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Abstract  

 
We study two classes of dynamic scheduling problems termed as "allocation" and "advanced" scheduling. In allocation 
scheduling, arriving jobs either wait in queue, are rejected, or served immediately, while in advanced scheduling, they 
are scheduled to time slots such as days in a booking horizon. We develop approximate dynamic programming (ADP) 
based on direct search that approximately solves the underlying Markov decision process models. We compare the 
performance of the proposed technique against the myopic policy under various scenarios. Numerical results 
demonstrate that the direct-search based ADP yields significant improvements over the myopic policy in all of the 
problem sets. 
  
Keywords 
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1. Introduction 
Scheduling problems that have the dimension of dynamicity arise in many fields such as manufacturing, 
communication, and transportation. Differing from static scheduling problems, those problems contain jobs arriving 
randomly at the system. In manufacturing settings, jobs correspond to orders or tasks, whereas in healthcare settings, 
patient requests can be considered as jobs (Göçgün & Puterman, 2014). In communication networks, requests for data 
or video transmission are viewed as jobs, and the resource corresponds to bandwidth (Altman, 2002).  
 
In a class of dynamic scheduling problems, termed as allocation scheduling, arriving jobs that are reviewed 
periodically may be served immediately or are rejected/diverted, with the goal of optimizing some performance metric. 
Another class of dynamic scheduling problems, termed as advanced scheduling, has the property that jobs arriving at 
the underlying system are scheduled to epochs within a booking horizon, taking into account resource constraints. 
Costs such as delay costs and penalty cost of rejection are incurred. One extension of these problems contains a waiting 
list, through which decisions can be postponed, putting some of the arriving requests on a waiting list. This gives the 
planner additional flexibility, improving service quality. The planner incurs a holding cost for each type-𝑖𝑖 job that 
stays on the waiting list for one period. In another extension, jobs that are scheduled in a booking horizon require 
multiple resources and are likely to be cancelled and hence must be rescheduled, as observed in chemotherapy 
scheduling where patient requests are viewed as jobs (Göçgün, 2018). 
 
The abovementioned classes of scheduling problems are termed as dynamic stochastic scheduling (DSS) problems 
(Göçgün & Ghate, 2012). This is due to the fact that these problem have dynamic features because of dynamic arrivals 
of jobs; stochasticity is observed owing to random arrivals of jobs. 
 
To this end, we consider two classes of DSS problems: allocation scheduling problems and advanced scheduling 
problems, the latter involving the following features: jobs requiring multiple resources, and waiting list for arriving 
jobs. In line with the literature, we provide an approximate solution to the underlying mathematical models of these 
problems. Specifically, we develop an approximate dynamic programming technique centered on direct-search to 
approximately solve the Markov decision process (MDP) models of these problems. 
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2. Literature Review 
Literature on dynamic scheduling is quite rich. We provide a brief summary of the papers from allocation scheduling 
and advance scheduling next. 

 
2.1 Literature Review on Allocation Scheduling 
Göçgün & Ghate (2012) studied dynamic stochastic allocation scheduling problems taking into account multiple 
resources. They developed a Markov Decision Process (MDP) model of these problems and solved them 
approximately via a Lagrangian-based Approximate Dynamic Programming (ADP) technique. 
 
Huh et al. (2013) considered a multi-resource allocation scheduling problem considering elective and emergency 
patients. The authors discussed convexity of their formulation and developed a heuristic policy called "limit" policy 
for solving the underlying problem. 
 
Barz & and Rajaram (2015) studied an allocation scheduling problem in hospital settings taking into account 
emergency patients as well as elective patients who must be admitted to a hospital or are rejected. Formulating the 
problem as an MDP, the authors employed ADP to obtain bounds and developed heuristics. 
 
It is worth noting that a detailed literature on dynamic stochastic allocation scheduling problems can be found in 
Göçgün & Ghate (2012), which includes the mathematical model we consider in our work.  
 
2.2 Literature Review on Advanced Scheduling 
Patrick et al. (2008) proposed an MDP formulation of problems where patients of distinct types are scheduled to time 
slots. Owing to computational intractability, they resorted to ADP techniques, developing a linear-programming based 
ADP technique for approximately solving the respective MDP. 
 
Saure et al. (2012) extended the work in Patrick et al. (2008) by a similar but slightly complicated problem that arises 
in radiation therapy units. They formulated the problem using MDPs and proposed a linear programming-centered 
ADP for solving the respective MDP. 
 
Göçgün & Ghate (2012) studied a class of scheduling problems, considering multiple resources. They formulated the 
underlying problem using MDPs and developed a Lagrangian relaxation technique to approximately solve the 
underlying MDP model. 
 
Ceschia and Schaerf (2016) focused on a patient admission scheduling problem, taking into account constraints on the 
utilization of operating rooms. Their model contains features such as flexible planning horizon and new components 
of the objective function. The authors developed a local search for solving this problem. 
 
Wang et al. (2015) worked on web applications used to schedule advance service, considering non-stationary arrivals. 
The authors formulated these problems as online weighted bipartite matching problems and developed algorithms 
with performance guarantees. 
 
Göçgün & Puterman (2014) studied a chemotherapy scheduling problem that considers patients of different types who 
have target dates as well as tolerance limits. They provided an MDP formulation of the problem and developed an 
ADP centered on linear-programming for obtaining an approximate solution. Göçgün (2018) extended the model 
proposed by Göçgün & Puterman (2014) by including cancellation of jobs. The author provided an MDP formulation 
of the problem and approximately solved the problem using ADP. In a related work, Abdırahman (2019) studied a 
class of dynamic scheduling problems that have more generic features, considering appoointments without target dates 
and time windows.  
 
Finally, Göçgün (2021) compares a variety of ADP techniques such as Lagrangian-based ADP and ADP centered on 
direct search under diverse settings for dynamic scheduling problems. Their results demonstrated that ADP utilizing 
direct searcch performs generally better than other APP methods. 
 
In this work, we extend the problems studied in Göçgün & Ghate (2012) and Patrick et al. (2008) by including 
extensions such as waiting list for jobs. 
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3.  Dynamic stochastic allocation scheduling 
We address a type of allocation scheduling problems introduced in Göçgün & Ghate (2010). We provide a brief 
description of these problems below.   

    • We consider heterogeneous job types.  
    • Arrivals of jobs to the system are random.  
    • The job arrival process for each type is assumed to be independent.  
    • We consider multiple resource constraints.  
    • Each job that arrives must be chosen for service or be rejected.  
    • Service time for each job is assumed to be one-time period.  
    • A reward is received when a job is completed.  
    • A penalty cost is incurred for a job that is rejected.  
    • There is a seperate type-dependent queue capacity.  
    • The objective is "to decide which of the arriving jobs to select for service in each period so as to 

maximize the total discounted expected profit over an infinite horizon". (Göçgün & Ghate, 2010)  
 

3.1 Mathematical model 
 The aforementioned problem is formulated using Markov Decision Processes (MDPs) (see Göçgün & Ghate, 2010 
for an equivalent formulation). 
State Space: 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐼𝐼), where 𝑥𝑥𝑖𝑖 is the number of jobs from type 𝑖𝑖 in queue at the start of a time-period for 
𝑖𝑖 = 1,2, … , 𝐼𝐼. 
 
The Action Set: 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝐼𝐼), where 𝑦𝑦𝑖𝑖 is the number of type- 𝑖𝑖 jobs that will be chosen for service in a time-
period for 𝑖𝑖 = 1,2, … , 𝐼𝐼 ,. We define 𝑌𝑌(𝑥𝑥) as the Cartesian product 𝑌𝑌1(𝑥𝑥1) × 𝑌𝑌2(𝑥𝑥2) × … × 𝑌𝑌𝐼𝐼(𝑥𝑥𝐼𝐼), where 𝑌𝑌𝑖𝑖(𝑥𝑥𝑖𝑖) =
{0,1, … , 𝑥𝑥𝑖𝑖} (Göçgün & Ghate, 2010). The set 𝑌𝑌�(𝑥𝑥) ⊆ 𝑌𝑌(𝑥𝑥) of all actions that are feasible in state 𝑥𝑥 is defined by the 
following resource constraints: 
 

 𝑌𝑌�(𝑥𝑥) = {(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝐼𝐼) ∈ 𝑌𝑌(𝑥𝑥):                (1) 
 ∑𝐼𝐼
𝑖𝑖=1 𝑎𝑎𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 , 𝑗𝑗 = 1,2, … , 𝐽𝐽}, 

 where 𝑎𝑎𝑖𝑖𝑖𝑖 is the amount of resource 𝑗𝑗 required for performing a job from type-𝑖𝑖, 𝑏𝑏𝑖𝑖 is total amount of resource 𝑗𝑗 that 
is available in each time-period. 
 
The discounted expected profit for the underlying period is expressed as (Göçgün & Ghate, 2010) 

 
 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝜆𝜆∑𝐼𝐼

𝑖𝑖=1 𝑅𝑅𝑖𝑖𝑦𝑦𝑖𝑖 − ∑𝐼𝐼
𝑖𝑖=1 𝐻𝐻𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖) − 𝜆𝜆∑𝐼𝐼

𝑖𝑖=1 ∑
𝐾𝐾𝑖𝑖
𝑛𝑛𝑖𝑖=0 𝑝𝑝𝑖𝑖(𝑛𝑛𝑖𝑖)𝐺𝐺𝑖𝑖(max{(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖) + 𝑛𝑛𝑖𝑖 −𝑊𝑊𝑖𝑖 , 0}),         (2) 

 
where 𝜆𝜆 is discount factor, 𝑅𝑅𝑖𝑖 is a reward received upon completing a job from type-𝑖𝑖, 𝐻𝐻𝑖𝑖 is holding cost incurred for 
a job from type-𝑖𝑖 per period, 𝐾𝐾𝑖𝑖 is the maximum number of jobs from type-𝑖𝑖 that may arrive during a time period, 
𝑝𝑝𝑖𝑖(𝑛𝑛𝑖𝑖) is the probability that 𝑛𝑛𝑖𝑖 jobs from type-𝑖𝑖 arrive during a time-period, 𝐺𝐺𝑖𝑖 is a penalty cost incurred for rejecting 
a job from type-𝑖𝑖 per time-period, and 𝑊𝑊𝑖𝑖 is queue capacity for a type-𝑖𝑖 job. It is easy to see that 𝑓𝑓(𝑥𝑥,𝑢𝑢) consists of 
terms corresponding to reward, holding cost, and penalty cost. 
 

𝑓𝑓(𝑥𝑥,𝑦𝑦) can be expressed as ∑𝐼𝐼
𝑖𝑖=1 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) (Göçgün & Ghate, 2010), where 

 
 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝜆𝜆𝑅𝑅𝑖𝑖(𝑦𝑦𝑖𝑖) − 𝐻𝐻𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖) −𝜆𝜆∑

𝐾𝐾𝑖𝑖
𝑛𝑛𝑖𝑖=0 𝑝𝑝𝑖𝑖(𝑛𝑛𝑖𝑖)𝐺𝐺𝑖𝑖(max{(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖) + 𝑛𝑛𝑖𝑖 −𝑊𝑊𝑖𝑖 , 0}).            (3) 

 
The resulting Bellman’s equations are given by 
 
 𝑉𝑉(𝑥𝑥) = max

𝑦𝑦∈𝑌𝑌�(𝑥𝑥)
{∑𝐼𝐼

𝑖𝑖=1 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) +𝜆𝜆∑𝐾𝐾1
𝑛𝑛1=0 …∑𝐾𝐾𝐼𝐼

𝑛𝑛𝐼𝐼=0 (∏𝐼𝐼
𝑖𝑖=1 𝑝𝑝𝑖𝑖(𝑛𝑛𝑖𝑖))𝑉𝑉(𝑥𝑥′1, 𝑥𝑥′2, … , 𝑥𝑥′𝐼𝐼)},            (4) 

 where 
 
𝑥𝑥′𝑖𝑖 = min{(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖) + 𝑛𝑛𝑖𝑖 ,𝑊𝑊𝑖𝑖}, for  𝑖𝑖 = 1,2, … , 𝐼𝐼.(5) 
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Because of computational intractability, Bellman’s equations cannot be solved exactly for large-sized problems. This 
forces us to utilize an approximate dynamic programming (ADP) method for solving the underlying mathematical 
model approximately. 

 
3.2 Direct search-based ADP 
A variety of intractable MDPs in diverse fields have been solved through ADP techniques (Powell, 2007). These 
techniques are categorized as ADPs centered on linear programming (LP) and ADPs centered on simulation (see 
Adelman, 2003 and Adelman, 2004 for detailed information about these types of ADPs). 
 
The implementation of ADP requires that basis functions possessing certain crucial features of the states of the 
underlying system are utilized for approximating the value function. One example of making use of basis functions is 
linear approximation, which is expressed as follows: 

 
 𝑉𝑉(𝑠𝑠) ≈ ∑𝐾𝐾

𝑘𝑘=1 𝑟𝑟𝑘𝑘Φ𝑘𝑘(𝑠𝑠), 
 
where 𝑟𝑟𝑘𝑘, k=1,…,K represent parameters that are tuned and Φ𝑘𝑘(𝑠𝑠), k=1,…,K symbolize basis functions (Göçgün, 
2021). Those parameters are tuned in an iterative way to retrieve an ADP policy after approximating the value function 
is completed. In this regard, ADP approaches seek the optimal parameter vector that eanbles to minimize a certain 
performance metric. Regression-based techniques are typically used to solve the underlying optimization problem 
(Powell, 2007). We however use a direct search-based technique that tunes the ADP parameters to reach the best 
policy. The ADP policy is then acquired using the approximate value functions (Göçgün, 2021). 

 
3.2.1 Retrieving the ADP Policy 
As stated earlier, the parameter tuning phase leads to the approximate value of the underlying state. Then, we obtain 
the ADP policy via the computation of an action vector for any state the system visits (Göçgün, 2021). The following 
expression gives us the decision retrieval problem for a given state 𝑠𝑠 of our MDP model: 

 
 max
𝑦𝑦

  {∑𝐼𝐼
𝑖𝑖=1 [𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝜆𝜆∑𝐾𝐾𝑖𝑖

𝑛𝑛𝑖𝑖=0 𝑝𝑝𝑖𝑖(𝑛𝑛𝑖𝑖)𝑣𝑣�(𝑥𝑥′)]}                          (6) 

 𝑦𝑦𝑖𝑖 ∈ 𝑌𝑌𝑖𝑖(𝑥𝑥𝑖𝑖) = {0,1, … , 𝑥𝑥𝑖𝑖}, 𝑖𝑖 = 1,2, … , 𝐼𝐼; 
 ∑𝐼𝐼
𝑖𝑖=1 𝑎𝑎𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 , 𝑗𝑗 = 1,2, … , 𝐽𝐽, 

 
where 𝑉𝑉�(𝑥𝑥′) is the approximate value of state 𝑥𝑥′. 
 

3.2.2 Basis Functions 
We choose the following basis functions for our ADP implementation: 

 
 Φ𝑖𝑖(𝑥𝑥) = ∑𝐼𝐼

𝑖𝑖=1 𝑎𝑎𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖), 𝑗𝑗 ∈ 𝐽𝐽 
 
According to the above basis functions, the value of a state increases with an increase in amount of resource consumed. 
 
3.2.3 Direct Search 
In our ADP implementation, parameters are tuned using direct search, which aims to find good policies. Specifically, 
an optimization problem where feasible 𝑟𝑟’s represent the variables and the objective is to minimize the the expected 
cost of the underlying policy is solved by direct search. The underlying optimization problem is given as 

 
 min
𝑟𝑟∈𝑅𝑅𝑁𝑁

∑∞
𝑡𝑡=0 𝑐𝑐(𝑠𝑠𝑡𝑡 ,𝜋𝜋𝑟𝑟(𝑠𝑠𝑡𝑡)),                (7) 

 
where 𝑠𝑠𝑡𝑡 is the state at stage 𝑡𝑡 of the system, 𝜋𝜋𝑟𝑟 is "the policy obtained by the parameter vector 𝑟𝑟, 𝜋𝜋𝑟𝑟(𝑠𝑠𝑡𝑡) is the action 
dictated by the policy 𝜋𝜋𝑟𝑟 in the state at stage 𝑡𝑡, and 𝑐𝑐(𝑠𝑠𝑡𝑡 ,𝜋𝜋𝑟𝑟(𝑠𝑠𝑡𝑡)) is immediate cost incurred at step 𝑡𝑡 as a result of 
choosing 𝜋𝜋𝑟𝑟(𝑠𝑠𝑡𝑡)." (Göçgün, 2021). 
 
While implementing the ADP approach centered direct search, we let 𝑟𝑟𝑖𝑖 , 𝑗𝑗 ∈ 𝐽𝐽 range from 2 to 50 in increments of 2.  
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3.3 Numerical Results 
Data generation process was in line with the related literature (Göçgün & Ghate, 2010). Number of job types was set 
to 5 and 10. Number of distinct resources was set to 2. 𝑎𝑎𝑖𝑖𝑖𝑖  was set to 𝑖𝑖 + ⌈2 × 𝑖𝑖 × 𝑈𝑈(0,1)⌉ , and we set 𝑏𝑏𝑖𝑖  to 
⌈𝑡𝑡. 𝑟𝑟 × ∑𝐼𝐼

𝑖𝑖=1 𝑎𝑎𝑖𝑖𝑖𝑖⌉, where 𝑡𝑡. 𝑟𝑟 is called tightness ratio (Göçgün & Ghate, 2010). 𝑡𝑡. 𝑟𝑟 was set to {0.5,0.75,1,1.25}. We set 
reward for type-𝑖𝑖 job to 50𝑖𝑖 + 𝐷𝐷𝑈𝑈(1,50) (DU stands for discrete uniform). Holding cost and penalty cost for type-𝑖𝑖 
job were set to 𝐷𝐷𝑈𝑈(1,50) and 𝐷𝐷𝑈𝑈(1,100), respectively. Queue capacity for each job type was set to 3. We set 𝜆𝜆 to 
0.8 and 0.99. 
 
Simulation run length and number of replications were set to 50 and 20, respectively. For each combination of 𝜆𝜆, 𝐼𝐼, 
and 𝑡𝑡. 𝑟𝑟, we solved 10 problem instances. 
 
We compare the ADP centered on direct search against the myopic policy in terms of total profit. The myopic policy 
is acquired by solving the problem max

𝑦𝑦∈𝑌𝑌
  𝑓𝑓(𝑥𝑥,𝑦𝑦) for any state 𝑥𝑥 ∈ 𝑋𝑋. We utilized AMPL, CPLEX 12 for coding the 

algorithms and solving all integer programs during the implementation of the algorithms. 
 
Results are shown in Tables 1 and 2. Each table contains the corresponding values of 𝑡𝑡. 𝑟𝑟 and 𝜆𝜆 and the profits obtained 
by the direct search-based ADP and the myopic policy as averages of 200 values for each problem set(owing to having 
20 replications and 10 problem instances for each problem set). The last column provides percentage improvement 
over the myopic policy. Average percentage improvements over the myopic policy for 𝐼𝐼 = 5 and 𝐼𝐼 = 10 are 19% and 
16%, respectively.  
 

Table 1. Results for allocation scheduling with 𝐼𝐼 = 5. 
 

  (𝑡𝑡. 𝑟𝑟, 𝜆𝜆)   DS-ADP   Myopic   Per. impr. 
  (0.5,0.9)   -2198   -2448   10.2  
 (0.5,0.99)   -15707   -17426   9.8  
 (0.75,0.9)   -239   -590   59.3  
 (0.75,0.99)   -2802   -5072   44.7  
 (1,0.9)   2063   1874   10.1  
 (1,0.99)   13035   11813   10.3  
 (1.25,0.9)   3999   3889   2.8  
 (1.25,0.99)   27341   26278   4  

 
 

Table 2. Results for allocation scheduling with 𝐼𝐼 = 10. 
 

  (𝑡𝑡. 𝑟𝑟, 𝜆𝜆)   DS-ADP   Myopic   Per. impr. 
  (0.5,0.9)   1903   1308   37.8  
 (0.5,0.99)   12667   8342   51.8  
 (0.75,0.9)   9462   8482   11.5  
 (0.75,0.99)   64941   57128   13.7  
 (1,0.9)   16826   16156   4.1  
 (1,0.99)   116551   112149   3.9  
 (1.25,0.9)   24441   24006   1.8  
 (1.25,0.99)   171661   167881   2.2  

 
3.4 Discussion 
The abovementioned results lead us to the following inferences. When tightness ratio is reasonably small (being less 
than 1), the percentage improvement is significantly high in both cases. The higher tightness ratio is, the smaller 
percentage improvement will be. This implies that the impact of the direct search-centered ADP is more prominent in 
the case of scarce resource. Further, the percentage improvement generally decreases with an increase in discount 
factor when 𝐼𝐼 = 5, while it generally increases in the same situation when 𝐼𝐼 is higher. It is also worth noting that the 
impact of the direct search-based ADP is slightly higher when number of types is small (corresponding to the I=5 
case). 
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4.  Dynamic stochastic advanced scheduling 
The features of the class of stochastic advanced scheduling problems we study are provided below(see and Göçgün & 
Ghate, 2012 for a similar description).  

    • There are heterogeneous job types.  
    • We consider random arrivals of jobs to the system.  
    • Each job that arrives must be scheduled to a day within a booking horizon. Jobs can be rejected (or 

outsourced or served through overtime).  
    • Jobs of each type are associated with a deadline. Delay cost is incurred if an arriving job is scheduled to 

a day after its deadline.  
    • A penalty cost is incurred for jobs that are rejected.  
    • The objective is to perform scheduling and rejection for jobs that arrive so as to "minimize the total 

discounted expected cost over an infinite horizon" (Göçgün & Puterman, 2014).  
 
4.1 Dynamic stochastic advanced scheduling with multiple resources and waiting list 
In addition to the abovementioned features, this class of problems have the following properties:   

    • We consider multiple resource constraints.  
    • Jobs that are neither scheduled nor rejected are held in a waiting list.  
 

4.1.1 Mathematical model 
We formulate the abovementioned problem using Markov Decision Process (MDP), the components of which are 
given below (see Göçgün & Ghate, 2012 for an equivalent MDP model in terms of state space and action set). 
 
State Space: 𝑠𝑠 = (𝑥𝑥,𝑦𝑦) = (𝑥𝑥𝑖𝑖𝑛𝑛,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … , 𝐼𝐼 and 𝑛𝑛 = 1, … ,𝑁𝑁, where where 𝐼𝐼 is the number of job types, 𝑁𝑁 is the 
length of the booking horizon, 𝑥𝑥𝑖𝑖𝑛𝑛 for 𝑖𝑖 = 1, … , 𝐼𝐼, 𝑛𝑛 = 1, … ,𝑁𝑁 is number of type-𝑖𝑖 jobs that are already scheduled to 
day 𝑛𝑛, 𝑦𝑦𝑖𝑖 for 𝑖𝑖 = 1, … , 𝐼𝐼 is number of type-𝑖𝑖 jobs awaiting for scheduling. Note that the state set 𝑆𝑆 must be defined as 
follows: 

𝑆𝑆 = {(𝑥𝑥,𝑦𝑦)|∑𝐼𝐼
𝑖𝑖=1 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛 ≤ 𝑏𝑏𝑖𝑖 , 𝑗𝑗 = 1, … , 𝐽𝐽,𝑛𝑛 = 1, … ,𝑁𝑁},  

where 𝑎𝑎𝑖𝑖𝑖𝑖 is an amount of resource 𝑗𝑗 ∈ 𝐽𝐽 required for performing each job of type-𝑖𝑖; 𝑏𝑏𝑖𝑖 is total amount of 
resource 𝑗𝑗 ∈ 𝐽𝐽 that is available each day. 

 
The Action Set: (𝑢𝑢, 𝑧𝑧) = (𝑢𝑢𝑖𝑖𝑛𝑛, 𝑧𝑧𝑖𝑖), 𝑖𝑖 = 1, … , 𝐼𝐼 and 𝑛𝑛 = 1, … ,𝑁𝑁, where 𝑢𝑢𝑖𝑖𝑛𝑛 for 𝑖𝑖 = 1, … , 𝐼𝐼 and 𝑛𝑛 = 1, … ,𝑁𝑁 is number 
of type-𝑖𝑖  jobs scheduled to day 𝑛𝑛 , and 𝑧𝑧𝑖𝑖  for 𝑖𝑖 = 1, … , 𝐼𝐼  is number of type-𝑖𝑖  jobs that are rejected. The below  
constraints must be satisfied by any action:  

 
 ∑𝐼𝐼
𝑖𝑖=1 𝑎𝑎𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖𝑛𝑛 + 𝑢𝑢𝑖𝑖𝑛𝑛) ≤ 𝑏𝑏𝑖𝑖, 𝑗𝑗 = 1, … , 𝐽𝐽, 𝑛𝑛 = 1, … ,𝑁𝑁                  (8) 

 ∑𝐼𝐼
𝑖𝑖=𝑖𝑖 𝑧𝑧𝑖𝑖 ≤ 𝐶𝐶                (9) 

 ∑𝑁𝑁
𝑛𝑛=1 𝑢𝑢𝑖𝑖𝑛𝑛 + 𝑧𝑧𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, … , 𝐼𝐼              (10) 

 where C is daily capacity. 
 
Transition Probabilities: 

(𝑥𝑥11, … , 𝑥𝑥1𝑁𝑁, … , 𝑥𝑥𝐼𝐼1, … , 𝑥𝑥𝐼𝐼𝑁𝑁,𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝐼𝐼)
→   (𝑥𝑥12 + 𝑢𝑢12, … , 𝑥𝑥1𝑁𝑁 + 𝑢𝑢1𝑁𝑁, 0, 𝑥𝑥22 + 𝑢𝑢22, … , 𝑥𝑥2𝑁𝑁 + 𝑢𝑢2𝑁𝑁, 0, … , 𝑥𝑥𝐼𝐼2 + 𝑢𝑢𝐼𝐼2, … , 𝑥𝑥𝐼𝐼𝑁𝑁 + 𝑢𝑢𝐼𝐼𝑁𝑁, 0,𝑦𝑦′1
+ 𝑦𝑦1 −�

𝑁𝑁

𝑛𝑛=1
𝑢𝑢1𝑛𝑛 − 𝑧𝑧1,𝑦𝑦′2 + 𝑦𝑦2 −�

𝑁𝑁

𝑛𝑛=1
𝑢𝑢2𝑛𝑛 − 𝑧𝑧2, … ,𝑦𝑦′𝐼𝐼 + 𝑦𝑦𝐼𝐼 −�

𝑁𝑁

𝑛𝑛=1
𝑢𝑢𝐼𝐼𝑛𝑛 − 𝑧𝑧𝐼𝐼) 

Costs: 𝑐𝑐(𝑢𝑢, 𝑧𝑧) = ∑𝐼𝐼
𝑖𝑖=1 ∑𝑁𝑁

𝑛𝑛=1 𝐶𝐶𝑖𝑖(𝑛𝑛,𝐷𝐷𝑖𝑖) + ∑𝐼𝐼
𝑖𝑖=1 𝑑𝑑(𝑖𝑖)𝑧𝑧𝑖𝑖  + 𝑤𝑤(𝑖𝑖)(𝑦𝑦𝑖𝑖 − ∑𝑁𝑁

𝑛𝑛=1 𝑢𝑢𝑖𝑖𝑛𝑛 − 𝑧𝑧𝑖𝑖), where 𝐷𝐷𝑖𝑖  is a deadline 
associated with type-𝑖𝑖 job, 𝐶𝐶𝑖𝑖(𝑛𝑛,𝐷𝐷𝑖𝑖) is delay cost of scheduling type-𝑖𝑖 job on day n, 𝑑𝑑(𝑖𝑖) is rejection cost of type-𝑖𝑖 
job, and 𝑤𝑤(𝑖𝑖) is holding cost for type-𝑖𝑖 job. 𝐶𝐶𝑖𝑖(𝑛𝑛,𝐷𝐷𝑖𝑖) for 𝑖𝑖 = 1, … , 𝐼𝐼 is expressed as  

𝐶𝐶𝑖𝑖(𝑛𝑛,𝐷𝐷𝑖𝑖) = max(𝑛𝑛 − 𝐷𝐷𝑖𝑖 , 0) × 𝐹𝐹𝑖𝑖 ,𝑛𝑛 = 1, … ,𝑁𝑁,              (11) 
 where 𝐹𝐹𝑖𝑖 for 𝑖𝑖 = 1, … , 𝐼𝐼 is unit delay cost. 
 
Bellman’s Equations:  

𝑣𝑣(𝑥𝑥,𝑦𝑦) = min
(𝑢𝑢,𝑧𝑧)

  �𝑐𝑐(𝑢𝑢, 𝑧𝑧) + 𝜆𝜆∑𝑦𝑦′∈𝐷𝐷 (𝑦𝑦′)𝑣𝑣(𝑥𝑥′,𝑦𝑦′)�,               (12) 
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where 𝐷𝐷 is the set of demand vectors. It is however computationally intractable to solve our MDP model due to 
extremely huge number of states and actions. We therefore apply a direct search-based approximate dynamic 
programming for the task of approximately solving our problem. 

 
4.1.2 Direct search-based ADP 
We use the basis functions of the following type throughout the implementation of the ADP centered on direct-search. 

 
 Φ1(𝑠𝑠) = ∑𝑁𝑁

𝑛𝑛=1 ∑𝐼𝐼
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑛𝑛𝑎𝑎𝑖𝑖1 

 Φ2(𝑠𝑠) = −(∑𝐼𝐼
𝑖𝑖=1 𝑧𝑧𝑖𝑖) 

 
The first basis function represents available capacity whereas the latter enables  to try different values of 𝑧𝑧𝑖𝑖 for the 
respective optimization problem. 

 
4.2 Numerical Results 
We primarily used the data generation method explained in Göçgün & Ghate (2012). Number of job types was set to 
two levels: 5 and 10. The length of the booking horizon was set to 14. We set 𝐽𝐽 ∈ {1,2}, and 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑖𝑖 + ⌈2 × 𝑖𝑖 × 𝑈𝑈(0,1)⌉ 
for the case with multiple resource constraints. 𝑏𝑏𝑖𝑖  was set to 𝑡𝑡. 𝑟𝑟 × ∑𝐼𝐼

𝑖𝑖=1 𝑎𝑎𝑖𝑖𝑖𝑖 , where 𝑡𝑡. 𝑟𝑟  is called tightness ratio 
(Göçgün & Ghate, 2012). 𝑡𝑡. 𝑟𝑟 was set to {1,2}. 𝐷𝐷(𝑖𝑖) was set to 𝐷𝐷𝑈𝑈(1,𝑁𝑁) for each 𝑖𝑖. We set 𝐹𝐹𝑖𝑖 = 𝐷𝐷𝑈𝑈(1,100) and 
𝑑𝑑(𝑖𝑖) = 𝐷𝐷𝑈𝑈(1,100) for each 𝑖𝑖. Holding cost for type-𝑖𝑖 job was set to 𝐷𝐷𝑈𝑈(1,100). 𝜆𝜆 was set to 0.90 and 0.99. 
We present results in Tables 3 and 4. When there is no waiting list in the system, average percentage improvement 
obtained by the direct search-based ADP turns out to be 22% (see Table 3). Whereas when there is waiting list, the 
percentage improvement is around 76% (see Table 4).  
 

Table 3. Results for advanced scheduling with multiple resources and no waiting list. 
 

  (𝐼𝐼, 𝜆𝜆, 𝑡𝑡. 𝑟𝑟)   Myopic   DS-ADP   Per. impr. 
  (5,0.99,1)   19307   16057   16.8  
 (5,0.99,2)   11254   7844   30.3  
 (5,0.9,1)   3356   2783   17.1  
 (5,0.9,2)   1347   1089   19.1  
 (10,0.99,1)   41752   33629   19.4  
 (10,0.99,2)   7133   5849   18  
 (10,0.9,1)   283150   72073   28.3  
 (10,0.9,2)   2607   1901   27  

  
   

Table 4. Results for advanced scheduling with multiple resources and waiting list. 
 

  (𝐼𝐼, 𝜆𝜆, 𝑡𝑡. 𝑟𝑟)   Myopic   DS-ADP   Per. impr. 
  (5,0.99,1)   159988   23183   85.5  
 (5,0.99,2)   67536   9730   85.5  
 (5,0.9,1)   13161   3811   71  
 (5,0.9,2)   4132   1189   71.2  
 (10,0.99,1)   283150   72073   74.5  
 (10,0.99,2)   125499   14783   88.2  
 (10,0.9,1)   23302   9389   59.7  
 (10,0.9,2)   125499   2748   97.8  

 
4.3. Discussion 
Using the abovementioned results, we make the following inferences. The direct-search based ADP technique is able 
to explore a wide variety of solutions through basis functions utilized by direct search. What is more, when there is 
no waiting list and number of types is small, increase in tightness ratio results in increase in percentage improvement. 
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Further, the direct search-based ADP yields more promising results for advanced scheduling problems than allocation 
scheduling problems. This implies that this type of ADP can be utilized for solving other classes of advanced 
scheduling problems arising in fields such as healthcare and manufacturing. 
 
5.  Conclusions 
Dynamic stochastic scheduling (DSS) problems are commonly observed in diverse fields. Because of computational 
intractability, researchers resort to approximation techniques for solving large-sized DSS problems. In this research, 
we focused on two classes of DSS problems: allocation scheduling and advanced scheduling. We developed an ADP 
cenetered on direct-search for approximately solving the MDP models of these problems, and compared its 
performance against the myopic policy. Numerical experiments revealed that it is worth utilizing direct search for 
these kinds of problems since the resulting percentage improvement over the myopic policy is significantly high. 
 
It is worth stating that the performance of the direct search-centered ADP is contingent on the basis functions. Future 
research may address the performance of direct-search based ADPs using various basis functions.  
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