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Abstract 

Contact mechanics has been largely used for the prediction of the behavior of material internal stresses due to external 
interactions. The analysis of these problems in the elastic regime was first done by Hertz, who focused on the behavior 
of the stresses in the near vicinities of the contact. The case of a ball interacting with an infinite plate is a special case 
of Hertz’s theory, which was originally designed for the interaction between two spheres. For this case, classical 
equations for the prediction of maximum normal pressure and maximum reaction force are still being used, which 
date as back as 1948. These equations however, seem to significantly overestimate the maximum normal pressure 
generated by the interactions of these two bodies, an observation also induced by the authors which first derived these 
results. Besides the presence of questionable theoretical basis, a significant proportion of the literature still takes these 
models as the only and irrefutable source of theoretical estimations. This paper shows the derivation of new contact 
mechanics equations for the case of a ball being dropped on an infinite plate of the same material. The derivation of 
these equations takes Hertz’s theory as a fundamental preliminary. It assumes a sphere of radius R falling from a 
vertical distance h from the plate. The contact is assumed to be elastic, and so the Work-Energy Theorem was used to 
calculate the work to be done by the plate on the sphere to decelerate it. Given that the integral solution for the work 
experienced by the sphere using this method is significantly complex, a series expansion around the origin is used. 
Additionally, given that the change in the independent variable is significantly small, the first term of this expansion 
results in a good approximation of the original solution. Therefore, the proposed model is: 

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣) =
𝐸𝐸 �𝑅𝑅2 − �𝑅𝑅 − �5𝜌𝜌𝜌𝜌𝑅𝑅2.5𝑣𝑣2
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Where 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣) is the maximum normal stress experienced, E is the Young’s modulus, 𝜎𝜎 is the Poisson’s ratio, 𝑣𝑣  the 
speed of the ball right before contacting the plate and 𝜌𝜌 the material’s density. This model, compared to the classical 
equations, takes into account the ball radius and predicts much lower maximum normal pressures by predicting a lager 
contact area, as expected. 
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1. Introduction
In order to understand how materials fail under specific load cases, it is important to investigate how the internal 
stresses behave and what are the loads that induce them. When the internal stresses reach the critical material 
resistance, several mechanisms of failure could occur, depending on the material properties and load scenario. The 
goal is to know when, where and how these stress levels are reached, giving us the opportunity of preventing material 
failure. For this reason this topic has been extensively studied in the literature, with the aim of understanding the flow 
of stresses within a body under different loads.   

Gahr (1987), who compiled some of the most relevant results regarding material mechanics in his work, shows several 
important equations for the prediction of material behavior. In particular, he shows the equations that predict the 
behavior of internal stresses generated by static loads between bodies of the same material (between spheres, between 
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a sphere and a plate, between cylinders). It is also shown the expression to calculate the magnitudes of the reaction 
forces generated under dynamic interactions. These equations also appear in a work from Tabor (1951), who in turn 
cites a paper from Davies (1949) called The Determination of Static and Dynamic Yield Stresses Using a Steel Ball. 
This work, in most of the literature regarding the prediction of internal stresses due to contacting bodies, is taken as 
general reference, making deliberate use of the equations shown in it. Davies makes use of Hertz’s theory as a starting 
point for the construction of the equations that predict internal stresses and reaction forces. In his work, the equations 
for the prediction of the internal stresses within an infinite steel plate generated by pressing a steel ball over it are 
shown (static scenario). Moreover, Davies tries to investigate how the internal stresses behave in a dynamic case, that 
is, the stresses generated withing a steel plate due to a ball striking its surface after free fall. An important point to 
raise is that, after a detailed review of these results, it is possible to see that the equations generated for the dynamic 
case seem to overestimate real scenarios. For example, using these equations, the stress generated by a steel ball of 
radius 1.27cm falling from a height of just 15cm (dynamic case) would generate the same pressure on the surface of 
a plate as a ball of the same radius pressed against a plate with a load of 527kg (static case). This aspect is also 
recognized by Davies himself, who states: ‘A striking feature brought out by the data given in this table is the 
surprisingly large values of the normal pressure given by small values of velocity and height of drop’.  
 
In this work, we explore the derivation of new equations for the prediction of the internal stresses withing an infinite 
plate, generated by the impact of a ball after free fall. For this, Hertz’s theory is used as a fundamental basis, comparing 
the results obtained by Davies and the new contact model proposed. The first section of this work shows the 
preliminary theory, to finally show the derivation of the new contact mechanics equations for the dynamic case 
specified above.  
 
1.1 Objectives 
The objectives of this work are: 

• To derive new equations for the prediction of maximum pressures and forces experienced by an infinite plate 
hit by a sphere of the same material after free fall. 

• To compare the new proposed model with the one proposed by Davies. 
 
2. Background 
Hertz (1882) published the first extensive work regarding contact mechanics between solid bodies. He showed the 
relationship between material properties, their geometry and loads applied on the contacting bodies. These 
relationships allowed to estimate important parameters such as contact pressure, contact force, contact projected area, 
etc. Medeiros (2002) claims that one of the strongest contributions of Hertz theory was to demonstrate that it is only 
necessary to know the geometry of the material and the elastic properties it has to estimate the contact area and the 
magnitudes of the force and pressure present when two bodies are pressed together. It is important to note that Hertz 
theory, as stated by de Souza and Galvao (2011), makes important assumptions such as:  
 

1. The materials are homogeneous. 
2. The Yield stress of the material is not exceeded 
3. The contact stress is only generated by the load applied to it, and no tangential forces (due to friction or other 

means) are present.  
4. The contact area is significantly small compared to the dimensions of the bodies involved.  
5. The contacting bodies are at equilibrium conditions. 
6. Surface roughness (and therefore friction) is neglected.  

 
Or as Ingraffea and Wawrzynek (2007) state, Hertz theory makes the assumption that material surfaces are  continuous, 
nonconforming, strains are small and that each body can be considered as a half-space. This theory therefore perfectly 
suits the considered scenario, where a ball strikes a flat surface after free fall, considering that very small strains are 
experienced, small contact areas are expected (as metallic materials are used), materials are homogeneous, etc. It is 
important to note that these assumptions are made given that, as Hertz (1882) claims: ‘We can confine our attention 
to that part of each body which is very close to the point of contact, since here the stresses are extremely great 
compared with those occurring elsewhere’. Once this is assumed, as Johnson (1982) pointed out, it is possible to find 
the deformations and stresses by neglecting the curvature of the surfaces in contact, and treating each as half-spaces. 
Some of the most relevant results from Hertz theory, as described by Wang and Chung (2013) will be shown below. 
Consider a normal loading area Ω, a material with Young’s modulus 𝐸𝐸  and Pisson’s ratio 𝑣𝑣 , integration of the 
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deformation point (𝑥𝑥,𝑦𝑦) caused by a normal stress 𝑝𝑝(𝜉𝜉, 𝜂𝜂) over Ω results in the total deformation modeled by the 
following expression. 
 

 
𝑢𝑢𝑧𝑧(𝑥𝑥,𝑦𝑦) =

(1 − 𝑣𝑣2)
𝜋𝜋𝜋𝜋

�
𝑝𝑝(𝜉𝜉, 𝜂𝜂)

�(𝑥𝑥 − 𝜉𝜉)2 + (𝑥𝑥 − 𝜂𝜂)2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Ω
 Equation 1 

 
This expression was derived by Boussinesq (1885), and if contact is not assumed to be frictionless, the relative 
displacement 𝑢𝑢𝑧𝑧 can be formulated in terms of the frictional shear stress 𝑞𝑞𝑥𝑥, 𝑞𝑞𝑦𝑦 and pressure  𝑝𝑝 as: 
 

 𝑢𝑢𝑧𝑧(𝑥𝑥,𝑦𝑦) = � �
𝑥𝑥 − 𝜉𝜉
𝜋𝜋𝜌𝜌2𝜇𝜇′

⋅ 𝑞𝑞𝑥𝑥(𝜉𝜉, 𝜂𝜂) +
𝑦𝑦 − 𝜂𝜂
𝜋𝜋𝜌𝜌2𝑢𝑢′

⋅ 𝑞𝑞𝑦𝑦(𝜉𝜉, 𝜂𝜂) +
1

𝜋𝜋𝜋𝜋𝐸𝐸∗
⋅ 𝑝𝑝(𝜉𝜉, 𝜂𝜂)� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Ω
 Equation 2 

 
Where 𝜌𝜌 = �(𝑥𝑥 − 𝜉𝜉)2 + (𝑥𝑥 − 𝜂𝜂)2 , 1

𝐸𝐸′
= (1+𝑣𝑣1)

𝐸𝐸1
+ (1+𝑣𝑣2)

𝐸𝐸2
, 1
𝐸𝐸∗

= (1−𝑣𝑣12)
𝐸𝐸1

+ (1−𝑣𝑣22)
𝐸𝐸2

, 1
𝜇𝜇′

= (1+𝑣𝑣1)(1−𝑣𝑣2)
2𝐸𝐸1

− (1−𝑣𝑣1)(1+𝑣𝑣2)
2𝐸𝐸2

 and 
1
𝜇𝜇∗

= 𝑣𝑣1(1+𝑣𝑣1)
𝐸𝐸1

+ 𝑣𝑣2(1+𝑣𝑣2)
𝐸𝐸2

 where the subscripts refer to the two bodies involved in the contact. If a ball of equivalent 
radius 𝑅𝑅𝑒𝑒 is deformed by a flat surface with a load W, the contact area should be circular. In this case, the summation 
of the elastic deformation and the original separation can be expressed as:  
 

 
𝛿𝛿 = 𝑢𝑢𝑧𝑧(𝑟𝑟) + 𝑧𝑧(𝑟𝑟) Equation 3 

 
Where:  

 
𝑧𝑧(𝑟𝑟) ≈

𝑟𝑟2

2𝑅𝑅𝑒𝑒
 Equation 4 

 
One of the parabolic pressure distributions that fit the model, considering that a maximum pressure (called Hertzian 
pressure 𝑃𝑃ℎ) is obtained at the center of the contact circle of radius 𝑎𝑎, is the following:  
 

 
𝑝𝑝(𝑥𝑥,𝑦𝑦) = 𝑝𝑝(𝑟𝑟) = 𝑃𝑃ℎ�1 −

𝑥𝑥2

𝑎𝑎2
−
𝑦𝑦2

𝑎𝑎2
 Equation 5 

 
Therefore, the maximum pressure can be obtained by integrating Equation 5 over a circular area and finally obtaining 
the Hertz equations for the calculation of pressure distribution:  
 

 
𝑝𝑝(𝑥𝑥,𝑦𝑦) =

3𝑊𝑊
2𝜋𝜋𝑎𝑎2

�1 −
𝑥𝑥2

𝑎𝑎2
−
𝑦𝑦2

𝑎𝑎2
 Equation 6 

 
Maximum pressure:  

 
𝑃𝑃ℎ =

1
𝜋𝜋
�6𝑊𝑊𝐸𝐸∗2

𝑅𝑅𝑒𝑒2
3

 Equation 7 

 
 
And contact radius:  

 
𝑎𝑎 = �2𝑊𝑊𝑅𝑅𝑒𝑒

4𝐸𝐸∗
3

 Equation 8 

 
Classical Hertz theory has then used to estimate the behavior of pressure and reaction forces due to contacting bodies. 
For the derivation of the equations that predict such behavior, as Whang (2011) states, it is assumed that: (a) the stress 
field generated by the elastic impact is identical to that generated in static conditions and (b) the reacting normal force 
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is due to the deceleration of the bodies impacting each other. This method has been largely used for the study of the 
reaction of the material under shot peening for example, where parabolic pressure distributions together with Hertz 
theory are also used (Fathallah et al. 1998).  
 
5. Results and Discussion 
For the derivation of the new dynamic case equations, Hertz’s contact theory will be used. In particular, we take the 
equations derived for the static case of a sphere pressed against a plate as a starting point which assumes A ball of 
radius 𝑅𝑅 pressed against a plate with a load 𝑃𝑃, as shown in Figure 1.  
 

 
Figure 1. Indentation produced by a sphere on a plate when a load P is applied 

 
The interaction between these two bodies generates an indentation on the plate, with a projected contact circle of 
radius 𝑎𝑎. Hertz’s theory states that the radius of the projected circle can be calculated with the following equation: 
 

 
𝑎𝑎3 =

1.5(1 − 𝜎𝜎2)𝑃𝑃𝑃𝑃
𝐸𝐸

 Equation 9 

 
Where 𝐸𝐸 is the Young’s modulus of the plate and 𝜎𝜎 is its Poisson’s ratio. The distribution of the normal pressure over 
the circle of contact follows the following law. 
 

 
𝑝𝑝 = 𝑝𝑝′�

𝑎𝑎2 − 𝑟𝑟2

𝑎𝑎
 Equation 10 

 
Where 𝑝𝑝 is the normal pressure at distance 𝑟𝑟 from the centre of the circle of contact and 𝑝𝑝′ is the maximum normal 
pressure in the circle of contact. It is then possible to derive the equation of maximum normal pressure as follows. 
 

 
𝑝𝑝′ =

1.145
𝜋𝜋

�
𝐸𝐸

1 − 𝜎𝜎2
�
2
3
�
𝑃𝑃
𝑅𝑅2
�
1
3
 Equation 11 

 
For the dynamic case, in particular, it is assumed that a sphere of radius R falls from a distance h, and immediately 
before contacting the plate, the sphere has a linear velocity 𝑣𝑣, normal to the plate. The impact between the sphere and 
the plate produces an indentation as in Figure 2. It will also be assumed that the contact between the two bodies is 
purely elastic, and that the only force responsible for the deceleration of the sphere is the normal force resulting from 
the elastic interaction between the bodies. It is then possible to use the following result:  
 

2798



Proceedings of the First Australian International Conference on Industrial Engineering and Operations 
Management, Sydney, Australia, December 20-21, 2022 

© IEOM Society International 

Work-Energy Theorem: The work done by the resultant force 𝐹𝐹 acting on a particle as it moves from point A to point 
B along its trajectory is equal to the change in kinetic energy of the particle during the given displacement.  
 
Considering this theorem and the scenario being studied, it is possible to state that the kinetic energy of the sphere 
right before impacting the plate is equal to the work done by the reaction force that the plate generates on the sphere 
to reduce its speed to zero. It is important to state that energy is not always conserved during impact of two bodies, 
but for this initial approach, this will be assumed as true, and that the net force acts purely along the trajectory of the 
sphere.  Then, work can be calculated by the following integral:  
 

 
𝑊𝑊 = � 𝑃𝑃

𝑥𝑥2

𝑥𝑥1
𝑑𝑑𝑑𝑑 Equation 12 

 
Where 𝑃𝑃 is the force experienced by the object in the vertical direction defined in Figure 1 and Δ𝑥𝑥 = 𝑥𝑥2 − 𝑥𝑥1. For 
simplicity, it will be assumed that 𝑥𝑥1  is at the origin, and so any displacement 𝑥𝑥 in the vertical direction can be 
calculated by: 
 

 𝑥𝑥 ≅ 𝑅𝑅 − �𝑅𝑅2 − 𝑎𝑎2 Equation 13 

Then using this result in Equation 9 we have:  
 

 
𝑃𝑃(𝑥𝑥) =

𝐸𝐸[𝑅𝑅2 − (𝑅𝑅 − 𝑥𝑥)2]3/2

𝑅𝑅[1.5(1 − 𝜎𝜎2)]  Equation 14 

 
Therefore, the work done by this force would be:  
 

 
𝑊𝑊 = �

𝐸𝐸[𝑅𝑅2 − (𝑅𝑅 − 𝑥𝑥)2]3/2

𝑅𝑅[1.5(1 − 𝜎𝜎2)]

𝑥𝑥2

𝑥𝑥1
𝑑𝑑𝑑𝑑 Equation 15 

 
Then, since it is assumed that the work done should be equal the initial kinetic energy right before impact, as previously 
stated, we have:  
 

 4
3
𝜋𝜋𝜋𝜋𝑅𝑅3𝑣𝑣2 = �

𝐸𝐸[𝑅𝑅2 − (𝑅𝑅 − 𝑥𝑥)2]3/2

𝑅𝑅[1.5(1 − 𝜎𝜎2)]

𝑥𝑥2

𝑥𝑥1
𝑑𝑑𝑑𝑑 Equation 16 

 
Where 𝜌𝜌 represents the density of the sphere and plate. Conveniently, the previous integral can be calculated from 
𝑥𝑥 = 0 (right before impact) to 𝑥𝑥 = 𝑑𝑑 where 𝑑𝑑 is the maximum vertical distance travelled by the sphere, as shown 
below.  

 4
3
𝜋𝜋𝜋𝜋𝑅𝑅3𝑣𝑣2 = �

𝐸𝐸[𝑅𝑅2 − (𝑅𝑅 − 𝑥𝑥)2]3/2

𝑅𝑅[1.5(1 − 𝜎𝜎2)]

𝑑𝑑

0
𝑑𝑑𝑑𝑑 Equation 17 

 
The integral in the previous expression has the following solution: 
 

�
𝐸𝐸[𝑅𝑅2 − (𝑅𝑅 − 𝑥𝑥)2]

3
2

𝑅𝑅[1.5(1 − 𝜎𝜎2)] 𝑑𝑑𝑑𝑑 =
1
8
�𝑥𝑥(2𝑅𝑅 − 𝑥𝑥)

⎝

⎜
⎛

6𝑅𝑅3.5 sin−1 � √𝑥𝑥
√2𝑅𝑅

�

�𝑥𝑥 �2 − 𝑥𝑥
𝑅𝑅�

− 3𝑅𝑅3 − 𝑅𝑅2𝑥𝑥 + 6𝑅𝑅𝑥𝑥2 − 2𝑥𝑥3

⎠

⎟
⎞

 

 
Given that the exact solution of the integral introduces significant complexity to the expression, it was necessary to 
use a series expansion around 𝑥𝑥 = 0 of the solution and since the displacement 𝑥𝑥 is considerably small (due to very 
small elastic strains), the first term of the expansion would be a good approximation of it. Then, for significantly small 
displacements, the integral can be approximated as follows:  
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�
𝐸𝐸[𝑅𝑅2 − (𝑅𝑅 − 𝑥𝑥)2]

3
2

𝑅𝑅[1.5(1 − 𝜎𝜎2)] 𝑑𝑑𝑑𝑑 ≈
4
5√

2𝑅𝑅1.5𝑥𝑥2.5 Equation 19 

Therefore, the expression that relates the kinetic energy of the sphere before impact and the work necessary to stop it 
during the collision is:  

4
3
𝜋𝜋𝜋𝜋𝑅𝑅3𝑣𝑣2 = �

𝐸𝐸[𝑅𝑅2 − (𝑅𝑅 − 𝑥𝑥)2]3/2

𝑅𝑅[1.5(1 − 𝜎𝜎2)]

𝑑𝑑

0
𝑑𝑑𝑑𝑑 ≈

4
5√

2𝑅𝑅1.5𝑑𝑑2.5 Equation 20 

4
3
𝜋𝜋𝜋𝜋𝑅𝑅3𝑣𝑣2 =

4
5√

2𝑅𝑅1.5𝑑𝑑2.5 Equation 21 

It is then possible to solve for 𝑑𝑑 and obtain the equation of the maximum force experienced by the ball during the 
impact as a function of the speed before impact:  

𝑑𝑑 = �
5𝜌𝜌𝜌𝜌𝑅𝑅1.5𝑣𝑣2

3√2𝐸𝐸
�
0.4

Equation 22 

𝑃𝑃(𝑣𝑣) =
𝐸𝐸 �𝑅𝑅2 − �𝑅𝑅 − �5𝜌𝜌𝜌𝜌𝑅𝑅1.5𝑣𝑣2

3√2𝐸𝐸
�
0.4

�
2

�
1.5

1.5𝑅𝑅(1 − 𝜎𝜎2)

Equation 23 

Then, the maximum normal stress experienced by the plate can be approximated by: 

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣) =
𝐸𝐸 �𝑅𝑅2 − �𝑅𝑅 − �5𝜌𝜌𝜌𝜌𝑅𝑅1.5𝑣𝑣2

3√2𝐸𝐸
�
0.4

�
2

�
0.5

𝑅𝑅(1 − 𝜎𝜎2)𝜋𝜋

Equation 24 

It is important to highlight that this proposed model takes into account the radius of the sphere. Also, it predicts that 
the maximum pressure that could be experienced during collision is achieved when the size of the contact circle equals 
the size of the sphere. The proposed model can be graphed as shown in Figure 2.  
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Figure 2. Graphical representation of proposed model 

 
Contrary to Davies’ model, it is possible to observe that the pressure is fairly dependent of the radius of the sphere. 
More specifically, Davies’s model predicts that the maximum pressure experienced by the plate when a sphere of the 
same material hits is surface can be calculated with the following expression.  
 

 
𝑝𝑝′ =

1
𝜋𝜋

(2.5𝜋𝜋𝜋𝜋)
1
5 �

𝐸𝐸
1 − 𝜎𝜎2

�
4/5

𝑣𝑣2/5 Equation 25 

 
To illustrate the difference between these two models, Figure 3 can be used. Note that this figure takes into account 
the change in maximum pressure as a function of impact speed only, considering the specific case of a ball of radius 
𝑅𝑅 = 1𝑐𝑐𝑐𝑐 being dropped on a plate at different heights. 
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Figure 3. Comparison of the prediction of maximum normal pressure from proposed model with Davies’ model 

assuming a ball of radius 1cm 

 
From Figure 3 it is possible to observe significant differences between the two models. For instance, when the ball 
impacts a plate at 25cm/s, the pressure predicted by Davies would be approximately 1.9 ∗ 1010𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑐𝑐𝑚𝑚2 while the 
proposed model predicts a pressure of 6.9 ∗ 109𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑐𝑐𝑚𝑚2. The main difference between the two models comes 
from the prediction of the normal force experienced during collision. The model proposed in this work predicts a much 
lower maximum force for the same experimental conditions. This is illustrated in Figure 4, where it is possible to 
observe that for any given impact velocity, the maximum normal force predicted by the proposed model is significantly 
lower than the one predicted by Davies’ model.  
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Figure 1. Comparison of the prediction of maximum normal force from proposed model with Davies’ model 

assuming a ball of radius 1cm 

 
In general, the proposed model predicts forces five times lower than those predicted by Davies’ model. An immediate 
consequence of this, is the prediction of much lower maximum pressures, as shown above. Figure 5 shows the ratio 
of the maximum force predicted by Davies’ model to that of the proposed model, and it is observed that a very 
consistent ratio is obtained for a significantly large range of impact velocity values. 
 

 
Figure 5. Ratio of predicted maximum force from Davies’ model to proposed model 

 
The consistency of this model, and the fact that it predicts lower forces and pressures, as it was sought, provides 
evidence of a change in the models being used to this day for the prediction of contact forces between moving objects. 
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The models proposed before have been used extensively without scrutinizing their validity, reason for which it is 
highlighted the need for an update of the models to be used in future.  

6. Conclusion
In order to prevent material failure, it is crucial to know the loads tolerated by the material and the possible mechanisms 
of failure. In the literature, very few researches show the derivations for theoretical prediction of load magnitudes in 
dynamic scenarios. Most of the literature show results derived in the 1940s’, without scrutinizing the validity of such 
models. In this research, the authors derive new equations for contact mechanics in a dynamic case. In particular, it 
was possible to derive an expression that predicts the maximum load and pressure experienced by a plate due to a ball 
hitting its surface after free fall. It was also possible to compare the proposed model with the model mostly used in 
the literature, fulfilling in this way the objectives of this research. It was observed that the proposed model predicts 
much lower maximum forces and pressures, being in average five times lower than Davies’ contact model, which has 
been found to estimate surprisingly high values for pressures and forces in dynamic scenarios. These findings represent 
a new approach to calculate the contact forces and pressures; an aspect that has been abandoned to date.  
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