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Abstract 

The use of scheduling techniques in ready mixed concrete (RMC) firms in Bolivia is a complex problem. The authors 
developed a linear model for a Bolivian RMC firm taking into account the research context. This model integrated 
RMC truck dispatch data to decide the optimal RMC supply schedule. The authors used historical dispatching data, 
interviews, and field measurements to build a database and characterize the firm's demand to build an optimized 
model. A solution algorithm using Solver from Excel was developed to efficiently solve the optimal RMC supply 
scheduling problem. Afterward, the solution was compared using actual operational data. The results show that the 
solution algorithm increases RMC supply efficiency and saves costs. 
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1. Introduction
RMC is a material composed of cement, water, sand, and gravel and is mostly used in the construction industry (Afzal 
& Khan 2018). This material has some physical and chemical characteristics that generate certain limitations in its 
production and distribution. Specifically, different to other industries, in the RMC industry, due to the fast-solidifying 
nature of concrete, it cannot be produced in advance and subsequently stored in a finished product warehouse (Feng 
et al. 2004). On the other hand, it follows specific formulations depending on the requirements of each customer (Afzal 
& Khan 2018). Moreover, time is a significant factor in this type of industry. According to (Biruk 2015), the time 
elapsed between mixing and placement of RMC on-site should not exceed its solidification time. Thus, according to 
Afzal & Khan (2018), RMC is only productive if distributed promptly to customers. Moreover, Biruk (2015) states 
that time is the crucial factor because delays can lead to wastage of the whole batch, making it mathematically complex 
to model and optimize. Therefore, due to material characteristics and time constraints, RMC supply scheduling is 
critical for construction firms. 

Bolivia is experiencing rapid infrastructure growth and, thus, RMC demand (INE 2021). Inside RMC Bolivian firms' 
day-to-day operations, the dispatch process is not based on technical knowledge but instead on the experience of its 
personnel. Moreover, to the best of our knowledge, there is no study of supply cycle times in Bolivia to determine the 
process times and the factors that affect them. Also, a firm's data are not adequately processed, which generates a large 
amount of wasted information. Hence, Bolivian RMC firms do not efficiently process and distribute their products. 
We studied an RMC firm in Cochabamba-Bolivia to analyze and optimize their supply cycle time. In particular, we 
performed interviews with the firm's personnel and collected raw data from the supply process. Next, through linear 
programming, we developed a solution using Excel to help the firm schedule the RMC delivery in Cochabamba-
Bolivia. The following section will present relevant literature to our study, followed by the methodology, data 
collection, and analyses. Finally, we will present the results, discussion, and conclusion.   
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2. Literature Review 
In recent decades, there has been an increase in studies related to RMC supply scheduling. For example, Afzal & Khan 
(2018) recognized the importance of correct scheduling because delays cause the loss of the RMC batches. Moreover, 
Lin et al. (2010) indicate that optimal programming is related to just-in-time (i.e., products must be produced only 
upon request). Similarly, Hao (2012) suggests that optimization is a traditional line of research to efficiently RMC 
delivery scheduling problems. Hence, as Albayrak & Albayrak (2016) found, optimization solves RMC supply 
problems. 
  
In this regard, Matsatsinis (2004) indicates the existence of hundreds of optimization solutions. Ramos (2000) 
classifies these optimization solutions into two large groups: traditional and metaheuristic methods. In the first case, 
the advantages of traditional methods are the assurance of having a significant number of restrictions and finding 
optimal solutions. On the negative side, these methods take more significant times to compute. For example, Yan et 
al. (2008) developed an integrated model combining RMC production scheduling and RMC truck supply schedules.  
In the other case, compared to traditional methods, metaheuristic methods are faster in reaching satisfactory (not 
optimal) solutions but with fewer restrictions. Literature suggests that metaheuristic methods are used when supply 
functions are too complex. In particular, Taha (2012) indicates that an optimization solution is satisfactory if it 
considers all constraints. For example, due to model complexity, Asbach et al. (2009) used metaheuristic solutions to 
minimize RCM transportation costs when there are penalties for not fulfilling orders.  
 
Regarding metaheuristic solutions and RMC delivery scheduling, Feng et al. (2004) found that delivery times, RMC 
unloading time, and the number of RMC trucks influence the RMC delivery process. Next, using this information, 
these authors used genetic algorithms and simulation techniques to find optimal dispatching schedules that minimize 
RMC trucks waiting time. Similarly, Naso et al. (2007) studied RMC time restrictions, such as RMC anticipated and 
late deliveries. Specifically, these authors developed a metaheuristic approach to scheduling supply.   
 
Some researchers have combined traditional and metaheuristic methods to find optimal supply scheduling solutions. 
For example, Albayrak & Albayrak (2016) aimed to solve a transport problem where all supply data must satisfy all 
the demand while minimizing costs. They used linear programming (traditional method) and genetic algorithms 
(metaheuristic method) and compared both methods. Moreover, some researchers improve their results using 
simulations to evaluate different solutions (under different contexts). For example, Biruk (2015) used RMC delivery 
times to simulate and evaluate different delivery scenarios. Similarly, Panas & Pantouvakis (2013) used simulation to 
determine RMC truck size. 
 
We found some research on optimization solutions for supply problems in Latin American literature. For example, 
Ayllon et al. (2017) use a transportation model to minimize fruit supply costs. However, we did not find published 
studies related to RMC supply scheduling problems to the best of our knowledge. Furthermore, in the particular case 
of Bolivia, we did not find any research related to RMC supply scheduling problems.  
 
3. Methodology 
To optimize the cycle delivery times of a Bolivian RMC firm, we used a methodology based on the stages proposed 
by Belda (1986) and Panas & Pantouvakis (2013) (see Fig. 1). All the stages are sequential, and each one covers 
different sub-objectives in optimizing the cycle delivery times scheduling of mixer truck dispatches in an RMC firm. 
Figure 1 shows the proposed phases. 
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Figure 1. Methodological phases 
 

Exploratory Phase: The main objective of this phase was to know the process in detail through a flow chart and semi-
structured interviews with the firm's mixer truck operators. In addition, we collected historical information on truck 
travel times. 
 
Deterministic Phase: We determined the average supply cycle times by decomposing the entire cycle into sub-
processes. 
 
Model Creation Phase: First, we created a linear transportation model based on the variables in the previous phases. 
Next, we used Solver from Microsoft Excel to solve the model. We decided to use this software due to Albayrak & 
Albayrak (2016) suggestions and the firm's internal policies. Based on Ayllon et al. (2017), we present the steps 
followed to develop the transportation model:  
 

1) Determination of RMC production capabilities. The firm shared with us data about its production capabilities 

for every month. 

2) Determination of the demand for each district and each type of job. Based on the demand data received, we 

calculated the actual demand using the following equation:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁𝑑𝑑𝐷𝐷 𝑜𝑜𝑜𝑜 𝑜𝑜𝐷𝐷𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷 𝑝𝑝𝑑𝑑𝐷𝐷 𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑇𝑇𝑜𝑜𝐷𝐷𝑑𝑑𝑇𝑇 𝑑𝑑𝑁𝑁𝑑𝑑𝑁𝑁𝑑𝑑𝐷𝐷 𝑜𝑜𝑜𝑜 𝑜𝑜𝐷𝐷𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷
 

 
Next, we calculated the job demand regarding each type of job, following the next equation: 

𝐽𝐽𝑜𝑜𝑁𝑁 𝐷𝐷𝑡𝑡𝑝𝑝𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑁𝑁𝑁𝑁𝑑𝑑𝑁𝑁𝑑𝑑𝐷𝐷 𝑜𝑜𝑜𝑜 𝑜𝑜𝐷𝐷𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷 𝑁𝑁𝑡𝑡 𝐷𝐷𝑡𝑡𝑝𝑝𝑑𝑑 𝑜𝑜𝑜𝑜 𝑗𝑗𝑜𝑜𝑁𝑁

𝑇𝑇𝑜𝑜𝐷𝐷𝑑𝑑𝑇𝑇 𝑑𝑑𝑁𝑁𝑑𝑑𝑁𝑁𝑑𝑑𝐷𝐷 𝑜𝑜𝑜𝑜 𝑜𝑜𝐷𝐷𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷
 

 
3) Production time calculation. We calculated the time (in minutes) for each production plant to place the 

orders, type of job, and supply cycle time to each district. 

4) Decision variables definition. We identified 30 decision variables. The identification used the combinations 

between truck destination districts, construction type, and RMC production plant. 

5) Objective function definition. For this step, we used the principles of the transportation model developed by 
Hitchcock (1941). Moreover, we defined the cost objective function in terms of time as follows: 

 
𝑴𝑴𝑴𝑴𝑴𝑴∑ ∑ 𝑪𝑪𝑴𝑴𝑪𝑪 ∗ 𝑿𝑿𝑴𝑴𝑪𝑪𝑪𝑪=𝒎𝒎

𝑪𝑪=𝟏𝟏
𝑴𝑴=𝒎𝒎
𝑴𝑴=𝟏𝟏  (Objective Function) 

 
6) Define the restrictions. Next, we defined the supply and demand restrictions that the problem should have. 

We established these restrictions following the physical limitations of the model. In other words, no more 
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RMC can be distributed to each district than the current production capacity and at least the customer's 
demanded quantity. Next, we present the restriction equations: 

• Restrictions 

�𝑋𝑋𝐷𝐷𝑗𝑗 ≤ 𝑆𝑆𝐷𝐷 (𝐷𝐷 = 1,2, … 𝑑𝑑) (𝑆𝑆𝑁𝑁𝑝𝑝𝑝𝑝𝑇𝑇𝑡𝑡 𝑅𝑅𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑑𝑑)

𝑗𝑗=𝑑𝑑

𝑗𝑗=1

 

�𝑋𝑋𝐷𝐷𝑗𝑗 ≥ 𝑑𝑑𝑗𝑗 (𝑗𝑗 = 1,2, … 𝑑𝑑) (𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑅𝑅𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑑𝑑)

𝑗𝑗=𝑑𝑑

𝑗𝑗=1

 

𝑋𝑋𝐷𝐷𝑗𝑗 ≥ 0 (𝐷𝐷 = 1,2 … .𝑑𝑑; 𝑗𝑗 = 1,2 …𝑑𝑑) 
 

Model Simulation Phase: In this phase, we performed simulations of both models, current and optimal, using different 
demand values, districts, and jobs. 
 
Model Implementation Phase: We based our implementation on Feng et al. (2004). Specifically, we programmed a 
customized Microsoft Excel Worksheet to calculate the optimal supply scheduling of RMC. The data to be entered 
into the worksheet are order scheduled time (time a truck must be at the construction site), RMC volume demand (in 
cubic meters), the district where the construction site is, and the type of construction site. Based on this information, 
the worksheet automatically calculates: (a) the number of trucks needed to fulfill the order; (b) the time the batching 
must start at the plant; (c) the time the truck must leave the plant; (d) the time the truck must arrive at the site to start 
pouring RMC; (e) the time it should finish pouring to return to the plant; and (f) the time it should arrive at the 
production plant to wait to be batched again (for the same or another order). Also, the worksheet indicates which of 
the two production plants the truck should go to be batched again with RMC. 
  
Model Testing Phase: Next, we performed simulations and comparisons between the optimal model and the current 
model to determine the existence of statistically significant differences using one-factor ANOVA. Additionally, we 
developed KPIs to quantify the improvements objectively.  
 
4. Data Collection 
The following sections describe the dispatching process and the different information we collected in the firm.  
 
Mixer truck dispatching process: 
 

 
Figure 2. Mixer truck supply process 

 
First, we analyzed the dispatching process through visits to the production plant. As shown in Fig. 2, we found that 
the first step in the supply process is related to the dosing of the truck. Subsequently, quality control activities are 
performed on the RMC to verify that it meets consumer requirements. Once the product fulfills customer requirements, 
the truck is authorized to leave the production plant for the construction site. When the truck arrives at the construction 
site, the allotted possible waiting time is given to unload the product. Finally, the mixer truck returns to the plant once 
the unloading is finished and new dosing starts again. 

Proceedings of the 3rd South American International Industrial Engineering and Operations Management 
Conference, Asuncion, Paraguay, July 19-21, 2022 

© IEOM Society International 39



 
Supply cycle time influencing factors 
Next, we performed semi-structured interviews with mixer truck operators to determine the supply cycle time 
influencing factors. As shown in Table 1, the mixer truck operators indicate the existence of controllable and 
uncontrollable factors. Controllable factors are job type, district and distance, traffic, and team lack of communication. 
On the other hand, they indicate that uncontrollable factors are related to climate, construction delays, and other 
unpredictable factors, such as power outages. 
 

Table 1. Factors that influence supply cycle time 

Controllable Factors Uncontrollable Factors 
Job type  Climate 
District and distance Construction delays 
Traffic Unpredictable factors in construction  
Team lack of communication   

 
Job types 
Next, using the data provided by the firm, we found that three types of jobs are the most demanded by consumers. In 
particular, we found that, on average, 83% of jobs were related to slabs, slab floors, and columns. We also found that 
these job types are significantly different in their supply cycle times (F = 69.69; p < 0.01). 
 
Percentage of waiting time on site 
Next, we analyzed the percentage of time trucks spend waiting on the construction sites before unloading their loaded 
RMC. As shown in Table 2, 78% of the RMC trucks waited 5 min, 56% waited more than 15 minutes, and 37% waited 
more than 30 minutes. These results suggest the existence of idle times that consume person-hours waiting and 
influence the quality of RMC, leading to solidification and unusability.  
 

Table 2. Percentage of waiting times on site 

More than 5 min More than 15 min More than 30 min 
6.292 4.493 2.942 
78% 56% 37% 

 
Average supply cycle time 
Next, we calculated the average supply cycle times using the firm's database of 8036 points collected from January 
2019 to February 2020. Table 3 shows the current average supply cycle times. Based on our analyses and type of jobs, 
the optimal supply cycle times should be characterized by no waiting times on-site. 
 

Table 3. Average supply cycle times 

District Type of 
work 

Load 
(min) 

Arrive to 
district 
(min) 

Waiting 
time 
(min) 

RMC 
pouring 

(min) 

Return 
(min) 

Supply 
cycle 

time(min) 
Center and east Slab 15 23 38 22 26 124 
Center and east Floor slab 15 23 35 15 26 114 
Center and east Column 15 23 25 54 26 143 
North Slab 15 27 30 22 32 126 
North Floor slab 15 27 46 15 32 135 
North Column 15 27 16 54 32 144 
West Slab 15 20 33 22 25 115 
West Floor slab 15 20 34 15 25 109 
West Column 15 20 23 54 25 137 
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South Slab 15 19 13 22 25 94 
South Floor slab 15 19 15 15 25 89 
South Column 15 19 20 54 25 133 
Southeast Slab 15 34 23 22 45 139 
Southeast Floor slab 15 34 13 15 45 122 
Southeast Column 15 34 62 54 45 210 

 
Supply capacity  
Next, we collected information related to the firm's RMC production capacity. As Table 4 shows, the production 
capacity of Plant 1 (64%) almost doubles Plant 2 (36%). On the other hand, Table 4 also shows that the firm's mixer 
truck fleet working times per month (3.840 hours) 
 

Table 4. Supply Capacity 

  Capacity Unit 
Plant 1 10.752 m3/month 
Plant 2 6.144 m3/month 
Mixer truck 192 hours/month 
Mixer truck 
fleet 

3.840 hours/month 

 

Average demand by district 
Using historical data given by the firm, we calculated the average RMC demand for each district. The results in Table 
5 indicate that the highest demand is in the center and east districts of Cochabamba, followed by the west district. 
These results are not surprising because, in recent years, these districts have shown the higher economic growth in 
Cochabamba (Cadecocruz, 2018).  
 

Table 5. Average demand by district 

District % Average 
Center & east 70,1 
North 6,7 
West 20,5 
South 0,2 
Southeast 2,5 

 

Average demand by job type 
Based on the data given by the firm, we found that slabs are the most demanded product (66.7%), followed by floor 
slabs (22,6%) and columns (10,7%) (see Table 6). 
 

Table 6. Average demand by job type 

Job type % Average 
Slab 66,7 
Floor slab 22,6 
Column 10,7 
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Average supply cycle times for each RMC production plant and district 
As shown in Table 7, we found the average supply cycle times from each RMC production plant to all districts.  
 

Table 7. Average supply cycle times for each district 

District Type of work Plant 1 (min) Plant 2 (min) 
Center & east Slab 124 130 
Center & east Floor slab 114 120 
Center & east Column 143 149 
North Slab 126 132 
North Floor slab 135 141 
North Column 144 150 
West Slab 115 121 
West Floor slab 109 115 
West Column 137 143 
South Slab 94 100 
South Floor slab 89 95 
South Column 133 139 
Southeast Slab 139 145 
Southeast Floor slab 122 128 
Southeast Column 210 216 

 
5. Results and Discussion 
 
5.1 Numerical Results 
Current supply model 
Using historical data, we found that the maximum historical RMC demand was 14,785 m3. Hence, this is the 
maximum volume the firm can distribute under the current conditions. Based on this information, we inferred that 
both plants still have enough production capacity. However, the collected data also suggest that its transportation 
capacity has already reached its maximum transportation volume. 
 
Optimized supply model 
Using our optimized model, we found that the maximum demand value to be met is 16,896 m3/month. This result 
suggests the existence of available transportation capacity but with the highest production capacity. Moreover, as 
Table 8 suggests, Plant 1 should be prioritized higher. In particular, Table 8 indicates that the demand is 14,785 
m3/month at current conditions (91.74% production capacity), and thus the current transportation capacity has reached 
its maximum. On the other hand, based on the optimized model, at maximum demand (16,896 m3/month), the 
transportation capacity reaches 83% utilization and total production capacity (100%). Therefore, compared to the 
current conditions, these results indicate that the optimized model improves production use and transportation 
capacity.  
 
 

Table 8. Comparison of production and transport capacity of both models 

Demand Objective 
function 
(current) 

Objective 
function 
(optimal) 

Production 
capacity 

Transport 
capacity 
(current) 

Transport 
capacity 
(optimal) 

8.952 2.294 1.649 52,98% 59,74% 42,94% 
9.843 2.523 1.813 58,26% 65,70% 47,21% 
7.929 2.032 1.461 46,93% 52,92% 38,05% 
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10.000 2.563 1.842 59,19% 66,74% 47,97% 
14.500 3.763 2.718 88,78% 97,99% 70,78% 
14.785 3.840 2.774 91,74% 100,00% 72,24% 
16.896 --- 3.190 100,00% --- 83,07% 

 
Based on Table 8 results, we calculated the cost reduction per m3. As shown in Table 9, implementing the optimized 
model will reduce the cost from 10 USD to 7 USD per m3. Moreover, we also found a reduction in total variable costs 
per m3 from 65 USD to 62 USD.  
  

Table 9. Cost reduction per m3 

Component Current 
(USD/m3) 

Optimal 
(USD/m3) 

Raw material 55 55 

Distribution 10 7 

Total variable cost 65 62 
 
 
 
5.3 Suggested improvements 
As previously indicated, we developed a Microsoft Excel Worksheet based on the optimized model. This worksheet 
allowed the firm's supply personnel to program daily RMC deliveries optimally. Table 10 shows the results from the 
worksheet that automatically and optimally assigned clients to trucks, RMC plants, truck departure and arrival times 
to construction districts, RMC loading and unloading times, and truck departure and arrival times to RMC plants. In 
particular, first, the user introduces the client code and is assigned to one or more free RMC trucks (Truck code). Next, 
depending on the demand, the worksheet schedules each loading truck with their plant departure time, district arrival 
time, RMC unloading starting and finish times, district departure time, and plant arrival time.  
 
Moreover, when scheduling, the worksheet compares loading times and plant departure times to determine which 
RMC plant will be used for loading. For example, Table 10 shows how Truck 1 is assigned to Client 1 and should 
return at 6:48. Next, the worksheet compares the hour at which available trucks should be loaded and adjust the 
schedule accordingly. Furthermore, the worksheet will reassign Truck 1 (6:50) when all the other available trucks are 
assigned, and Truck 1 has already arrived at the plant (6:48).  
 

Table 10. Worksheet scheduling 

Client 
code 

Truck 
code 

Plant Loadin
g time 

Plant 
departur

e time 

District 
arrival 

time 

RMC 
unloading 
starting 

time 

RMC 
unloading 
finish time 

District 
departure 

time 

Plant 
arrival 

time 

1 1 1 05:22 05:37 06:00 06:00 06:22 06:22 06:48 

1 2 1 05:44 05:59 06:22 06:22 06:44 06:44 07:10 

1 3 1 06:06 06:21 06:44 06:44 07:06 07:06 07:32 

2 4 2 06:18 06:33 07:00 07:00 07:22 07:22 07:54 

1 5 1 06:28 06:43 07:06 07:06 07:28 07:28 07:54 

2 6 2 06:40 06:55 07:22 07:22 07:44 07:44 08:16 

1 1 1 06:50 07:05 07:28 07:28 07:50 07:50 08:16 

2 7 2 07:02 07:17 07:44 07:44 08:06 08:06 08:38 
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5.4 Model validation 
Next, we used random demand values to compare the historical and optimized supply cycle times from the model 
included in the Excel worksheet. Compared to historical data, we found that the optimized model reduces the supply 
cycle times by 28% (see Table 11). Moreover, using ANOVA, we found that the reduction in supply cycle times was 
statistically significant (F = 15.48; p < 0.05). Hence, the optimized supply model significantly increases RMC  supply 
efficiency. 
 
 

Table 11. Historical supply times vs. optimized supply times 

Demand 
(m3) 

Historical 
supply 

cycle times 
(Hours) 

Optimized 
supply 

cycle times 
(Hours) 

Difference 
(Hours) 

Improvement 
% 

8.952 2.294 1.649 645 28 
9.791 2.509 1.804 705 28 
7.929 2.032 1.461 571 28 
10.000 2.563 1.842 721 28 
14.500 3.763 2.718 1.045 28 
14.785 3.840 2.774 1.066 28 

 
6. Conclusion 
Our study makes two contributions to Latin American and Bolivian literature. First, to the best of our knowledge, this 
is the first study to develop an optimized RMC supply model. Second, based on Feng et al. (2004) and Albayrak and 
Albayrak (2016), we propose an optimized supply model for RMC firms. Hence, our findings suggest the usability of 
optimized models in developing countries, such as Bolivia. Specifically, we developed a flow chart to develop the 
optimized supply model, performed semi-structured interviews with the firm's mixer truck operators, and collected 
historical information on truck supply cycle times. Next, using the collected information, we determined the average 
supply cycle times, and thus we created an optimized linear transportation model based on Feng et al. (2004) and 
Albayrak and Albayrak. Afterward, we used Solver from Microsoft Excel to solve the model. Then, we performed 
simulations of both current and optimized supply models using different demand values, districts, and jobs. Later, we 
implemented the solution in a Microsoft Excel Worksheet to automatically and optimally assign clients to trucks, 
RMC plants, truck departure and arrival times to construction districts, RMC loading and unloading times, and truck 
departure and arrival times to RMC plants. Next, we validated the model using random demand values to compare the 
historical and optimized supply cycle times. The optimized supply model decreases average supply cycle times by 
28%. Moreover, our optimized model reduces the RMC supply costs from 10 to 7 USD/m3.  
 
All studies have limitations, and ours is no exception. First, future studies can increase the accuracy of our results 
using RMC geospatial data to develop better scheduling models. Second, our study context was in Cochabamba, a 
small city with a concentration of construction sites in specific districts. Future studies can determine if our model 
shows similar performance in bigger cities where construction sites are evenly distributed. We expect that our model 
will inspire future researchers in Bolivia and Latin America to develop optimized RMC supply models according to 
the context where they live.  
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