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Abstract 

This paper presents a bi-objective multi-warehouse inventory optimization model for fresh produce, allowing 
transhipments between warehouses. Initially, we extended our previous proposed mixed-integer quadratic 
programming model by allowing transhipment between warehouses. Next, we introduce a bi-objective function, as 
there is a conflict between two cost components: energy cost of warehouses and product deterioration cost. In the bi-
objective model, the first objective minimizes energy costs of warehouses, preparation costs of warehouses, inventory 
holding costs and transhipment costs. The second objective aims to minimize the quantity of deteriorated products. 
We performed computational experiments using Gurobi optimization using a number of randomly generated instances 
under three different scenarios based on the value of transhipment costs compared with holding costs (lower, similar 
or higher). In the first phase of the computational experiments, we consider only transhipments between warehouses 
(not using the bi-objective function). These results show that considering lateral transhipments decrease the overall 
costs in all scenarios. Next, we repeat the computational experiments, using the bi-objective function and the 
transhipment between warehouses. We calculated the weighted sum of both objectives using nine different 
combinations of weights for the two objective functions testing on the same instances. The resulted pareto fronts 
provide a decision-making scheme for managers to decide on the best trade-off between warehousing and inventory 
costs (first objective) and the quantity of deteriorated products (second objective). 

Keywords 
Inventory control, fresh produce inventory management, perishable products, transhipment, multi-objective integer 
programming. 

1. Introduction
The food industry in Australia is responsible for $117 billion per year and is increasing by more than 2% per year 
(Hogan, 2018). It is estimated that around one-third of the food produced for human consumption is lost globally, 
about 1.3 billion tons per year (FAO, 2011, Juliano et al., 2019). Many challenges are associated with the food supply 
chain resulting in food loss, from harvesting, inventory management, production, and distribution to delivery to the 
final customer. Particularly in fresh produce (fruit and vegetables), a central challenge is inventory management, 
which involves all the decisions related to storage between harvesting and market demand. Therefore, appropriate 
inventory management is essential. According to (Ivanov et al., 2017), inventory cost corresponds to 50% of the total 
capital invested by many businesses. 

Shukla and Jhakharia (2013), Lemma et al. (2014), Paam et al. (2016), and Janssen et al. (2016) are some examples 
of literature reviews in the area of food supply models, including production planning and inventory management 
considering perishable products. Shukla and Jhakharia (2013) introduce a literature review on the supply chain 
management of fresh produce. Lemma et al. (2014) focus on approaches to dealing with loss in the food supply chain, 
while Janssen et al. (2016) classify inventory models for deteriorating products. Finally, Paam et al. (2016) offer a 
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comprehensive survey of planning and optimization models in the agricultural fresh food supply chain, considering 
food loss.  
 
In this paper we deal with the multi-period, multi-product, multi-warehouse inventory control optimization problem 
that originates from the inventory management of fresh produce. Few studies present mathematical optimisation 
formulations for inventory management problems for fresh produce. Some examples are Bhunia et al. (2014), Banerjee 
and Agrawal (2017), Herbon et al. (2014), and Masini et al. (2007). Bhunia et al. (2014) present a mathematical model 
for the two-warehouse single-product inventory problem for perishable products considering backlogging. Banerjee 
and Agrawal (2017) propose an inventory model for perishable products when demand depends on the price and 
freshness of products. A non-linear mixed integer program model for inventory management of perishable products 
is proposed by Herbon et al. (2014), also investigating the application of dynamic pricing to products closer to their 
expiry dates. Finally, Masini et al. (2007) propose an integer linear programming model for determining the optimal 
production and inventory of fresh fruit and juice. The work of Ramakrishna et al. (2015) is one example that allows 
shipment between two warehouses in a two-product, two warehouses inventory control problem. The model aims to 
minimize total costs, including holding, ordering, shipment, and emergency order costs. 
 
One of the most effective technologies for storing fresh produce is a controlled atmosphere storage system, where 
atmospheric conditions can be adjusted such that the fruits and vegetables can remain longer in storage with no 
deterioration (Rama and Narasimham, 2003). Regular atmosphere (RA) rooms can control only temperature and 
humidity, while in controlled atmosphere (CA) rooms, other atmospheric elements, such as oxygen and carbon dioxide 
levels, are also adjusted. As a result, fresh produce remains longer for consumption in CA rooms; however, they are 
more expensive. 
 
We have proposed several optimisation mathematical models considering these types of storage for fresh produce, 
minimising cost and food loss while attending to the market demand. In Paam et al. (2018), we proposed a mixed-
integer linear programming mathematical formulation for a single product multi-warehouse inventory problem applied 
to an Australian apple company. The model determines the optimal warehouse types (RA or CA), minimising cost 
and food loss. In Paam et al. (2019), we performed a detailed analysis on the impact of the model considering different 
storage configurations and provided a series of recommendations to empower the inventory performance. More 
recently, in (Paam et al., 2022), we extended the model to a multi-period, multi-product, multi-warehouse inventory 
control optimisation problem. The model is tested using real data from an Australian apple company, and the results 
indicate a reduction in total cost by 8% and quantity of product deterioration by 20%. 
 
In this paper, we extend our previous mathematical model (Paam et al., 2022), making two contributions. The first 
contribution is the inclusion of transhipment between warehouses, where the fresh produce can be shipped from one 
warehouse to another. The second contribution is proposing a bi-objective optimisation formulation due to the conflict 
between two cost components of the objective function in the model presented in (Paam et al., 2022): energy cost of 
warehouses and deterioration cost. Therefore, in the bi-objective optimisation formulation, the first objective aims to 
to minimise total inventory and warehousing costs (including transhipment costs), and the second aims to minimise 
the quantity of deteriorated/loss fresh produce. 
 
The remainder of this paper is organised as follows. Section 2 describes the mixed-integer quadratic programming 
model considering transhipment between warehouses and the proposed bi-objective function. Then, computational 
experiments, their results and analysis are depicted in Section 3. Finally, Section 4 concludes the paper. 
 
2. The mixed-integer quadratic programming model 
The problem considered in this paper is the multi-period, multi-product, multi-warehouse inventory control 
optimization problem for the inventory management of fresh produce. The aim is to decide the inventory flow of fresh 
produce from farms during harvesting, while satisfying the demand during the planning periods. It is also necessary 
to determine when to turn each warehouse on or off, and the warehouse’s mode (RA or CA) in each period, such that 
the overall cost is minimized. We have proposed a mixed-integer quadratic programming model for this problem 
(Paam et al., 2022). Below we describe the model, including the extension proposed in this paper: a bi-objective 
function and considering transhipment between warehouses. 
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The assumptions for the mathematical formulation are the same as the ones presented in Paam et al., (2022), which 
are: 
 
• The warehouses can be in RA (Regular Atmosphere) or CA (Control Atmosphere) mode. 
• The warehouses always start in RA mode, to receive input, since in CA mode, the warehouse must be closed. 
• Warehouses can turn on/off only at the beginning of a period. 
• Warehouses can switch modes only at the beginning of a period. 
• Inventory levels are calculated at the end of a period. 
• A warehouse can be turned on at most once, meaning that it cannot be turned on after it is turned off, as the setup 

cost to turn on the warehouses is too expensive. 
• Each warehouse contains only one product variety, since each product variety requires different atmosphere 

conditions for storage. 
• Deterioration rates are constant (which is different for each product variety, and each mode). 
• The inventory level decreases due to demand in RA mode, and due to deterioration rate in RA and CA modes. 
• Demand is known and deterministic. 
• Shortages are not allowed. 
 
Below, the indices, parameters, and decision variables are listed, and the ones marked with (*) are the ones introduced 
in this paper. 

Indices and sets 
𝑡𝑡 ∈ 𝑇𝑇: planning periods, where T = {1, …, 𝑇𝑇´},  
ℎ ∈ 𝐻𝐻 ⊆ 𝑇𝑇: harvesting periods, where H = {1, …, 𝐻𝐻´}, 
(*) 𝒊𝒊 & 𝒋𝒋 ∈ 𝑵𝑵: warehouse, where N= {1, …, 𝑁𝑁´},  
𝑣𝑣 ∈ 𝑉𝑉: product varieties, where V= {1, …, 𝑉𝑉´}, 
𝑘𝑘 ∈ 𝐾𝐾: warehouse modes, where K= {1, …, 𝐾𝐾´}. 

Parameters  
𝑄𝑄𝑄𝑄𝑄𝑄𝑣𝑣ℎ: input product variety v in harvesting period h (bin/fortnight), 
(*) 𝑴𝑴𝑴𝑴𝑴𝑴𝒊𝒊: maximum capacity for warehouse i (bin), 
𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣: demand of product variety v in period t ((bin/ fortnight), 
𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣 : deterioration rate of product variety v in mode k (%/fortnight), 
𝐼𝐼𝐼𝐼𝐼𝐼: inventory holding cost of one unit of product ($/bin), 
𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘: energy cost of warehouses in mode k ($/fortnight), 
𝑅𝑅𝑅𝑅𝑅𝑅 : preparation cost of a warehouse ($), 
(*) 𝑻𝑻𝑻𝑻𝑻𝑻 : Transhipment cost of one unit of product between two warehouses ($). 

Decision Variables 
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ: input quantity of product variety v to warehouse number i in harvesting period h, 
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ𝑡𝑡: output quantity of product variety v from warehouse number i harvested in period h in period t, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖ℎ𝑡𝑡: quantity of product loss of variety v in warehouse number i in period h in period t, 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑡𝑡: inventory level of product variety v in warehouse number i harvested in period h at the end of period t, 
(*) 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊: transhipment quantity of variety v from warehouse i to warehouse j in period t, 
𝑠𝑠𝑖𝑖𝑖𝑖: equal to 1, if warehouse number i turns on in period t, 0 otherwise, 
𝑢𝑢𝑖𝑖𝑖𝑖: equal to 1, if warehouse number i turns off in period t, 0 otherwise, 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: equal to 1, if warehouse number i containing product variety v operates under mode k in period t, 0 otherwise, 
𝑦𝑦𝑖𝑖𝑖𝑖 : equal to 1, if warehouse number i contains product variety v. 
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Mathematical formulation 
Objective function:         
𝑀𝑀𝑀𝑀𝑛𝑛[∑ ∑ ∑ ∑ 𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑡𝑡𝑡𝑡ℎ𝑣𝑣 + ∑ ∑ ∑ ∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 × 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡𝑣𝑣𝑖𝑖  + ∑ ∑ RCT ×𝑣𝑣𝑖𝑖𝑖𝑖
𝑠𝑠𝑖𝑖𝑖𝑖 +∑ ∑ ∑ 𝑻𝑻𝑻𝑻𝑻𝑻 × 𝜷𝜷𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒕𝒕𝒗𝒗𝑵𝑵 ]      (1) 

𝑀𝑀𝑀𝑀𝑀𝑀 [∑ ∑ ∑ ∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖ℎ𝑡𝑡]𝑡𝑡ℎ𝑣𝑣𝑖𝑖                                                                                                    (2) 

Subject to: 
𝑄𝑄𝑄𝑄𝑄𝑄𝑣𝑣ℎ = ∑ 𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ                              ∀ℎ ∈ 𝐻𝐻, 𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖                                                                                                             (3) 
∑ ∑ 𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ𝑡𝑡 𝑖𝑖 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣                    ∀𝑡𝑡 ∈ 𝑇𝑇, 𝑣𝑣 ∈ 𝑉𝑉    𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  ℎ ≤ 𝑡𝑡 ℎ                                                                                                             (4) 
𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖,ℎ=𝑡𝑡 + ∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ,𝑡𝑡−1

𝑡𝑡−1
ℎ=1 + ∑ 𝜷𝜷𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝑵𝑵´

𝐣𝐣=𝟏𝟏 ≤  𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 )     
∀𝑖𝑖 ∈ 𝑁𝑁, 𝑣𝑣 ∈ 𝑉𝑉, 𝑡𝑡 ∈ 𝐻𝐻 , 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ,𝑡𝑡=0 = 0    𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  ℎ = 𝑡𝑡 

(5) 

∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑡𝑡−1ℎ + ∑ 𝜷𝜷𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝑵𝑵´
𝐣𝐣=𝟏𝟏 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 )              

∀𝑖𝑖 ∈ 𝑁𝑁, 𝑣𝑣 ∈ 𝑉𝑉, 𝑡𝑡 ∈ 𝑇𝑇 − 𝐻𝐻                𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  ℎ < 𝑡𝑡      
(6) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑡𝑡 = +𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ + ∑ 𝜷𝜷𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝑵𝑵´
𝐣𝐣=𝟏𝟏 − 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ𝑡𝑡  − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖ℎ𝑡𝑡 − ∑ 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑵𝑵´

𝐣𝐣=𝟏𝟏               
 ∀ i ∈ N,𝑣𝑣 ∈ 𝑉𝑉,ℎ ∈ 𝐻𝐻, 𝑡𝑡 ∈ 𝑇𝑇          𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒   ℎ = 𝑡𝑡 

(7) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ,𝑡𝑡−1 + ∑ 𝜷𝜷𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝑵𝑵´
𝐣𝐣=𝟏𝟏 − 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ𝑡𝑡 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖ℎ𝑡𝑡 − ∑ 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑵𝑵´

𝐣𝐣=𝟏𝟏       
∀ i ∈ 𝑁𝑁, 𝑣𝑣 ∈ 𝑉𝑉,ℎ ∈ 𝐻𝐻, 𝑡𝑡 ∈ 𝑇𝑇             𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒   ℎ < 𝑡𝑡 

(8) 

𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ + 𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ𝑡𝑡 + ∑ 𝜷𝜷𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝑵𝑵´
𝐣𝐣=𝟏𝟏 + ∑ 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑵𝑵´

𝐣𝐣=𝟏𝟏 ≤ 𝑀𝑀1 × (1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=2)        
∀i ∈ 𝑁𝑁, 𝑣𝑣 ∈ 𝑉𝑉,ℎ ∈ 𝐻𝐻 , 𝑡𝑡 ∈ 𝑇𝑇       𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒   k = 2 (CA) and  ℎ = 𝑡𝑡 

(9) 

𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ𝑡𝑡 + ∑ 𝜷𝜷𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝑵𝑵´
𝐣𝐣=𝟏𝟏 + ∑ 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑵𝑵´

𝐣𝐣=𝟏𝟏 ≤ 𝑀𝑀1 × (1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=2)        
∀i ∈ 𝑁𝑁, 𝑣𝑣 ∈ 𝑉𝑉,ℎ ∈ 𝐻𝐻 , 𝑡𝑡 ∈ 𝑇𝑇      𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒   k = 2 (CA) and  ℎ < 𝑡𝑡 

(10) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖ℎ𝑡𝑡  = (∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣 × 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑘𝑘 ((𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ + ∑ 𝜷𝜷𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝑵𝑵´
𝐣𝐣=𝟏𝟏 ) − 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ𝑡𝑡 − ∑ 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑵𝑵´

𝐣𝐣=𝟏𝟏 )    
∀i ∈ 𝑁𝑁, 𝑣𝑣 ∈ 𝑉𝑉,ℎ ∈ 𝐻𝐻, 𝑡𝑡 ∈ 𝑇𝑇             𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  ℎ = 𝑡𝑡 

(11) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖ℎ𝑡𝑡  = (∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣 × 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑘𝑘 ((𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ,𝑡𝑡−1 + ∑ 𝜷𝜷𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝑵𝑵´
𝐣𝐣=𝟏𝟏 ) − 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖ℎ𝑡𝑡 − ∑ 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑵𝑵´

𝐣𝐣=𝟏𝟏 )    
∀i ∈ 𝑁𝑁, 𝑣𝑣 ∈ 𝑉𝑉,ℎ ∈ 𝐻𝐻, 𝑡𝑡 ∈ 𝑇𝑇             𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  ℎ < 𝑡𝑡 

(12) 

∑ 𝑠𝑠𝑖𝑖𝑖𝑖 ≤ 1𝑡𝑡                                                             ∀i ∈ 𝑁𝑁  (13) 
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑣𝑣  = ∑ (𝑠𝑠𝑖𝑖𝑖𝑖 −𝑡𝑡

𝜏𝜏=1  𝑢𝑢𝑖𝑖𝑖𝑖 )                     ∀i ∈ 𝑁𝑁, 𝑡𝑡 ∈ 𝑇𝑇  (14) 
∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑣𝑣 ≤ 1                                                            ∀i ∈ 𝑁𝑁  (15) 
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ≤ K × 𝑇𝑇 × 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡                              ∀i ∈ 𝑁𝑁, 𝑣𝑣 ∈ 𝑉𝑉  (16) 

 
Equation (1) is the first objective function that minimizes total inventory and warehousing costs, including the 
inventory holding cost, the energy cost of warehouses, the preparation cost and the transhipment cost. Equation (2) is 
the second objective function which minimizes the total quantity of deteriorated/loss product. Constraint (3) 
guarantees that all fresh produce from the harvest is stored in the warehouses. Constraint (4) ensures that the demand 
for each product is satisfied. Constraints (5) and (6) are the warehouse capacity constraints where ℎ=𝑡𝑡 and ℎ<𝑡𝑡, 
respectively. They also ensure that when a warehouse does not operate, it has no product inside. Constraints (7) and 
(8) are inventory balance when h = t and h < t. In the former, input only comes to the warehouses from the harvest, 
whereas in the latter, inventory only originates from the previous period. It should be noted that for each warehouse, 
we are balancing the inventory of each variety of product from each harvesting period in each planning period. 
Moreover, the deteriorated product is depleted from a warehouse in each period after satisfying the demand. 
Constraints (9) and (10) are active where ℎ=𝑡𝑡 and ℎ<𝑡𝑡. They state that if a warehouse operates in CA mode, it has no 
inventory flow (input or output). They also guarantee that the warehouse mode is RA whenever there is an inventory 
flow. Furthermore, M1 is the upper bound for 𝑞𝑞𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛ℎ + 𝑞𝑞𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛ℎ𝑡𝑡, which we consider to be twice the total demand, 
2 ∑ ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡 .  
 
Constraints (11) and (12), which are quadratic, quantify the amount of deteriorated product per period for ℎ=𝑡𝑡 and 
ℎ<𝑡𝑡, respectively. In each period, first, product is taken out of the warehouse to satisfy the demand, and then the 
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remaining inventory deteriorates based on a fixed deterioration rate. Constraint (13) states that a warehouse is turned 
on at most once during the whole time horizon. Constraint (14) ensures that if a warehouse operates in period t, it must 
have been turned on and not turned off from the first period up to period t, and conversely. It also states that each 
warehouse can have a maximum of one mode in each period. Constraint (15) guarantees that a warehouse contains a 
maximum of one variety. Constraint (16) ensure that once a warehouse's variety is determined, it remains unchanged 
from that point onward. 
 
4. Computational results 
We initially tested the MIQP model considering only transhipment between warehouses. So, the objective function is 
the one from Paam et al. (2022). Using the default parameters, we use the mathematical optimization solver Gurobi 
to find the optimal solution for the MIQP. We randomly generated 25 instances based on the data ranges of the real 
case study presented in Paam et al. (2022) for the demand and supply of each product. Each instance includes 8 
planning periods (T’=8), 3 harvesting periods (H’=3), 8 warehouses (N’=8), 1 variety (V’=1) and 2 modes of 
warehouses (K’=2) under three different scenarios based on the value of the transhipment cost: 
 

• Transhipment cost less than holding cost (𝑇𝑇𝑇𝑇𝑇𝑇 < 𝐼𝐼𝐼𝐼𝐼𝐼): TCT=1 
• Transhipment cost similar to holding cost (𝑇𝑇𝑇𝑇𝑇𝑇~𝐼𝐼𝐼𝐼𝐼𝐼): TCT=5 
• Transhipment cost greater than holding cost (𝑇𝑇𝑇𝑇𝑇𝑇 > 𝐼𝐼𝐼𝐼𝐼𝐼): TCT=10 

 
For each scenario, we run the instances for the original MIQP model from Paam et al. (2022) and the model considering 
transhipment between warehouses (2)-(16) to check if transhipment between warehouses improves the inventory 
operation costs. 
 
Table 1 compares the average results of not having transhipment versus having transhipment under three different 
transhipment costs for the 25 instances. The last row shows the improvement rate for each scenario. If the rate is 
negative, it means considering transhipment improves the inventory system and minimizes total costs. As shown, for 
all three scenarios, having transhipment between warehouses improves the inventory operations’ costs. Although 
transhipment cost increases from the lowest to highest TCT, the overall objective function (total cost) decreases. This 
can be attributed to the reduction in holding and deterioration costs. 
 

Table 1. Average results of no transhipment versus transhipment under three scenarios  
(TCT=1, TCT=5, TCT=10) for the 25 instances. 

 
 No Transhipment TCT=1 TCT=5 TCT=10 

Total costs ($) 215366 214316 209460 207358 
holding Cost ($) 117284 117988 114781 113295 

electricity cost ($) 14934 13172 13486 13758 
set up cost ($) 6256 5520 5593 5679 

Transhipment cost ($) - 100 258 346 
deterioration cost ($) 76892 77535 75342 74279 

Total cost Improvement Rate (%) - -0.49 -2.82 -3.86 
 
After ensuring that considering transhipment between warehouses improved the overall costs, we tested the model 
(1)-(16), which considers bi-objective function and the transhipment between warehouses. As described before, the 
first objective function minimizes warehousing and inventory costs; and the second objective minimizes the quantity 
of deteriorated products. 
 
For each scenario, we obtained the weighted sum (WeiSum) of the objective function values (OBVs) for nine different 
combinations of weights between 0 and 1 (w1=0.1 and w2=0.9; w1=0.2 and w2=0.8; …; w1=0.9 and w2=0.1). Table 
2 shows the weighted sum of the OBVs for three scenarios of TCT=1, TCT=5 and TCT=10 under nine different 
combinations of weights for the objective functions.  
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Table 2. Weighted sum (WeiSum) of OBVs for the bi-objective model with transhipment for three scenarios of 
TCT=1, TCT=5 and TCT=10; w1:  weight for the first objective, w2:  weight for the second objective. 

 

Weights TCT=1 TCT=5 TCT=10 
OBV1 OBV2 WeiSum OBV1 OBV2 WeiSum OBV1 OBV2 WeiSum 

w1=0.1, w2=0.9 157291 190 87671 149467 181 83568 152504 184 84710 
w1=0.2, w2=0.8 153707 188 93825 141121 173 86470 143513 176 87800 
w1=0.3, w2=0.7 152757 191 102120 140009 183 95830 144243 179 95935 
w1=0.4, w2=0.6 151643 196 110091 139462 182 101715 141757 182 102553 
w1=0.5, w2=0.5 143112 195 112429 137697 186 107857 137932 184 107579 
w1=0.6, w2=0.4 133766 194 112817 134957 194 113597 134562 193 113150 
w1=0.7, w2=0.3 130908 206 117652 133104 204 118843 132734 202 118362 
w1=0.8, w2=0.2 128741 222 121613 129274 223 122171 129228 228 122503 
w1=0.9, w2=0.1 121832 332 123608 120826 386 124947 121347 354 124101 

 
Figures 1-3 display the pareto fronts of objective function values for scenarios of TCT=1, TCT=5 and TCT=10, 
respectively. In all figures, moving from left to right, the points represent w1=0.9 and w2=0.1, w1=0.8 and w2=0.2, 
…, w1=0.1 and w2=0.9. These pareto fronts provide a decision-making scheme for managers by allowing them to 
decide on the best trade-off between warehousing and inventory costs (OBV1) and the quantity of deteriorated 
products (OBV2). 
 
 

 
 

Figure 1. Pareto front of OBVs for TCT=1 
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Figure 2. Pareto front of OBVs for TCT=5 
 

 
 

Figure 3. Pareto front of OBVs for TCT=10 
 
6. Conclusion 
This paper considered the multi-period, multi-product, multi-warehouse inventory control optimization problem for 
the inventory management of fresh produce. We have extended a proposed mixed-integer quadratic programming 
model (Pam et al., 2022), allowing transhipments between warehouses and presenting a bi-objective function. 
 
We tested the mathematical formulations in two phases. First, we tested the performance of the model only with 
transhipment between warehouses (without the bi-objective function). Next, we tested the model employing the bi-
objective function and transhipment between warehouses. For both computational tests, we used the mathematical 
optimisation software Gurobi using 25 instances randomly generated based on the case study from Pam et al. (2022). 
 
In the first phase of the computational experiments, the transhipment costs are divided into three categories, which are 
less, similar, or greater than the electricity costs. The results show that, independently of the transhipment cost, the 
overall inventory system costs are minimised. 
 
Finally, in the second phase, we conducted computational experiments using the model with the bi-objective function 
and allowing transhipment between warehouses. We have summed both objective functions with weights from w1=0.1 
and w2=0.9, to w1=0.9 and w2=0.1, and we presented the Pareto front results. The Pareto front results (Figure 1, 2 
and 3) shows the trade-offs between both objective functions, suggesting possible strategies to managers. 
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One of the limitations of this study is not considering supply uncertainties due to, for example, weather conditions. In 
addition, demand uncertainties and shortage allowance. Another limitation is the computational time needed to run 
mixed-integer programming problems using optimal methods, such as those available in software packages such as 
Gurobi. One possible extension is developing and implementing heuristics and metaheuristics to improve the 
computational efficiency when applying the model in larger instances of the problem. 

Acknowledgements 
This research was supported by the Australian Research Council’s Industrial Transformation Training Centre funding 
scheme (project number IC140100032).  

References 
Banerjee, S., and Agrawal, S., Inventory model for deteriorating items with freshness and price dependent demand: 

optimal discounting and ordering policies. Applied Mathematical Modelling, vol. 52, pp. 53-64, 2017. 
Bhunia, A. K., Jaggi, C. K., Sharma, A., and Sharma, R., A two-warehouse inventory model for deteriorating items 

under permissible delay in payment with partial backlogging. Applied Mathematics and Computation, vol. 232, 
pp. 1125-1137, 2014. 

FAO, 2011, Global Food Losses and Food Waste. Extent, Causes and Prevention, Food and Agriculture Organization 
of the United Nations, Rome, 2011. 

Herbon, A., Levner, E., and Cheng, T. C. E., Perishable inventory management with dynamic pricing using time–
temperature indicators linked to automatic detecting devices. International Journal of Production Economics, 
vol. 147, Part C, pp 605-613, 2014.  

Hogan, L., Food demand in Australia: Trends and issues 2018, ABARES Research Report 18, Canberra, 2018. 
Ivanov, D., Tsipoulanidis, A., and Schönberger, J., Inventory Management. In Global Supply Chain and Operations 

Management: A Decision-Oriented Introduction to the Creation of Value, pp. 345-388, Cham: Springer 
International Publishing, 2017. 

Janssen, L., Claus, T., and Sauer, J., Literature review of deteriorating inventory models by key topics from 2012 to 
2015. International Journal of Production Economics, vol. 182, pp. 86-112, 2016. 

Juliano, P., Sanguansri, P., Krause, D., Villaddra-Gamage, M., and Garcia-Flores, R., Mapping of Australian Fruit 
and Vegetable Losses Pre-Retail, 2019. 

Lemma, Y., Kitaw, D., and Gatew, G., Loss in Perishable Food Supply Chain: An Optimization Approach Literature 
Review. International Journal of Scientific and Engineering Research, vol. 5, no 5, pp. 301-311, 2014. 

Masini, G. L., Blanco, A. M., Petracci, N., and Bandoni, J. A., Supply chain tactical optimization in the fruit industry. 
Process Systems Engineering: Supply Chain Optimization, vol. 4, pp. 121-172, 2007. 

Paam, P., Berretta, R., Heydar, M., Middleton, R.H., García-Flores, R., Juliano, P.: Planning Models to Optimize the 
Agri-Fresh Food Supply Chain for Loss Minimization: A Review. Reference Module in Food Sciences. pp. 1–16. 
Elsevier, 2016.  

Paam, P., Berretta, R., Heydar, M., An Integrated Loss-Based Optimization Model for Apple Supply Chain. In: 
Kliewer, N., Ehmke, J., Borndörfer, R. (eds) Operations Research Proceedings, Springer, Cham, 2018. 

Paam, P., Berretta, R., Heydar, M., and García-Flores, R., The impact of inventory management on economic and 
environmental sustainability in the apple industry. Computers and Electronics in Agriculture, vol. 163, pp. 
104848, 2019. 

Paam, P., Berretta, R., García-Flores, R., and Paul, S. K., Multi-warehouse, multi-product inventory control model for 
agri-fresh products–A case study, Computers and Electronics in Agriculture, vol. 194, pp. 106783, 2022. 

Rama, M. V., and Narasimham, P., Controlled Atmosphere Storage: Effects on Fruit and Vegetables A2 -Caballero, 
Benjamin. Encyclopedia of Food Sciences and Nutrition (Second Edition) pp. 1607-1615. Oxford: Academic 
Press, 2003. 

Ramakrishna, K. S., Sharafali, M., and Lim, Y. F., A two-item two-warehouse periodic review inventory model with 
transshipment. Annals of Operations Research, vol. 233, no 1, pp. 365-381, 2015. 

Shukla, M., and Jharkharia, S., Agri-fresh produce supply chain management: a state-of-the-art literature review. 
International Journal of Operations and Production Management, vol. 33, no 2, pp. 114 – 158, 2013. 

Biographies 
Prof Regina Berretta is currently Professor in the School of Information and Physical Sciences, College of 
Engineering, Science and Environment, The University of Newcastle, Australia. Prof Berretta holds degrees in 
Computational and Applied Mathematics, and Master and PhD in Engineering. Her research expertise includes the 

279



Proceedings of the First Australian International Conference on Industrial Engineering and Operations 
Management, Sydney, Australia, December 20-21, 2022 

© IEOM Society International 

design of optimisation mathematical models and the development of efficient computation techniques to tackle 
complex combinatorial optimisation problems in several areas (inventory management, lot-sizing, scheduling, 
timetabling, data analysis, bioinformatics, among others). As Chief Investigator in the ARC Training Centre for Food 
and Beverage Supply Chain Optimisation, Prof Berretta was involved in the investigation of different decision 
problems found in food industries, as food loss minimisation, inventory management, lot sizing and scheduling 
problems. Prof Berretta was a founding member of the former Priority Research Centre for Bioinformatics, Biomarker 
Discovery and Information Based Medicine (CIBM) for ten years. Her expertise in large scale optimisation problems 
has driven a team that specialised in large-scale data analytics exploring and interpreting massive datasets. Prof 
Berretta is a co-founder of HunterWise, a group dedicated to support girls and women in STEM through a school 
intervention program and a series of networking events. Prof Berretta has been in several leadership positions, 
including, Head of Discipline, Deputy Head of School, and Assistant Dean – Equity, Diversity and Inclusion.  Prof 
Berretta has co-authored more than 110 papers and book chapters, supervised more than 20 students and received over 
$5 million in funding.  

Dr Parichehr Paam is a PhD graduate in Computer Science from the University of Newcastle. She earned B.S. in 
Industrial Engineering (Field: System Planning and Analysis) from Azad University, North Branch, Iran, Masters in 
Industrial Engineering (Field: Knowledge Engineering and Decision Science) from Kharazmi University, Iran. She 
has published several journal and conference papers in Operations Research and Mathematical Optimization, mostly 
in Fresh Food Supply Chain. Her research interests include Supply Chain and Logistics Optimization, Integer 
Programming, Inventory Management, Scheduling and Sustainability. Parichehr is currently a Programme Planner in 
Programe delivery, Sydney Water, Australia.  

280


	1. Introduction
	The remainder of this paper is organised as follows. Section 2 describes the mixed-integer quadratic programming model considering transhipment between warehouses and the proposed bi-objective function. Then, computational experiments, their results a...
	2. The mixed-integer quadratic programming model
	Indices and sets

	4. Computational results
	6. Conclusion
	Acknowledgements
	Biographies



