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Abstract 

 
Vibration control is a fast-evolving topic, with research being conducted on various strategies to reduce dangerous 
vibration levels. Composite materials have the advantage of improved material qualities compared to metallic alloys 
while being low in weight. The current work primarily focuses on the design of the Linear Quadratic Gaussian (LQG) 
controller, Linear Quadratic Regulator (LQR) controller, and Proportional Integral Derivative (PID) controller used 
for the active vibration control of Carbon/Glass epoxy reinforced composite beams, using various control techniques 
upon composite sandwich beams with viscoelastic material core. The implementation of LQG, LQR and PID 
controller is done using the displacement-time data obtained from the finite element analysis to obtain transfer 
function, state space representation. From transfer function, controllers are implemented to check the change within 
amplitude and settling time using MATLAB-Simulink. Composite sandwich beams with a viscoelastic material core 
implanted between composite face plates have been designed, and active vibration control study has been conducted. 
The percentage reduction in settling time as well as vibrational amplitude has been discovered to be significant. 
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1.Introduction 
Vibration control of structures has been an intense field of research since many years. The reason such importance is 
given to the field is because unwanted vibration causes structural failures and reduced lifetime, accuracy loss in 
precision equipment, and performance degradation in machines. Thus, vibrational control has been established as a 
significant field in the scientific world. Material science advanced during the industrial revolution, and several new 
materials were developed that not only have greater damping qualities, but also have more strength and toughness, 
and are better in certain ways than their popular predecessors-steel, iron, and aluminium. Fibre Reinforced Composites 
are one sort of material that fits this description. When compared to traditional structural metals, these composite 
materials have superior mechanical properties such as strength-to-weight ratio and stiffness-to-weight ratio. As a 
result, these materials are widely used in the aerospace and wind turbine blade sectors. Glass Epoxy Composite and 
Carbon Epoxy Composite are two examples of common fibre Reinforced Composites. 
 
The mathematical equations for the flexible beam is developed using modal theory and implemented the LQR control 
(Zhang et al. 2008). Experimental study is conducted on the cantilever beam using PID controller and validated with 
the simulation results obtained (Alam and Rahman 2012). Active control scheme is implemented on the passive 
constrained beam and find out the optimum parameters to get the maximum damping in the structure (Lam et al. 
1997). Integrated the active control methods into the finite element solutions in ANSYS. Both the numerical and 
experimental studies have done on the smart composite laminate structures under free and forced vibration conditons 
(Malgaca 2010). Active vibration control strategies for the vibration suppression in beam applications have been 
discussed, and effectiveness in implementing the controller numerically have been presented (Heganna and Joglekar 
2016; Rimašauskienė et al. 2019; Kusagur et al. 2020; Tian et al. 2020; Reddy et al. 2021) The bending deformation 
and failure criteria in the sandwich beams composed of aluminium foam core and metallic face layer materials by 
using FEM was presented in the paper (Sha et al. 2011).  
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An active vibration control on a smart cantilever beam made from aluminium with bonded piezoelectric materials was 
conducted. The control signal for the actuator was generated by using a PID controller (Khot et al. 2013)(Khot et al. 
2012). Rahman and Naushad. (2015) conducted study on active vibration suppression of smart beam and showed that 
the actuator and sensor-based control method is effective and the LabView control plots for various beams were used 
as a benchmark for analytical work. Active vibration control system has demonstrated the validity and efficiency of 
PID controller.  
Based on the literature available it is found that there is no particular study done on active control of hybrid composite 
sandwich beams with different controllers. So, the present study is concentrated to develop the LQG, PID and LQR 
controllers for composite sandwich beam with viscoelastic core material. As a part of the study, first attempt is made 
to find out the transfer function of the composite for the viscoelastic sandwich beam from the transient response. Then, 
active control techniques are implemented on the sandwich beam transfer function to get the good reduction in settling 
time and vibration amplitude.   
 
2.Material Data 
These material properties are used as engineering data for the ANSYS analysis done in this study. The material 
properties (Table 1, 2, 3, 4, 5 and 6) have been obtained from Kutz (2015). 
 
2.1 E-Glass Epoxy Composite 
 

Table 1. Physical property 
 

Density 1850 Kg/m3 
 

 
Table 2. Orthotropic elasticity properties 

 

EX 
(MPa) 

EY 
(MPa) 

EZ 
(MPa) νXY νYZ νZX 

GX 
(MPa) 

GY 
(MPa) 

GZ 
(MPa) 

35000 35000 900 0.28 0.4 0.4 351.56 12500 12500 
 
 
2.2 Carbon Epoxy Composite 

Table 3. Physical property 
 

Density 1450 Kg/m3 
 

Table 4. Orthotropic elasticity properties 

EX 
(MPa) 

EY 
(MPa) 

EZ 
(MPa) νXY νYZ νZX 

GX 
(MPa) 

GY 
(MPa) 

GZ 
(MPa) 

59160  59160  7500  0.04 0.3 0.3 3605.77 22753.8 22753.8  
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2.3 Viscoelastic Material (VEM): DYAD 606 
 

Table 5.  Physical property 
 

Density 1850 Kg/m3 
 

Table 6. Orthotropic elasticity properties 
 

Storage Shear Modulus Poisson’s Ratio Operating Temperature Loss Shear Modulus 
20 MPa 0.49 10°C – 80°C 1.05 at 40°C 

 
3. Methodology 
3.1 Designing of Hybrid Sandwich beam  
Engineers who are building and analyzing multi-layer composites use Ansys Composite Pre-Post. We can generate 
complicated shell and solid composite models in ACP PRE with the proper fibre orientation and lay-up definition. 
Create parametric design analyses to assess the influence of specific parameters such as number of layers, fibre 
orientation, and so on the design and behaviour of the structure by performing FE analysis on composite models and 
post-processing results specific to composites (such as failure criteria). The Hybrid composite beam utilized in the 
modelling is 200mm x 20mm x 3mm in size (thickness of each layer being 1mm). To build the composite beams, 
ASTM E- 756 standards were used (Figure 1). The composite beams were modelled and analyzed to obtain their free 
vibration response so as to study and compare their inherent damping behaviour.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Design of viscoelastic composite sandwich beam 

 
 
3.2 Active Vibration Control 
Active vibration control is the active application of force in an equal and opposite fashion to counter or cancel the 
forces imposed by external vibration. For this purpose, Linear Quadratic Regulator (LQR) controller & Proportional 
Integral Derivative (PID) controller and Linear Quadratic Gaussian (LQG) controller were implemented. It is applied 
to different combinations of beams, by choosing the optimal models of beams obtained, based on best maximum 
amplitude & natural frequencies among other beams, in previous sections – Namely – CF, CF-VEM. 
 
3.2.1 Transfer Function 
Using a ratio of polynomials, transfer function models describe the link between a system's outputs and inputs. The 
order of the denominator polynomial is the same as the model order. The model poles of the denominator polynomial 
are the roots of the denominator polynomial. The numerator polynomial's roots are referred to as the model zeros. The 
MATLAB application System Identification was used to find the transfer function. First, open the System 
Identification app and import time domain data. As visible in the MATLAB workspace, the input and output names 
must be provided. For the ANSYS models, the start time is set to 0 and the Sample time is set to 0.01. After the data 
has been imported, double-check the time domain and frequency domain graphs by checking the appropriate boxes. 
Then, Select Estimate in the Transfer Function Models from the System Identification app. For the transfer function, 

Top composite 
face layer 

Bottom composite face layer 

Viscoelastic Material 
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a continuous model is chosen. To obtain the best fit to estimation, the number of poles and zeros are increased. For 
the transfer function, the model with the best fit is chosen. 
 
3.2.2 Simulink 
SIMULINK is a MATLAB based software package for modelling, simulating and analysing dynamical systems in 
continuous time. The transfer function obtained is then used to simulate the PID controller in Simulink [17-20]. The 
control algorithm is tuned to get the gains. Simulink allows us to safely tune the system without causing any damage. 
The output of the LQR controlled beam is then compared to the output of the normal beam. 
 
4. Results and Discussion 
4.1 Active Vibration Control of the Sandwich Beams 
4.1.1 GF – VEM – GF 
The transient analysis of the beam is conducted after giving – (i) impulse input of 5N for 0.01s & (ii) Forced input 5N 
at 10rad/sec frequency (in the form of F = FO Sin(ωt)). The time domain graph obtained for 4 different cases of 
vibration control is shown below, namely: 

i. Without implementation of controller. 
ii. With Implementation of PID controller. 

iii. With implementation of LQR controller. 
iv. Implementation of LQG controller. 

And the respective values of Peak amplitudes & settling times are listed in the table below. Also, included is the 
reduction percentage of peak amplitude & settling time for 0.758mm (Table 7) (Figure 2). 
 
4.1.2 Free Vibration 

 
 

Figure 2. Active Control of GF-VEM-GF Beam – Free vibration 
 
 
4.1.3 Free vibration response at different time intervals  
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Figure 3. Active Control of GF-VEM-GF Beam–Free vibration 
 

Table 7. Comparing PID, LQR & LQG controller – GF-VEM-GF beam (free vibration) 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
For GF-VE-GF sandwich beam in free vibration, on observing Figure 2 and 3, and Table 8, we can infer that there 
have been significant active control of the beam by PID and LQR and LQG controllers which are reducing the 
vibrational amplitudes by 48.89% and 3.60% and 4.21% respectively and They are also reducing settling time for 
75.86 mm by 66.33% and 70.40% and 34.70% respectively as shown. PID is well reducing vibrational amplitude and 
settling time. 
 
4.1.4 Forced Vibration 

 
Figure 4. Active Control of GF-VEM-GF Beam-Forced input 

 
Table 8. Comparing PID, LQR & LQG controller – GF-VEM-GF beam (forced vibration) 

 

GF-VEM-GF Settling Time 
(In seconds) 

Peak/Max 
Amplitude (in 

mm) 

t1/2 
(In 

seconds) 
Without Controller 9.8 0.7586 1.3 

With PID Controller 3.3 0.3877 0.4 
With LQR Controller 2.9 0.7313 0.31 
With LQG Controller 6.4 0.7266 0.9 

% Reduction (With PID 
controller vs. Without 

controller) 

66.33 48.89 - 

% Reduction (With LQR 
controller vs. Without 

controller) 

70.40 3.60 - 

% Reduction (With LQG 
controller vs. Without 

controller) 

34.70 4.21 - 
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For GF-VE-GF sandwich beam in forced vibration, on careful observation of Figure 4 and Table 8, we can see that 
the settling time for the beam is lowest in case of LQR controller and the max amplitude is also very low in case of 
PID controller. PID controller offers a significantly huge reduction of 52.97% in forced and 48.89% in free vibration. 
While LQR reduce amplitude up to 9.23% in forced and 3.60% in free vibration and LQG reduces amplitude up to 
8.02% in forced and 4.21% in free vibration as shown. So, it is observed that PID controller is reducing the vibration 
noticeably and it can be stated that PID is working better than LQR and LQG in terms of settling time and vibrational 
reduction in case of modelled GF-VEC-GF beam. 
 
4.2 CF – VEM – CF 

The transient analysis of the beam is conducted after giving – (i) impulse input of 5N for 0.01s & (ii) Forced input 
5N at 10rad/sec frequency (in the form of F = FO Sin(ωt)). The time domain graph obtained for 4 different cases of 

vibration control is shown below, namely: 
v. Without implementation of controller. 

vi. With Implementation of PID controller. 
vii. With implementation of LQR controller. 

viii. Implementation of LQG controller. 
And the respective values of Peak amplitudes & settling times are listed in the table below. Also, included is the 
reduction percentage of peak amplitude & settling time for 0.01mm. 
 
4.2.1 Free Vibration 

 
 

Figure 5. Active Control of CF-VEM-CF Beam – Free vibration 
 
4.2.2 Plotting the same for different time intervals 

GF-MRF-GF Max. Amplitude 
Without Controller 72.16 

With PID Controller 33.94 
With LQR Controller 65.5 
With LQG Controller 66.37 

% Reduction (With PID Controller vs. 
Without Controller) 

52.97 

% Reduction (With LQR Controller vs. 
Without Controller) 

9.23 

% Reduction (With LQG Controller vs. 
Without Controller) 

8.02 
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Figure 6.  Active Control of CF-VEM-CF Beam –Free vibration 
 

Table 9.  Comparing PID, LQR & LQG controller – CF-VEM-CF beam (free vibration) 

 
 
For CF-VE-CF sandwich beam in free vibration, we can observe from Figure 5 and 6, and Table 9, that there has been 
significant active control of the beam by all PID and LQR and LQG controllers which are reducing the vibrational 
amplitudes by 52.36% and 3.17% and 13.29% respectively. They are also reducing settling time for 75.86 mm by 
27.59% and 1.482% and 93.97% respectively as illustrated. For reducing the vibration amplitude max for PID and 
reducing settling time LQR is better compared to others. 
 
4.2.3 Forced Vibration 

 CF-VEM-CF Settling Time 
(In seconds) 

Peak/Max 
Amplitude (in mm) 

t1/2 
(In seconds) 

Without Controller 5.8 1.482 0.52 
With PID Controller 4.2 0.706 0.47 
With LQR Controller 1.4 1.435 0.12 
With LQG Controller 0.35 1.285 0.03 

% Reduction (With PID controller vs. 
Without controller) 

27.59 52.36 - 

% Reduction (With LQR controller vs. 
Without controller) 

75.86 3.17 - 

% Reduction (With LQG controller vs. 
Without controller) 

93.97 13.29 - 
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Figure 7. Active Control of CF-VEM-CF Beam-Forced vibration 
 

Table 10. Comparing PID, LQR & LQG controller – CF-VEM-CF beam (forced vibration) 
 

 
 

 
 
 

 
 

 
 
 
 
 
 
For CF-VE-CF sandwich beam in forced vibration, we can infer from Figure 7 and Table 10, that PID controller offers 
a significantly huge reduction of amplitude 50.35% in forced and 52.36% in free vibration. LQG controller offers a 
significantly huge reduction of 27.24% in forced and 13.29% in free vibration. The settling time is lowest in case of 
LQG controller and the max amplitude is very low in case of PID controller. 
 
5. Conclusion 
In the case of composite beams having viscoelastic material core, when it comes to the material having high stiffness, 
such as Carbon Fibre, PID can be used to reduce the max amplitude, whereas LQG can be used to reduce the settling 
time. In the case of low stiff materials, such as Glass fibre, again PID can be used to reduce the max amplitude, 
although for reducing the settling time, LQR needs to be used. These are the important observations which can be 
seen to be potentially applied on the Aerospace and Automobile applications, the sports car, and aeroplane wings in 
particular. 
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