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Abstract 
 
Process deterioration is a leading cause of mediocre production plan adherence and hence not satisfying customers' 
demand. Process setup and quality improvement are two common factors that return the production system to its 
designated status. The proposed research integrates production control, capital investment, and quality control 
aspects to enhance the reliability and productivity of the production-inventory system. To achieve this goal, a 
mathematical model is formulated to decide the optimal production run length (OPRL), cost of setup, and cost of 
process quality improvement. It is assumed that the production process starts in an in-control state with a fixed 
defective rate and may shift to an out-of-control state with a linear increase of defective rate. A numerical example 
is provided to demonstrate model practicability and to derive managerial insights. For instance, investment in setup 
cost reduction and quality improvement can achieve a 61.07% reduction in the total cost. 
 
Keywords 
Production-inventory management; Process deterioration; Production cycle; Capital investment. 
 
1. Introduction 
In today's highly competitive world markets, businesses need to employ a cost-effective production-inventory policy 
to meet customer demand. The optimal production run length (OPRL) model is an extension of the Economic Order 
Quantity (EOQ) and Economic Production Quantity (EPQ) models. The classical OPRL is one of the most popular 
and appealing issues of production-inventory system management. The run length of the production is determined 
economically to minimize the total inventory and production costs by balancing the inventory holding cost and the 
average fixed ordering cost. Many models with more complicated and/or practical assumptions, on the other hand, 
have been thoroughly investigated in recent years. Furthermore, the OPRL model has had limitations over the years 
and cannot be considered a universal model (Chiu et al., 2010; Taleizadeh et al., 2014), as many key assumptions of 
the classical OPRL model relax factors that are inevitable in many manufacturing systems. 
 
The classical OPRL model assumes that the production process starts in an in-control state, and the status may 
change after an uncertain time to an out-of-control state. It is assumed that no defective parts are produced during 
the in-control state, and all produced items are of perfect quality, i.e., the system is failure-free. Although in the real 
production systems, quality is not at zero-level defective during the in-control period. Different policies are adopted 
in the industry, e.g., discard, repair or rework, to deal with the defective items based on the item type and degree of 
imperfectness. Moreover, quality has a considerable share of the total cost. Therefore, the inventory management 
plan proposed by the traditional model might be inappropriate (Hou, 2007). 
 
Although several research studies have modeled the production-inventory system, they have ignored the effect of 
investment in quality improvement on the system's performance and reliability. This research contributes to the 
literature by incorporating various aspects, such as the deterioration of the production process, investment in quality 
improvement during the in- and out-of-control periods, and investment in setup-cost reduction. The process has a 
constant defective rate during the in-control period, and as the shift occurs, the process deterioration begins to 
increase to the end of the cycle. 
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The subsequent sections of this paper are organized as follows: section 2 reviews the literature. Next, section 3 
presents the notations and assumptions and derives the proposed mathematical model. Then, the solution of the 
model is developed, and a numerical example is solved in section 4. Eventually, conclusions and recommended 
future research are provided in section 5. 
 
2. Literature Review 
Several studies are conducted to determine the OPRL for the production-inventory integrated system. However, so 
far, most of them have ignored the investment needed to improve the process's quality. The reviewed papers are 
presented chronologically to demonstrate the literature's state-of-the-art by discussing the models' main aspects, such 
as assumptions, objective function, decision variables, and solution methodology. 
 
Rosenblatt and Lee (1986) investigated the consequences of an imperfect production process on the OPRL. They 
assumed that the process starts in an in-control state and shifts to an out-of-control state, then the process starts 
deteriorating. The time to shift is assumed to be a random variable following an exponential distribution. Later on, 
(Kim et al., 1999) generalized (Rosenblatt et al., 1986) work by assuming that the time to shift is arbitrarily 
distributed. They examined the effect of process deterioration under constant, linear, and exponential trends. 
 
Yeh et al. (2000) formulated the production deterioration as a two-state continuous-time Markov chain. However, 
they could not achieve a closed-form expression for the total cost, i.e., cost of restoration and holding inventory, and 
were satisfied with an approximate solution. Kim et al. (2001) considered the OPRL and the optimal number of 
inspections together. Chung and Hou (2003) generalized (Kim et al., 1999; Rosenblatt et al., 1986) models by 
allowing shortage. While (Chen et al., 2006) assumed that shortage is allowed and completely backordered, and 
products sold with a free minimal repair warranty. 
 
Rahim and Al-Hajailan (2006) studied an inventory-production system with a variable production rate of imperfect 
items during the out-of-control state. Chiu (2007) and Chiu et al. (2007) considered different actions for the 
imperfect items, such as rework and scrape, and stochastic machine breakdowns. They implemented the no-
resumption policy and the renewal reward theorem to deal with the variable cycle length. They used the bisection 
method based on the intermediate value theorem to obtain the OPRL because they could not find a closed-form 
expression. 
 
Hou (2007) proposed an algorithm to determine the OPRL, setup cost, and process quality. They investigated the 
advantages of extended capital investments in setup cost reduction and quality improvement by extending the 
proposed models (Rosenblatt et al., 1986; Kim et al., 1999). They found that investing in reducing setup costs 
decreases the OPRL and lot size. On the other hand, investment in improving quality increases production run length 
and lot size. Further relevant research on capital investment in setup cost reduction (Hofmann, 1998; Sarker et al., 
1997). 
 
Lin and Lin (2007) and Ma et al. (2010) treated the produced items during the out-of-control period as scrape with 
additional cost. The objective was to minimize the expected unit cost, e.g., setup, production, holding inventory, 
screening, and defective costs. In comparison, (Hu et al., 2009; Shih et al., 2016) assumed that all defective items 
could be reworked. Therefore, they implemented a policy of reworking all produced items without inspection after 
the shift occurs. Lee (2009) formulated the maintenance cost to restore the system to the in-control status, and 
defective items are sold with a free minimal repair warranty. They suggested that a shorter production run length is 
preferred to minimize warranty costs, consistent with the conclusion (Rahim et al., 2011). In addition, although it 
may lead to higher setup and restoration costs, it may result in fewer defective items. 
 
Wang and Tang (2009) assumed that the time to shift is a fuzzy variable considering the rework cost of the defective 
items during the out-of-control state. Later on, (Hu et al., 2010) used the bisection method to find the OPRL after 
obtaining the lower and upper bounds. 
 
Pearn et al. (2011) separated the production process into two stages. In stage 1, the raw material is transformed into 
a semi-finished product, and in stage 2, the semi-finished product is transformed into a finished product. They 
considered the OPRL and process quality as decision variables to reduce production accumulation between the two 
stages. Wee et al. (2013) and Hsu et al. (2016) considered that the inspection rate could be less than the production 
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rate, so the backorder occurs. Salmasnia et al. (2017) minimized the total cost of holding, ordering, maintenance, 
sampling, and quality control to determine the OPRL. They considered a production system with multiple assignable 
causes and used a variable sampling interval policy to keep the failure rate constant across sampling intervals. Chen 
et al. (2017) integrated production and marketing characteristics and assumed that the warranty period for an 
imperfect production system is a function of the product's selling price. Therefore, the OPRL and the warranty 
period were the decision variables. 
 
Fekri (2019) categorized defective items as repairable or non-repairable. Furthermore, after producing a certain 
number of defective items, the production system is shut down for maintenance. Improving the learning rate 
decreased the setup and production times and the number of defective items. Öztürk (2021) investigated the impact 
of two inspection policies, namely in- and after-production, on the expected profit. According to the numerical 
analysis, the highest profit can be obtained if the inspection cost is the same in both scenarios. 
 
To summarize, the proposed research is an attempt to fill a gap identified in the literature review by integrating 
various aspects into a model, such as production process deterioration, investment in quality improvement during the 
in- and out-of-control periods and investment in setup-cost reduction. 
 
3. Model Development 
This section describes the steps used to formulate the proposed model. 
 
3.1 Notation 
Part of the following notation is mainly adapted from (Hou, 2007) to develop the proposed model. 
 

TAC: Total Annual Cost 
D: demand rate in units per unit time 
P: production rate in units per unit time (𝑃𝑃 >  𝐷𝐷) 
T: production cycle length 
t: production run length in each cycle (𝑡𝑡 < 𝑇𝑇) 

topt: optimal production run length in each cycle 
K: setup cost for each production run without investment 

Kinv: setup cost for each production run after the investment 
Kopt: optimum setup cost for each production run 

h: holding cost of unit per unit time 
s: rework cost for an imperfect unit 

E(N): expected number of imperfect units during the production run 
E(N0): expected number of imperfect units during an in-control period 
E(N1): expected number of imperfect units during an out-of-control period 

α: proportion of imperfect units during the in-control state without the investment 
αinv: proportion of imperfect units during the in-control state after the investment 
αopt: optimal proportion of imperfect units during the in-control state 
β: proportion of imperfect units during the out-of-control state without the investment 

βinv: proportion of imperfect units during the out-of-control after the investment 
βopt: optimal proportion of imperfect units during the out-of-control 
Øk: capital investment in setup cost reduction 
Øα: capital investment in process quality improvement in the in-control state 
Øβ: capital investment in process quality improvement in the out-of-control state 

a: fraction of the reduction in K per dollar increase in investment 
b: fraction of the reduction in α per dollar increase in investment 
c: fraction of the reduction in β per dollar increase in investment 
i: capital cost per dollar per year 

Proceedings of the International Conference on Industrial Engineering and Operations Management 
Nsukka, Nigeria, 5 - 7 April, 2022

IEOM Society International 1315



3.2 Assumptions 
The following assumptions are proposed to formulate the suggested mathematical model has, and figure 1 depicts 
the assumptions: 

1. The production process begins in an in-control state and may shift to an out-of-control state. 
2. The demand is assumed to be deterministic, and the setup time is negligible, i.e., the setup time is zero. 
3. The elapsed time to the process shift, 𝑋𝑋, is assumed to be exponentially distributed with a mean 1 𝜆𝜆⁄ . 
4. The shift cannot be detected until the end of the production cycle. 
5. The proportion of imperfect parts produced during the in-control state is fixed at 𝛼𝛼 level. 
6. The process begins a linear deterioration as the shift occurs, and the proportion of the imperfect parts is 𝛼𝛼 +

𝛽𝛽𝛽𝛽. 
7. The imperfect parts cannot be detected until the end of the production cycle. 
8. All imperfect parts can be reworked under a specified cost. 
9. The process is restored to the in-control state with each setup. 
10. The effect of capital investment on setup cost reduction and quality improvement can be a logarithmic 

investment cost function (Hofmann, 1998). 
 

 
 

Figure 1. Production cycle representation 
 
3.3 Mathematical Model 
Based on the mentioned assumptions, the total annual cost, TAC, of the production-inventory system is composed of 
the following components: 

1. Cost of setup: is the setup cost for each production cycle, 𝐾𝐾, multiplied by the number of cycles per year, 
1/𝑇𝑇. 

2. Cost of holding inventory: this cost is calculated by multiplying the holding cost per unit, ℎ, by the average 
inventory level (𝑃𝑃 − 𝐷𝐷)/2, by the production run length, 𝑡𝑡. 

3. Cost of rework: this cost is obtained by multiplying the rework cost of an imperfect unit, 𝑠𝑠, by the expected 
number of imperfect units, 𝐸𝐸(𝑁𝑁), by the number of orders per year, 1/𝑇𝑇. 

4. Cost of capital investment: the summation of the capital investment in setup cost reduction and process 
quality improvement in the in- and out-of-control states. 

 

𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) =
𝐾𝐾
𝑇𝑇

 +  
ℎ(𝑃𝑃 − 𝐷𝐷)𝑡𝑡

2
 +  

𝑠𝑠
𝑇𝑇

 𝐸𝐸(𝑁𝑁)  +  𝑖𝑖 [∅k  +  ∅𝛼𝛼  +  ∅𝛽𝛽] (1) 

Substituting by 𝑇𝑇𝐷𝐷 =  𝑃𝑃𝑡𝑡 ⟹ 𝑇𝑇 =  𝑃𝑃𝑃𝑃
𝐷𝐷

 

𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) =
𝐾𝐾𝐷𝐷
𝑃𝑃𝑡𝑡

 +  
ℎ(𝑃𝑃 − 𝐷𝐷)𝑡𝑡

2
 + 

𝑠𝑠𝐷𝐷
𝑃𝑃𝑡𝑡

 𝐸𝐸(𝑁𝑁)  +  𝑖𝑖 [∅k  +  ∅𝛼𝛼  +  ∅𝛽𝛽] (2) 
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3.3.1 Linear Deterioration 
Hou (2007) considered that the percentage of defectives is fixed during the out-of-control state and that the items 
produced during the in-control period are of ideal quality. However, the process quality is not ideal before the shift 
occurrence, during the in-control stage. Therefore, the total number of defective items before and after the shift is 
the expected quantity of defective items during production. 
 

• During the in-control state: Two situations could occur by considering a constant defective rate 𝛼𝛼 in an in-
control period, as shown in Figure 2. 

 

𝐸𝐸(𝑁𝑁0) = 𝐸𝐸[𝛼𝛼𝑃𝑃min(𝑋𝑋, 𝑡𝑡)] =  𝛼𝛼𝑃𝑃� 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑃𝑃

𝑥𝑥=0
+ 𝛼𝛼𝑃𝑃𝑡𝑡 � 𝑥𝑥(𝑥𝑥)𝑑𝑑𝑥𝑥

∞

𝑥𝑥=𝑃𝑃
  

=  
𝛼𝛼𝑃𝑃
𝜆𝜆

[1 − 𝑒𝑒−𝜆𝜆𝑃𝑃] (3) 

 

  
 

(a) Situation 1: 𝑥𝑥 ≤ 𝑡𝑡 
 

(b) Situation 2: 𝑥𝑥 ≥ 𝑡𝑡 
 

Figure 2. The process status during the in-control state 
 

• During the out-of-control state: the process deterioration increases linearly 
 

𝐸𝐸(𝑁𝑁1) =  � � (𝛼𝛼 + 𝛽𝛽𝛽𝛽)𝑃𝑃 𝑑𝑑𝛽𝛽
𝑃𝑃−𝑥𝑥

𝜏𝜏=0

𝑃𝑃

𝑥𝑥=0
 𝑥𝑥(𝑥𝑥)𝑑𝑑𝑥𝑥  

𝐸𝐸(𝑁𝑁1) =  
𝑃𝑃𝛼𝛼
𝜆𝜆
�𝑒𝑒−𝜆𝜆𝑃𝑃 + 𝜆𝜆𝑡𝑡 − 1� +  

𝑃𝑃𝛽𝛽
𝜆𝜆3

[1 +
𝜆𝜆2𝑡𝑡2

2
− 𝜆𝜆𝑡𝑡 − 𝑒𝑒−𝜆𝜆𝑃𝑃] (4) 

 
• During the production run: total defectives during the production process. 

 

𝐸𝐸(𝑁𝑁) = 𝐸𝐸(𝑁𝑁0) +  𝐸𝐸(𝑁𝑁1) =  𝛼𝛼𝑃𝑃𝑡𝑡 +  
𝑃𝑃𝛽𝛽
𝜆𝜆3

[1 +
𝜆𝜆2𝑡𝑡2

2
− 𝜆𝜆𝑡𝑡 − 𝑒𝑒−𝜆𝜆𝑃𝑃] (5) 

 
3.3.2 Capital Investment 
Hofmann (1998) investigated the influence of capital investment on the setup and the production process, assuming 
that the investments under examination have a single effect. Furthermore, as illustrated in Figure 3, the reduction of 
setup cost, 𝐾𝐾, is a convex function and strictly decreases as the investment, 𝜙𝜙, increases. Eq. (6) expresses the 
relationship between capital investment and setup cost, where the cost of setup can theoretically reach zero if capital 
investment approaches infinity (Hofmann, 1998). 
 

α

In-control State

0 x <= t t

Production Cycle Length

Time

Defective 
Level

α

In-control state

0 x >= t

Production Cycle Length

Time

Defective 
Level

t
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𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐾𝐾 𝑒𝑒−
𝜙𝜙𝑘𝑘
𝑎𝑎   ⟹   𝜙𝜙𝑘𝑘(𝐾𝐾) = 𝑎𝑎 ln

𝐾𝐾
𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖

   𝑥𝑥𝑓𝑓𝑓𝑓 0 < 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐾𝐾 (6) 

 

 
 

Figure 3. Relation between investment and setup cost 
 
The parameter 𝑎𝑎 represents the responsiveness of the setup cost to changes in capital investment. Whereas the more 
investments made, the less setup cost reduction obtained through additional investments (Hofmann, 1998). 
 
Similarly, the relation between 𝛼𝛼 and 𝛽𝛽 and capital investment in-process quality improvement: 
 

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼 𝑒𝑒−
𝜙𝜙𝛼𝛼
𝑏𝑏   ⟹   𝜙𝜙𝛼𝛼(𝛼𝛼) = 𝑏𝑏 ln

𝛼𝛼
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖

  𝑥𝑥𝑓𝑓𝑓𝑓 0 < 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛼𝛼 (7) 

𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽 𝑒𝑒−
𝜙𝜙𝛽𝛽
𝑐𝑐   ⟹   𝜙𝜙𝛽𝛽(𝛽𝛽) = 𝑐𝑐 ln

𝛽𝛽
𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖

  𝑥𝑥𝑓𝑓𝑓𝑓 0 < 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛽𝛽 (8) 

 
Substituting Eqs. (5), (6), (7), and (8) into Eq. (2) result in the following expression of the 𝑇𝑇𝑇𝑇𝑇𝑇: 
 

    𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡,𝐾𝐾,𝛼𝛼,𝛽𝛽) =
𝐾𝐾𝐷𝐷
𝑃𝑃𝑡𝑡

+  
ℎ(𝑃𝑃 − 𝐷𝐷)𝑡𝑡

2
+  𝑠𝑠𝛼𝛼𝐷𝐷 +  

𝑠𝑠𝐷𝐷
𝑡𝑡𝜆𝜆3

𝛽𝛽[1 +
𝜆𝜆2𝑡𝑡2

2
− 𝜆𝜆𝑡𝑡 − 𝑒𝑒−𝜆𝜆𝑃𝑃]  

+ 𝑖𝑖 �𝑎𝑎 ln �
𝐾𝐾
𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖

� + 𝑏𝑏 ln �
𝛼𝛼
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖

� + 𝑐𝑐 ln �
𝛽𝛽
𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖

�� (9) 

 
4. Solution Procedure and Example 
The total annual cost, 𝑇𝑇𝑇𝑇𝑇𝑇, expressed in Eq. (9), is convex in terms of setup cost and process quality since the 
Hessian matrix of Eq. (9) is positive with respect to (𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖, 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖, and 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖). Taking the first partial derivative of Eq. 
(9) with respect to (𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖, 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖, and 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖) and equating it to zero, the following equations are obtained for the 
optimum values as a function of (t). 
 

𝜕𝜕𝑇𝑇𝑇𝑇𝑇𝑇
𝜕𝜕𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖

=
𝐷𝐷
𝑃𝑃𝑡𝑡

−
𝑖𝑖𝑎𝑎
𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖

= 0  ⟹   𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑖𝑖𝑎𝑎𝑃𝑃𝑡𝑡
𝐷𝐷

 (10) 

𝜕𝜕𝑇𝑇𝑇𝑇𝑇𝑇
𝜕𝜕𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑠𝑠𝐷𝐷 −
𝑖𝑖𝑏𝑏
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖

= 0  ⟹   𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 =  
𝑖𝑖𝑏𝑏
𝑠𝑠𝐷𝐷

 (11) 
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𝜕𝜕𝑇𝑇𝑇𝑇𝑇𝑇
𝜕𝜕𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖

=
𝑠𝑠𝐷𝐷
𝑡𝑡𝜆𝜆3

�1 +
𝜆𝜆2𝑡𝑡2

2
− 𝜆𝜆𝑡𝑡 − 𝑒𝑒−𝜆𝜆𝑃𝑃� −

𝑖𝑖𝑐𝑐
𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖

   ⟹   𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑖𝑖𝑐𝑐

𝑠𝑠𝐷𝐷
𝑡𝑡𝜆𝜆3 �1 + 𝜆𝜆2𝑡𝑡2

2 − 𝜆𝜆𝑡𝑡 − 𝑒𝑒−𝜆𝜆𝑃𝑃�
 (12) 

 
Suppose the setup cost after investment, 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖, is higher than the original setup cost, 𝐾𝐾. In that case, there is no need 
for investment, and use 𝐾𝐾𝑜𝑜𝑜𝑜𝑃𝑃 = 𝐾𝐾. The same is true for the process quality if the original quality is better than after 
the investment, so there is no need to improve quality. Then, the optimal production run length, 𝑡𝑡𝑜𝑜𝑜𝑜𝑃𝑃, is determined 
by applying a systematic search method under different values of the production run length.  
 
The flowchart of the systematic search procedure is shown in Figure 4. By Substituting the values of (𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖, 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖, and 
𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖) into Eq. (9), TAC(t) is convex in terms of 𝑡𝑡 since its second derivative is positive. OPRL can be obtained by 
applying a systematic search over 𝑡𝑡. 
 

Start

Input model parameters:
 P, D, s, h, i, a, b, c  

Compute values of type I error
Kinv eq. (10)
αinv eq. (11)
βinv eq. (12)  

Compute the objective function
TAC (t, Kopt, αopt, βopt) eq. (9) 

Comparison
If Kinv ≤ K, then Kopt = Kinv, else Kopt = K
If αinv ≤ α, then αopt = αinv, else αopt = α
If βinv ≤ β, then βopt = βinv, else βopt = β   

Initial values of design parameters:
 t = 0.001, K, α, β

t > 0.2t = t + 0.001
No

Yes

Output design parameters:
t, Kopt, αopt, βopt, TAC (t, Kopt, 

αopt, βopt)

Select the minimum TAC (t, Kopt, αopt, βopt) from the stored 
feasible solutions

End

Search over the 
decision variables

 
 

Figure 4. Flowchart of the systematic search procedure 
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4.1. A Numerical Example 
This section illustrates the practicability of the proposed model. The numerical example is adopted from (Hou, 
2007): P = 1500 units per year, D = 1000 units per year, K = $50 per production run, α = 0.02, β = 0.02, s = $40 per 
unit, h = $80 per unit, i = 0.12, a = 1450, b = 30 and c = 100. Figure 5 depicts the behavior of the total cost, TAC, in 
relation to the production run length, t. The TAC is convex over time; as expected, as t became longer, the holding 
cost, h, and rework cost became higher, s. The relation between setup cost, K, and investment in setup cost 
reduction, Øk, with t is depicted in Figure 6. Figure 7 outlines the distribution of different cost elements in the case 
of considering investment and without investment. It is clear that the rework cost contributes significantly to the 
TAC without investment, but after investment and implementing the setup and quality improvement, the rework cost 
reduces. 
 
Table 1 summarizes the results using the algorithm proposed by (Hou, 2007). Applying the proposed model by 
considering the defective items during the in-control state and the effect of process deterioration during the out-of-
control state, the optimal values of the decision variables are summarized in table 1. Both models are solved under 
different values of λ from 0.05 to 4.0 by step 0.05. It has been found that both models (Hou, 2007) and the proposed 
model are insensitive to the change in λ. 
 

 
 

Figure 5. Total annual cost over time 
 

 
Figure 6. Setup cost and investment in setup cost reduction over time 
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(a) Before investment 
 

(b) After investment 
 

Figure 7. Total cost distribution 
 

Table 1. Summary of the optimal solutions 
 

 λ K*
 α* β* t* Øk Øα Øβ TC(t*) 

(Hou, 2007) 0.05:0.40 26.10 0.0200 0.02 0.100 113.12 0.00 0.00 496.12 

Our1  0.05:0.40 22.45 0.0001 0.02 0.086 139.36 19.45 0.00 513.36 

Our2 0.05:0.40 50.00 0.0200 0.02 0.128 0.00 0.00 0.00 1,318.60 
1 case with investment and 2 case without investment 
 
The proposed model considers the defective rate during both in- and out-of-control states. As expected, the 
production run length is longer in the proposed model than in the (Hou, 2007) model. Longer t* to compensate for 
the defective parts and saving in TAC is realized by reducing the required investments in setup cost reduction and 
quality improvement. 
 
5. Conclusions 
The proposed model computes the OPRL, setup cost, and process quality. The production process starts in an in-
control state and may shift to an out-of-control state after an elapsed time. The time to the shift is assumed to be 
exponentially distributed. After the shift, the process became out-of-control, and the deterioration increases linearly 
to the end of the production cycle. Defective items are produced at a constant rate during in-control; this rate 
increases linearly after the shift due to process deterioration. The results from the proposed model show a direct 
relationship between investment in setup cost reduction and OPRL, whereas an inverse relationship exists between 
investments in-process quality and OPRL. The OPRL depends on a, b, and c, representing how costly it is to reduce 
setup cost and how costly it is to make process quality improvement. Since an increase or a reduction in OPRL 
affects the produced quantity and hence the inventory level and shortage, it is important to investigate the optimal 
allocation of investments among different options. As future work considers the deterioration during the out-of-
control state increases exponentially and integrates maintenance planning to restore the process to its original 
condition, i.e., in-control state. 
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