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Abstract 

Traditionally, oxygen consumption (VO2), which reflects workload of physically demanding jobs, has been 
estimated from heart rate (HR) using the linear relationship between both variables. However, due to the presence of 
external factors, such as fatigue, emotional stress and fitness level, this relationship becomes nonlinear, especially at 
low workload intensity. This study presents a new method to estimate oxygen consumption from heart rates using 
adaptive neuro-fuzzy inference system (ANFIS), which is capable of handling uncertainties and nonlinearity. In a 
laboratory experiment, eight participants performed two step-tests in consecutive days during which oxygen 
consumption and heart rate were measured. Data from step-test 1 were used to develop individual ANFIS for each 
participant. The individual ANFIS were then tested and compared with traditional linear models using the dataset 
obtained from step-test 2. The results indicated increase in VO2 estimation accuracy of 38% (at low workload 
intensity, HR<90 bpm) and 21% (in general, throughout HR range). Individual ANFIS show potential to replace 
linear models at workplaces with small working population or when accurate estimation of physical workload is 
desired. 
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1. Introduction
Nowadays, many physically demanding jobs have been automated thanks to the development of new advanced 
technologies. Some industries, however, such as forestry, construction and mining, still involve tasks that are highly 
physically demanding. Human factors (HF) researchers have demonstrated the significance of designing jobs within 
the physiological capacity of a workforc. The balance between the energetic demands (workload) of the physical 
jobs and the physiological capacity of the workforce can significantly improve the workforce’s safety and 
productivity (Malchaire et al. 1984; Abdelhamid 1999; Wu and Wang 2002; Dempsey et al. 2008; Kolus et al. 
2018). The energetic demand of physical work can be accurately determined by measuring the amount of oxygen 
consumed (VO2) by a worker during the physical activity (Malchaire et al. 1984; Wu and Wang 2002; Bridger 2003; 
Bouchard and Trudeau 2008; Smolander et al. 2008). However, the direct measurement of VO2 in field is 
impractical because it is invasive and requires sophosticated and expensive equipment.  

In 1907, Benedict was the first to observe a relationship between VO2 and heart rate (HR). Later studies have 
reported that this relationship is roughly linear for a wide variety of activities (Wyndham et al. 1962; Poulsen and 
Asmussen 1962; McArdle et al. 1971; Rodahl et al. 1974; Evans et al. 1983; Gordon et al. 1983; Astrand and Rodahl 
1986). Since then, the common practice has been to estimate VO2 from HR, which can be measured easily in field 
(Smolander et al. 2008). This method is called “calibration process”, which involves measuring an individual’s HR 
and VO2 while performing a graded exercise (i.e., step-test). Linear regression is used to model the linear 
relationship between HR and VO2, called calibration curve. The model is then used to estimate VO2 from HR data 
collected in field for the same individual. 

This method, however, is criticised by many researchers due to the exsitance of external factors (e.g., emotional 
stress, high ambient temperature, high humidity, total amount of muscles, fatigue, physical fitness, caffeine, posture 
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and illness) that may casue changes in HR without associated changes in VO2 (Valanou et al. 2006). The impact of 
these factors is noticable especially at low workload intensity, which makes the relationship between HR and VO2 
nonlinear and deviates from the calibration curve (Abdelhamid 1999; Bouchard and Trudeau 2008; Smolander et al. 
2008). In order to estimate VO2 accurately, there is a need for a new technique that can handle the uncertainty and 
nonlinearity between HR and VO2, especially at low workload intensity. 

The objective of this study is to improve the current individual calibration process using computational intellegence. 
Neural networks, fuzzy systems and evolutionary computation are considered the three main pillars of 
computational intelligence (Zhu 2014). One of the computational intelegence techniques that has proven effective in 
pattern recognition and function approximation is the adaptive neuro-fuzzy inference system (ANFIS) (Güler and 
Übeyli 2004). ANFIS combines the ability of artificial neural networks (ANN) in automatic learning and adaptation 
from existence data and the ability of fuzzy logic in decision-making under uncertainties (Kaya et al., 2003). In 
2014, Kolus and colleagues proposed a new approach based ANFIS to estimate VO2 from HR. Their study focused 
on developing a general ANFIS model that can estimate VO2 of forestry workers without the need to collect 
individual calibration data. The genearl ANFIS showed potential to be used in workplaces whith large poulation 
where one cannot afford to have each worker take step-test. This, however, may result in lower estimation accuracy 
(when compared to the traditional linear model) since individual calibration data are not used. 

In this study, we focus on estimating VO2 at the individual level, where high estimation accuracy is desired. In 
physically demanding workplaces (e.g., mining, steel industry, firefighting and construction), the accurate 
estimation of VO2 is crucial for maintaining the balance between the energetic demand of work and human capacity; 
hence improving human wellbeing and system performance. Therefore, individual adaptive neuro-fuzzy inference 
systems (called individual ANFIS) were developed for a group of eight participants in order to accurately estimate 
their VO2 from HR. The developed models were then tested and compared with traditional linear calibration models. 
HR and VO2 measurements were collected from the participants while performing two step-tests in a laboratory in 
consecutive days (step-test 1 data were used for models development and step-test 2 data were used for models 
testing and comparisons). 

2. Methods
This research was based on a laboratory study where participants performed a submaximal step-test. The study used 
two data sets (i.e., training and test), both of which were obtained from the same set of participants (see Figure 1). 
Training data were obtained from the participants while performing the step-test in a laboratory. Similarly, test data 
were obtained from the same participants while performing the step-test in the laboratory, but on the next day in 
order not to accumulate fatigue. The training dataset was used for fuzzy model development for each participant. 
The test dataset was used to test the accuracy of the developed fuzzy models and compare their performance in 
estimating VO2 with that of traditional linear models. 

Figure 1. Schematic description of the study 

2.1 Participants 
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Eight healthy males, from different background, aged from 28 to 45 years participated in this research. These 
participants were drawn from the local population in Montreal through advertisement. Table 1 shows the physical 
characteristics of the participants. Prior participating in the study, all participants had to pass the pre-activity 
readiness questionnaire (PAR-Q) (Chisholm et al. 1975; Shephard 1988). None of the participants were athlete, on a 
training program or medication. The study was approved by the Human Research Ethics Committee at University of 
Montreal. All participants signed a written informed consent form prior to their participation in the study. 
 

Table 1. Physical characteristics of the participants 
 

Characteristics Participants (n = 8) 
Mean (SD) Range 

Age (years) 35.67 (7.79) [28, 45] 
Body weight (kg) 80.29 (13.93) [63.5, 104.33] 

Height (cm) 175.92 (6.95) [170.18, 187.96] 
BMI (kg.m-2) 25.14 (3.15) [21.22, 29.53] 

VO2 max (ml/kg.min) 41.25 (5.18) [30, 45] 
HRmax (bpm) 184.33 (7.79) [175, 192] 
HRrest (bpm) 71.8 (12.9) [60, 87] 

 
Note. SD: standard deviation; BMI: body mass index; VO2 max: maximal oxygen consumption; HRmax: maximal heart rate; 
HRrest: resting heart rate. 
 
2.2 Procedure 
The eight participants performed the Meyer and Flenghi (1995) step-test during the day in the Kinesiology 
laboratory of University of Montreal. Each participant performed the step-test twice (two sessions), with a 24-hour 
interval. The data obtained from the first session (step-test 1) were used to develop the proposed fuzzy model for 
each participnat. The data obtained from the second session (step-test 2) were used to test the accuracy of the fuzzy 
models, as well as make comparisons with traditional linear calibration models. 
 
The Meyer and Flenghi step-test protocol was selectedbecause it is safe, simple, inexpensive and validated against 
benchmark submaximal exertion tests (Meyer and Flenghi 1995). In addition, it has been shown that the highest 
exertion level reached in this test is quite similar to the level of exertion generally measured in actual physical work, 
such as brushcutting (Imbeau et al. 2010). 
 
The step-test uses a portable bench with adjustable step height of 11.5, 21.5, 31.5 and 41.5 cm. The protocol of the 
Meyer and Flenghi step-test can be described as follows. The participant was asked to sit on a chair for 5 min to 
obtain his resting heart rate (HRrest), and then asked to stand in front of the bench for 2 min. Then, the participant 
was asked to step on and off the lowest step height (11.5 cm) for 3 min. This was followed by 30 sec standing rest 
during which the experimenter increased the step height to the next level. This 3.5-min cycle was repeated for the 
remaining step heights. More details about the test protocol can be found in Meyer and Flenghi (1995).  
 
Heart rate and oxygen consumption were continuously measured and monitored during both step-test sessions using 
an automated metabolic cart (MOXUS Metabolic System, AEI Technologies, Pittsburgh, PA). HR and VO2 data 
were measured every second by the metabolic cart. Prior to each test, the gas sensor and the flowmeter of the 
metabolic cart were calibrated by a qualified technician. Heart rate was continuously monitored during the test to 
ensure that it did not exceed 85% of the participant's age-predicted maximum heart rate (HRmax) (Fox et al., 1971). 
The test was terminated whenever a participant exceeded his age-predicted HRmax. The complete step-test took 21 
min, followed by a sitting rest to allow participant’s heart rate to return to resting.  
 
The learning dataset included HR and VO2 measurements collected from all participants at rest and for each step 
height of step-test 1. The test dataset included HR and VO2 measurements collected from all participants at rest and 
for each step height of step-test 2. 
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2.3 Adaptive neuro-fuzzy inference system (ANFIS) development 
ANFIS is a fuzzy model put in the framework of adaptive systems (i.e., ANN) in order to able to learn from existing 
data and then optimize the model parameters accordingly. This section describes the development of ANFIS, which 
consists of two steps: deciding on the architecture of ANFIS (network design) and learning algorithm.  

The structure of ANFIS can be identified by developing an initial fuzzy inference system using the fuzzy set theory 
(Jang et al. 1997). This step involves: selecting input variables, selecting the type of fuzzy model, determining the 
rule-base and determining the membership functions for the variables.     

In this study, an individual fuzzy model was developed for each participant based on the participant’s HR and VO2 
measurement collected during step-test 1. Measured HR and HRrest constituted the input variables to the fuzzy 
model, while measured VO2 constituted the output variable. A total of 41 data samples obtained from a participant 
were used to train the corresponding individual fuzzy model. Optimal subtractive clustering parameters were 
determined based on enumerative search. The optimal parameters were: cluster radius (r) = 0.5; squash factor (η) = 
1.25; accept ratio (∈) = 0.5 and reject ratio (∈) = 0.15. As a result, three clusters were identified each of which 
corresponded to a fuzzy IF-THEN rule. The three fuzzy IF-THEN rules constituted the initial FIS, which were then 
embedded in ANN framework in order to optimize the rules parameters (premise and consequent).  

The combination of back-propagation gradient descent method and the least squares method was used to train the 
fuzzy model for 1000 epochs (MATLAB version 7.5.0 with fuzzy logic toolbox). The developed fuzzy model 
consists of three fuzzy IF-THEN rules, three Gaussian membership functions assigned to each input variable and 21 
modifiable parameters (12 premise and 9 consequent parameters). 

2.4 Traditional linear models development 
The traditional linear model is a linear regression equation of the form: y = ax + b, where y and x denote VO2 and 
HR measurements respectively and a and b denote the slope and intercept of the first-order linear equation, 
respectively. Training dataset (328 data samples of HR and VO2 measurements obtained from step-test 1) were used 
to develop individual linear calibration models. The first-order linear equations were developed using Excel 2013 
(Microsoft Corporation, Redmond, WA). 

2.5 Models testing and comparisons 
The accuracy of the developed models (ANFIS and traditional linear calibration) in VO2 estimation were compared 
using the test dataset over all participants. The comparisons were made throughout the HR range, as well as for three 
HR ranges: <80 bpm (very light work); 80-100 bpm (light work); and >100 bpm (moderate to heavy work), 
according to (Smolander et al. 2008). 

2.6 Statistical analysis 
The accuracy of the developed models (traditional linear and ANFIS) in VO2 estimation and the comparisons among 
them were evaluated at the individual level using the root mean square error (RMSE) between the measured and 
estimated VO2. In addition, limits of agreementbetween the measured VO2 values and the values estimated by the 
traditional linear and ANFIS models were determinedusing the Bland-Altman plot, which examines the estimation 
accuracy of the developed models (Bland and Altman 1986). 

3. Results and Discussion
3.1 Initial fuzzy inference system (FIS)
In order to develop an initial FIS for each participant, corresponding HR-VO2 data (obtained from step-test 1) were
clustered using the subtractive clustering algorithm. Optimal subtractive clustering parameters were determined based
on enumerative search. The optimal subtactive clustering parameters for each participant are summarized in Table 2.
In addition, the number of resultant initial fuzzy rules (that construct the initial FIS), as well as the quality of fit of the
initial FIS (based on RMSE) were shown in Table 2. For example, the enumerative search showed that the optimal
subtractive clustering parameters for participant 1 are as follows: r = 0.1, ∈ = 0.9, ∈ = 0.7 and η = 1.5. The resultant
initial FIS for participant 1 consisted of four fuzzy IF-THEN rules and had a RMSE of 1.102 ml/kg.min. The same
subtractive clustering parameters were found to be optimal for participant 5. However, the resultant initial FIS for
participant 5 consisted of three fuzzy IF-THEN rules and had a RMSE of 1.348 ml/kg.min.
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The developed initial FISs consisted of four fuzzy IF-THEN rules for all participants, except for participants 5 and 7 
(their FISs consisted of three fuzzy IF-THEN rules). This is due to the insignificant impact of the increased of number 
of rules on the RMSE.  
 

Table 2. Optimal subtractive clustering parameters based on enumerative search 
 

Participant 
Sample size Subtractive clustering 
n r ∈ ∈ η Rules RMSE 

P1 41 0.1 0.9 0.7 1.5 4 1.102 
P2 41 0.3 0.9 0.5 0.9 4 1.177 
P3 41 0.5 0.3 0.1 1.1 4 1.115 
P4 41 0.3 0.9 0.3 1.5 4 1.609 
P5 41 0.1 0.9 0.7 1.5 3 1.348 
P6 41 0.1 0.9 0.5 0.7 4 1.553 
P7 41 0.3 0.9 0.3 1.5 3 1.011 
P8 41 0.3 0.9 0.1 1.5 4 1.127 

 
 
3.2 Adaptive neuro-fuzzy inference systems 
The developed initial FISs were trained (by learning from existing data) in order to improve their performance. The 
initial FISs were embedded in ANN framework, constituting adaptive neuro-fuzzy inference systems (ANFIS), in 
order to optimize the rules parameters (premise and consequent parameters). Table 3 summarizes the number of 
training epochs applied on initial FISs and the resultant RMSE. 

 
Table 3. Training the initial FISs using adaptive neuro-fuzzy inference systems (ANFIS) 

 

Participant Sample size ANFIS training 
n Epochs RMSEtrn 

P1 41 110 0.987 
P2 41 10 1.160 
P3 41 100 1.114 
P4 41 500 1.580 
P5 41 100 1.337 
P6 41 100 1.549 
P7 41 300 0.960 
P8 41 100 1.120 

 
The optimal parameters of the trained FIS (i.e., ANFIS) for each participant are shown in Table 4. The ANFIS models 
associated with each participant can be presented as follows: 
For participant i: 
Rule j: IF HR is Aij THEN VO2 = aij (HR) + bij 
, where i is an index of the participant (i = 1, …, 8) and j is an index of the fuzzy rule (j = 1, …, 4)  
 
The antecedent parameters (µij and σij) associated with the fuzzy sets Aij as well as the consequent parameters (aij and 
bij) can be found in Table 4. Figure 2 shows the optimized Gaussian membership functions of heart rate for each 
participant. For example, the ANFIS model for participant 1 is as follows: 

 
Rule 1: IF (HR is A11) THEN VO2 = 0.870 (HR) - 71.189 
Rule 2: IF (HR is A12) THEN VO2 = 0.263 (HR) - 15.127 
Rule 3: IF (HR is A13) THEN VO2 = 0.377 (HR) - 24.537 
Rule 4: IF (HR is A14) THEN VO2 = 0.826 (HR) - 62.649 

 
The Gaussian membership functions characterizing the fuzzy sets (A11, A12, A13 and A14) are as follows: 
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Table 4. Optimal parameters of the fuzzy IF-THEN rules associated with the developed ANFIS for each participant 
 

Parameters 
Participants 
P1 P2 P3 P4 P5 P6 P7 P8 
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

A
nt

ec
ed

en
t 

j=1 ci1 94.77 88 71.6 71.18 52.92 93 88.83 60.05 
σi1 2.39 5.30 8.32 6.71 1.41 1.62 4.84 4.9 

j=2 ci2 77 105 91.1 92.2 71.77 97 106.65 77.55 
σi2 1.91 5.30 7.47 5.93 1.47 1.64 3.45 3.99 

j=3 ci3 106 109 105.88 100.08 82.07 105 124.05 89.79 
σi3 1.91 5.30 8.17 5.9 1.27 1.63 5.73 4.54 

j=4 ci4 86.66 118 82.9 122 0 95.01 0 99.83 
σi4 1.12 5.30 7.36 6.03 0 1.61 0 4.85 

C
on

se
qu

en
t 

j=1 ai1 0.87 -0.14 -1.79 -0.03 -0.03 1.18 0.04 0.14 
bi1 -71.19 16.48 117.7 6.23 6.64 -98.98 0.39 -3.46 

j=2 ai2 0.26 -4.18 -1.01 -0.58 0.31 4.03 0.53 0.04 
bi2 -15.13 389.27 134.1 59.63 -11.64 -395.53 -43.95 6.92 

j=3 ai3 0.38 -4.32 0.55 -1.01 0.56 0.32 0.37 -0.08 
bi3 -24.54 544.93 -38.33 123.14 -31.68 -20.92 -28.8 22.54 

j=4 ai4 0.83 0.26 -4.12 0.14 0 11.15 0 0.31 
bi4 -62.65 -10.93 346.65 6.69 0 -1046.28 0 -9.07 
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Figure 2. Optimized membership functions associated with HR for each participant 
 
3.3 Test and comparisons 
The accuracy of the developed individual ANFIS models were tested based on the test dataset (data obtained from 
step-test 2). The measured HR data were plugged into the developed ANFIS models as well as traditional linear 
models in order to estimate VO2 for each participant. Figure 3 shows the measured VO2 values along with estimated 
values obtained from both ANFIS and linear models. It clearly shows the outperformance of the ANFIS models over 
the traditional linear models in VO2 estimation. This was obvious especially during the first 10 minutes of the step-
test, which correspond to low intensity levels. The results show that the VO2 estimation accuracy, during the first 10 
minutes, significantly increased for participants 4 and 5 (by 72% and 59%, respectively). For participants 3, 2, 7 and 
1, the increase in the estimation accuracy of VO2 was moderate (about 28.8%, 27%, 20.3% and 17.5%, 
respectively). Lower improvements in VO2 estimation accuracy were reported for participants 8 and 6 (about 7.84% 
and 5.23%, respectively).  
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Figure 3. The performance of the developed fuzzy models for each participant in VO2 estimation using the test dataset  
 
Table 5 summarizes the results obtained for VO2 estimation using both models (linear and ANFIS). It reports the 
average VO2 estimation per participant per model and the corresponding mean RMSE throughout HR range. Results 
show that both linear and ANFIS models overestimated the measured VO2 with overall mean differences of 0.33 and 
0.6 ml/kg min, respectively. In terms of model estimation error, the results indicated the outperformance of the 
developed ANFIS models (average RMSE = 1.98 ml/kg.min) over traditional linear models (average RMSE = 2.84 
ml/kg.min). The VO2 estimation accuracy significantly increased for all participants (by 21.3%, on average) when 
using ANFIS models. The highest increase in estimation accuracy was obtained for participants 4 and 5 (by 66.2% 
and 38.94%, respectively). The least increase in estimation accuracy was obtained for participant 8 (about 5.59%). 
 
Table 6 summarizes the results obtained for VO2 estimation using both models (linear and ANFIS) during low 
intensity levels (HR<90 bpm). It reports the average VO2 estimation per participant per model and the corresponding 
mean RMSE. Results show that the linear model underestimated the measured VO2 (with mean difference of 0.58 
ml/kg.min), while the ANFIS model overerestimated the measured VO2 (with mean difference of 0.62 ml/kg.min).  
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In terms of model estimation error, the results indicated the outperformance of the developed ANFIS models (average 
RMSE = 1.56 ml/kg.min) over traditional linear models (average RMSE = 3.14 ml/kg.min). It is clear that the 
estimation accuracy of linear modelling deacreases at low intensity level (HR<90 bpm) (by 10.56%) comparing to its 
accuracy throuought HR range. The VO2 estimation accuracy significantly increased for all participants (by 37.81%, 
on average) when using ANFIS models. The highest increase in estimation accuracy was obtained for participants 4 
and 2 (by 73.18% and 62.45%, respectively). The least increase in estimation accuracy was obtained for participant 8 
(about 7.13%). 

Table 5. Estimated VO2 using traditional linear and fuzzy calibration methods with associated RMSE and 
percentage reduction in RMSE when using fuzzy calibration instead of traditional linear (throughout HR range) 

Participant Measured VO2 
(ml/kg min) 

Traditional linear model Fuzzy model % reduction 
in RMSE Estimated VO2 

(ml/kg min) 
RMSE 
(ml/kg 
min) 

Estimated VO2 
(ml/kg min) 

RMSE 
(ml/kg 
min) 

1 10.27 11.68 1.88 11.38 1.62 13.90 
2 11.01 9.55 2.13 10.27 1.78 16.46 
3 12.01 12.35 1.67 12.83 1.56 6.88 
4 11.51 10.75 6.66 12.37 2.25 66.20 
5 11.18 10.00 2.36 10.98 1.44 38.94 
6 10.92 12.82 3.02 12.43 2.72 9.81 
7 11.81 13.09 2.88 12.53 2.52 12.64 
8 12.46 13.59 2.11 13.21 1.99 5.59 
Average 11.40 11.73 2.84 12.00 1.98 21.30 
Std. Dev. 0.69 1.49 1.61 1.01 0.47 20.93 

Table 6. Estimated VO2 using traditional linear and fuzzy calibration methods with associated RMSE and 
percentage reduction in RMSE when using fuzzy calibration instead of traditional linear (during low intensity level 

HR<90 bpm) 

Participant Measured VO2 
(ml/kg.min) 

Traditional linear model Fuzzy model % reduction 
in RMSE Estimated VO2 

(ml/kg.min) 
RMSE 
(ml/kg.min) 

Estimated VO2 
(ml/kg.min) 

RMSE 
(ml/kg.min) 

1 4.96 7.00 2.33 6.62 1.91 18.06 
2 4.55 2.19 2.79 5.02 1.05 62.45 
3 7.07 6.48 1.47 7.38 1.06 28.10 
4 3.95 -0.19 10.79 6.09 2.89 73.18 
5 9.70 8.44 2.50 9.43 1.52 39.15 
6 2.16 2.59 2.20 2.14 1.50 31.91 
7 2.01 2.12 0.75 2.00 0.43 42.50 
8 9.25 10.43 2.31 9.93 2.15 7.13 
Average 5.46 4.88 3.14 6.08 1.56 37.81 
Std. Dev. 2.95 3.71 3.16 2.96 0.76 21.85 

The Bland-Altman plot (Figure 4) shows the limit of agreement between the measured and estimated (by linear 
calibration and ANFIS models) VO2 values. The differences between measured and estimated (using ANFIS) VO2 
values at various intensity levels were within ±10%, which is the acceptable range when estimating the metabolic rate 
based on HR measurements (ISO 8996, 2004). These differences were remarkably/slightly smaller than those 
associated with the linear calibration method at low intensity/high intensity levels.  

On the other hand, the differences between measured and estimated (using linear calibration) VO2 values exceeded 
the ±10% acceptable range (often) at low intensity (indicated with dashed arrows in Figure 4) and (rarely) at high 
intensity levels (indicated with a solid arrow in Figure 4). This indicates that the linear calibration model may 
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produce inaccurate VO2 estimation especially during low intensity levels. At moderate intensity levels, the 
differences between the measured and estimated (by linear and ANFIS) VO2 values were both within the ±10% 
acceptable range. The results clearly indicate the superior performance of ANFIS method in VO2 estimation, 
especially at low and high intensity levels. 

Figure 4. Bland-Altman plot to test the agreement between measured and estimated VO2 values 

4. Conclusion
This study presented a new methodology for VO2 estimation of individuals based on HR measurements. Individual 
ANFIS models were proposed for VO2 estimation to better capture the nonlinearity between HR and VO2, especially 
in low intensity levels. Results indicated the outperformance of the individual ANFIS models over the linear 
calibration models throughout the HR range and in the lower HR range (HR<90 bpm), where intensity level is low. 
Therefore, the proposed ANFIS approach can be used at work environments where high accuracy of VO2 estimation 
at the individual level is desired. 
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