝑖
𝑓𝑓∈𝐼𝐼𝑖𝑖∈𝐽𝐽

 (2) 

  
𝑑𝑑𝑖𝑖𝑐𝑐 �𝑤𝑤𝑔𝑔𝜃𝜃𝑔𝑔

𝑔𝑔∈𝐺𝐺

Φ𝑔𝑔 (3) 

Subject to 
𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖𝑥𝑥𝑓𝑓𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑓𝑓, ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽 (4) 

�𝑥𝑥𝑓𝑓𝑖𝑖
𝑖𝑖∈𝐽𝐽

≤ 𝑀𝑀𝑦𝑦𝑓𝑓 , ∀𝑖𝑖 ∈ 𝐼𝐼 (5) 

�𝑥𝑥𝑓𝑓𝑖𝑖
𝑖𝑖∈𝐽𝐽

≥ 𝑦𝑦𝑓𝑓 , ∀𝑖𝑖 ∈ 𝐼𝐼 (6) 

𝑧𝑧𝑓𝑓 ≥�𝑥𝑥𝑓𝑓𝑖𝑖 �
𝑑𝑑𝑖𝑖
4𝑄𝑄

�
𝑖𝑖∈𝐽𝐽

, ∀𝑖𝑖 ∈ 𝐼𝐼 (7) 

�𝑥𝑥𝑓𝑓𝑖𝑖
𝑓𝑓∈𝐼𝐼

= 𝑄𝑄, ∀𝑗𝑗 ∈ 𝐽𝐽 (8) 

𝑧𝑧𝑓𝑓 ≥ 0, ∀𝑖𝑖 ∈ 𝐼𝐼 (9) 
𝑦𝑦𝑓𝑓 ∈ {0,1}, ∀𝑖𝑖 ∈ 𝐼𝐼 (10) 

𝑥𝑥𝑓𝑓𝑖𝑖 ∈ {0,1}, ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽 (11) 
𝑧𝑧𝑓𝑓 ∈ ℤ, ∀𝑖𝑖 ∈ 𝐼𝐼 (12) 

 
Equations (1)-(2) represent two objective functions. We utilize the linear scalarizing approach to aggregate the 
objective functions, therefore, the aggregated objective function that is formulated as the weighted sum of these 
objectives is given in equation (3). Objective terms are multiplied by normalization factors 𝜃𝜃𝑔𝑔 to remove the scaling 
effect caused by the incommensurability of the objectives (Eriskin et al. 2022). Normalization factors are calculated 
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as 𝜃𝜃𝑔𝑔 = 1 (𝑧𝑧𝑔𝑔𝑁𝑁 − 𝑧𝑧𝑔𝑔𝑈𝑈)⁄  where 𝑧𝑧𝑔𝑔𝑁𝑁 and 𝑧𝑧𝑔𝑔𝑈𝑈 represent the Nadir and Utopia points of objective 𝑔𝑔. These points correspond 
to the maximum and minimum attainable values by these two objective terms, respectively.  
 
Equation (4) imposes the maximum distance of a district to allocated EMSs. Constraints (5)-(6) ensure that a district 
is allocated to an EMS provided that it is located. Equation (7) provides that the total number of ambulances allocated 
to EMS stations that cover a demand point should meet one-fourth of the total demand. Equation (8) requires that a 
district is covered by 𝑄𝑄 EMS stations simultaneously. Equations (9)-(12) define variable domains.  
 
4. Computational Results 
In this section, we present the computational results of the EMS station location-allocation and sizing model. Our 
model involves two conflicting objectives and the relative importance of these objectives are defined with weights. 
These weights are determined by the Decision Maker (DM) and are inherently subjective. In order to elicit DM 
preferences that are quantified with these weights, three approaches are used in the literature: (i) a priori approach: in 
this approach DM determines his/her preferences before the model is solved, (ii) interactive approach: DM preferences 
are elicited progressively during the problem-solving process, (iii) a posteriori approach: a representative set of non-
dominated or Pareto optimal solutions are presented to the DM (Eriskin and Koksal 2016). Non-dominated solutions 
are candidate solutions to be the best choice for the DM. In this study, we follow a posteriori approach and firstly 
generate a set of non-dominated solutions with respect to different objective weights. To that end, we solved the 
optimization model for a set of weights where 𝒘𝒘𝟏𝟏,𝒘𝒘𝟐𝟐 ∈ {𝟎𝟎.𝟎𝟎,𝟎𝟎.𝟎𝟎𝟏𝟏, … ,𝟎𝟎.𝟗𝟗𝟗𝟗,𝟏𝟏.𝟎𝟎} and 𝒘𝒘𝟏𝟏 + 𝒘𝒘𝟐𝟐 = 𝟏𝟏. The model is 
implemented with General Algebraic Modeling System (GAMS) and R, and solved with CPLEX 12.5.  
 
Computational runs yielded a total of 101 solutions. Among these solutions, some of them are dominated by other 
solutions. A solution is said to be Pareto-optimal or non-dominated if none of its objectives can be improved without 
deterioration to at least one of the other objectives. Two types of non-domination can be mentioned for solutions. To 
define it formally, let 𝐳𝐳 = 𝐟𝐟(𝐱𝐱) = {𝑖𝑖1(𝑥𝑥), … , 𝑖𝑖𝑛𝑛(𝑥𝑥)} be the objective vector of the problem. Then; 
 
Definition 1: A solution 𝑥𝑥′ ∈ 𝑆𝑆 is called a strongly non-dominated solution if there exists no 𝑥𝑥" ∈ 𝑆𝑆, 𝑥𝑥′ ≠  𝑥𝑥" such 
that 𝑖𝑖𝑓𝑓�𝑥𝑥"� ≤ 𝑖𝑖𝑓𝑓(𝑥𝑥′) for all 𝑖𝑖 = 1, … ,𝑐𝑐 and 𝑖𝑖𝑓𝑓�𝑥𝑥"� < 𝑖𝑖𝑓𝑓(𝑥𝑥′) for at least one index 𝑗𝑗. 
Definition 2: A solution 𝑥𝑥′ ∈ 𝑆𝑆 is called a weakly non-dominated solution if there exists no 𝑥𝑥" ∈ 𝑆𝑆, 𝑥𝑥′ ≠  𝑥𝑥" such that 
𝑖𝑖𝑓𝑓�𝑥𝑥"� < 𝑖𝑖𝑓𝑓(𝑥𝑥′) for all 𝑖𝑖 = 1, … ,𝑐𝑐. 
 
To that end, all generated non-dominated solutions and strongly non-dominated solutions are shown in Figure 1 (a) 
and (b). Among all solutions, five of them are strongly non-dominated. These five solutions are candidates to be the 
most preferred solution with respect to DM preferences. 
 

 
Figure 1. (a) Weakly and strongly nondominated solutions (b) Strongly nondominated solutions (Pareto-frontier). 

1749



Proceedings of the First Australian International Conference on Industrial Engineering and Operations 
Management, Sydney, Australia, December 20-21, 2022 

© IEOM Society International 

 
Solution characteristics of five strongly non-dominated solutions are presented in Table 1. In this table, the second 
and third columns represent the objective weights that generate the solution. The fourth column provides aggregated 
objective function value while the subsequent two columns show the individual values of two objectives. The seventh 
column indicates the mean demand weighted distance of subdistricts to allocated EMS stations. The eighth and ninth 
columns present the total number of opened EMS stations and the total number of ambulances to be acquired for that 
solution. Finally, the last column provides the opened locations and the number of ambulances allocated to these 
locations in parenthesis.  
 

Table 1. Solution characteristics 
 

Sol. 
ID 𝒘𝒘𝟏𝟏 𝒘𝒘𝟐𝟐 

Obj. 
Fun. 
Val. 

Obj-1 
Value 

Obj-2 
Value 

Mean  
Dist.  

to EMSs 
(km) 

# Op. 
EMSs 

# of 
Amb. 
Acq. 

Opened Location IDs and 
Allocated Ambulances 

Mean # 
of Locs 
Opened 

Max # 
of Locs 
Opened 

A 0.90 0.10 0.005 38,350,000 10,551,431 15.07 27 185 

2(20)-7(1)-32(21)-34(3)-37(4)-
42(1)-49(1)-54(1)-61(1)-65(1)-
68(1)-92(22)-93(16)-102(16)-

103(20)-136(1)-168(1)-170(8)-
184(1)-187(16)-190(3)-193(3)-
195(1)-196(17)-216(1)-219(3)-

225(1) 

6.4 21 

B 0.40 0.60 0.008 38,550,000 10,479,753 14.97 27 186 

2(20)-7(1)-32(22)-34(3)-37(4)-
42(1)-49(1)-54(1)-61(1)-65(1)-
68(1)-92(23)-93(15)-102(18)-

103(20)-136(1)-168(1)-170(8)-
184(1)-187(16)-190(2)-193(3)-
195(1)-196(16)-216(1)-219(3)-

225(1) 

6.9 22 

C 0.38 0.62 0.001 38,650,000 10,478,251 14.97 29 186 

2(21)-7(1)-32(21)-34(3)-36(1)-
37(4)-42(1)-49(1)-51(1)-54(1)-

61(2)-65(1)-68(1)-92(21)-93(12)-
102(19)-103(20)-136(2)-168(1)-
170(8)-184(2)-187(17)-190(2)-
193(3)-195(1)-196(15)-216(1)-

219(2)-225(1) 

6.3 21 

D 0.05 0.95 0.008 38,850,000 10,414,515 14.88 29 187 

2(20)-7(1)-32(22)-34(3)-36(1)-
37(4)-42(1)-49(1)-51(1)-54(1)-

61(2)-65(1)-68(1)-92(21)-93(13)-
102(20)-103(19)-136(2)-168(1)-
170(8)-184(2)-187(17)-190(2)-
193(3)-195(1)-196(15)-216(1)-

219(2)-225(1) 

6.9 23 

E 0.01 0.99 0.005 39,300,000 10,402,793 14.86 30 189 

2(20)-7(1)-32(21)-34(3)-36(1)-
37(4)-42(1)-49(1)-51(1)-54(1)-

61(2)-65(1)-68(1)-92(21)-93(14)-
102(20)-103(20)-136(2)-168(1)-
170(8)-184(2)-185(1)-187(17)-
190(2)-193(3)-195(1)-196(15)-

216(1)-219(2)-225(1) 

6.4 22 

 
As expected, when the second objective is favored more, i.e., more weight is attained, the model tends to open more 
locations and allocates more ambulances. This is why the first objective function value (total installation cost) 
deteriorates as the weight of the second objective function increases. Recall that the second objective aims at 
minimizing the total demand weighted distance of subdistricts to the EMS stations. In this respect, it represents the 
social acceptability of a solution. When all solutions are considered, the number of opened locations varies between 
27-30 while solutions propose allocating 185-189 ambulances to these locations. Conversely, the mean number of 
ambulances allocated to opened locations varies between 6.3-6.9. The maximum number of ambulance allocations 
observed is 23, which is yielded by (0.05,0.95) weight pair. When we look at the demand weighted mean distances 
of subdistricts to opened EMS stations, we observe that all of the solutions provide mean distances less than 15.07 km 
while solution E yields the least mean distance, i.e., 14.86 km. Note that solution E is yielded by a weight pair 
(0.01,0.99), hence favors the social acceptability of a solution. 
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Numerical results and the corresponding analysis are explained to the DM in detail. This process is particularly 
beneficial for the DM to understand the nature of the problem and the impact of the weights assigned to each objective. 
In the light of these findings, the DM can make the trade-offs between these two objectives and determine his/her 
most preferred solution.  

5. Conclusion
In this paper, we aim to solve the EMS station location-allocation and sizing problem for the Anatolian side of Istanbul. 
Establishing an efficient EMS system is of utmost importance for saving lives and alleviating human suffering. The 
time between an emergency call being received and an ambulance arriving at the location of the incident is critical 
because the probability of death increases dramatically as a function of response time. Therefore, locating EMS 
stations and allocating ambulances to emergency calls requires careful and analytical planning.  

To that end, we formulate a multi-objective integer programming model that finds the optimal locations of EMS 
stations and the number of ambulances to be stationed while satisfying response time and availability constraints. 
EMS location-allocation and sizing problem inherently involves multiple objectives to consider. Hence, we seek to 
minimize the total cost of establishing ESM stations which comprises the cost of opening (installing) EMS stations 
and the acquisition cost of ambulances while minimizing the total demand weighted distance of subdistricts to EMS 
stations. Having two conflicting objectives to optimize, we adopted a posteriori approach and generated a 
representative set of non-dominated solutions which constitute the Pareto frontier. In this regard, we presented 
comprehensive solution information to the DM to provide adequate decision support for selecting the most preferred 
solution among the five Pareto-optimal solutions. 

There are two research directions for future work. Firstly, our model does not consider uncertainty within emergency 
call demand. However,  the demand for EMS is inherently uncertain and varies with respect to the time of the day. 
Therefore, a stochastic or robust modeling framework that also addresses operational decisions such as relocation and 
dispatching can be utilized to hedge against uncertainty. For this purpose, historical data should be obtained and 
analyzed thoroughly. Secondly, other preference elicitation approaches such as a priori and interactive methods can 
be used to elicit DM preference structure 
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