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Abstract 

 
The objective of simple assembly line balancing problem type1 is to minimize the number of workstations organized 
to perform tasks with precedence constraints. Assembly lines, which require a lot of manual labor, are an example of 
a manufacturing environment where learning effect influences the operation. In this case, when the minimal number 
of workstations is determined, the change of task times as a consequence of learning must be considered. This paper 
investigates the effects of two exponential learning curves on the minimal number of workstations when a simple 
assembly line balancing problem is solved. A modified simple assembly line balancing model incorporating the 
learning effect is formulated, and a sample problem to illustrate the application of the model is provided. Some general 
conclusions related to the type of learning curve function applied and to the change of learning rates are also presented. 
 
Keywords: 
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1. Introduction 
Learning is a process that all humans go through. The well-known exponential learning function (Wright 1936) 
formalized first this empirical evidence in manufacturing. The early applications studied how the number of units 
increases or the unit production costs decrease as the cumulative number of manufactured products increases. Since 
then, learning curves have been extensively used to represent the dynamics of various dependent variables (e.g., 
unitary costs, unitary task times, quality metrics) that are affected by experience and can be described in terms of 
autonomous ('learning by doing') or induced (e.g., training hours, investments, equipment) learning sources. Quality 
metrics (e.g., Lolli et al. 2016a; Ittner et al., 2001; Lolli et al. 2018), task times (e.g., Biskup 1999; Bailey 1989), and 
costs (e.g., Lolli et al.  2016b) are the most prevalent dependent variables utilized in learning curves in a variety of 
industrial and service operations. 
 
Assembly lines, which require a lot of manual labor, are an example of a manufacturing environment where learning 
effects are essential in determining task time. The goal of balancing an assembly line is to assign assembly tasks to 
workstations in order to maximize a specific performance measure while adhering to precedence constraints. The large 
variety of assembly line balancing problems (ALBP) are based on two basic models and named as type I and type II 
models. The type I ALBP (e.g., Li et al. 2017b; Gansterer and Hartl 2017) aims at minimizing the number of 
workstations required to meet a specific cycle time, whereas the type II ALBP (e.g., Tang et al. 2016; Li et al. 2017a) 
aims at minimizing the cycle time for a fixed number of workstations (Baybars, 1986). Furthermore, Boysen et al. 
(2007) divided ALBPs into three categories: single-model ALPBs, mixed-model ALPBs (where one product is created 
in different models on the same assembly line), and multi-model ALPBs (where multiple products are manufactured 
in batches). The nature of task times, either deterministic or stochastic, is another factor used to classify ALBPs. For 
a review of this topic, see Battaia and Dolgui (2013). ALBPs that use stochastic methods work effectively in labor-
intensive assembly lines where task times are assumed to be normally distributed. However, as a result of experience, 
the expected values of these task times decrease. That is to say, the lower the task times, the higher the quantity of 
assembled products. Because of the decreasing task times as a result of experience, the best balancing methods evolve 
with time. Our proposal fits under the deterministic type I ALBP with the learning effects research stream. 
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1.1 Objectives 
The main novelty of this paper is that when a simple assembly line balancing problem type1(SALP-1) is solved the 
change of task times as a consequence of learning is considered. Two LC models were chosen: The Wright’s power 
function and one of its extensions, the plateau LC model. In each case, the minimum number of workstations (WSs) 
and the corresponding optimal allocation of tasks and operators to workstations are determined. Consequently, the 
main contributions of the paper are twofold: 

• A modified model is elaborated, which can be used to determine the minimum number of workstations 
when the learning effect is taking place.  

• The effect of the change of the LC models and the learning rates on the optimal solutions for a sample 
problem are also illustrated and examined. 

In this paper, the effect of two widely used learning curves, the Wright’s learning function and the plateau model (see, 
for instance, Vits & Gelders, 2002 or Anzanello & Fogliatto, 2011), are applied. However, the proposed ALB model 
can be extended for any other learning curves. 
 
The remainder of this paper is structured as follows. Section 2 presents a literature review of most relevant papers 
related to the presented research. Section 3 briefly presents the LC models applied. Section 4 outlines the formulation 
of the modified (SALBP-1) model. Section 5 illustrates the application of presented method on a sample problem and 
discusses the obtained results. Finally, the main results are summarized, and some future research possibilities are 
outlined. 
 
2. Literature Review 
Cohen and Dar-El (1998) offered the first contribution on learning effects in assembly lines, in which a type I ALBP 
with deterministic task times was solved analytically. Cohen et al. (2006) used the Wright's learning curve (1936) with 
homogeneous learning slopes between workstations and predictable task times to examine the inverse II ALBP. 
Toksari et al. (2008) used the position-dependent learning curve described by Biskup to deal with a type I ALBP 
(1999). They showed that simple and U-type line balancing problems with homogeneous learning effect can be solved 
with polynomial algorithms. Toksari et al. (2010) used a mixed nonlinear integer programming model to study type I 
ALBP. The Biskup's learning curve (1999) was combined with a linear increase in task time owing to work 
deterioration in this case. Hamta et al. (2013) developed a meta-heuristic approach for a deterministic multi-objective 
ALBP, based on Biskup's learning curve (1999) to describe position-dependent task times. 
 
In the context of learning, Koltai et al. (2015) proposed an algorithm for determining the throughput time of a simple 
assembly line. They showed that, while classical ALB models assume a constant cycle time, cycle time in the case of 
learning might change for two reasons. First, according to the station time function, cycle time decreases exponentially 
with learning. Second, the bottleneck could move from station to station, causing the cycle time to alter even further. 
 
Lolli et al. (2017) examined a stochastic type I ALBP with learning effects, using the cost-based Kottas-Lau heuristic 
(1973) and the well-known Wright's curve (1936) with a plateau. Learning affects the optimal balancing solution over 
time; therefore, the assembly line must be rebalanced. The rebalancing problem was applied as a consequence of the 
learning process involving each assembly workstation in Lolli et al. (2017). Rebalancing, however, might be necessary 
due to the changes in market conditions or product design as well (Gamberini et al. 2006; Gamberini et al. 2009). 
 
3. Learning curve models 
In the problem presented in this paper, we assumed that the task time decreases due to the learning effect, which means 
that the more frequently a task is performed by a human worker, the less time it takes to be performed. Since the 
Wright and the plateau LC models are the most used in practice (Vits & Gelders  2002 or Anzanello & Fogliatto, 
2011), we suppose that the task time decreases according to these two models. 
 
3.1 Wright’s model 
The Wright model is generally viewed as the basic learning curve (LC) in the literature (Figure1). Wright (1936) 
studied aircraft assembly processes and noticed that as the number of units produced doubles, the time required to 
manufacture each unit decreases at a steady rate. The mathematical formulation of the Wright LC is as follows:  
  𝑌𝑌(𝑄𝑄) = 𝑎𝑎.𝑄𝑄𝑏𝑏 
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where Y is the average time (or cost) per unit required to produce Q units, a is the time (cost) to produce the first unit, 
and Q is the cumulative number of units. Parameter 𝑏𝑏 (−1 < 𝑏𝑏 < 0) is the slope of the learning curve, which describes 
the workers’ learning rate. Values of b close to −1 indicate a high learning rate and fast adaptation to task execution 
(Teplitz  1991, Badiru, 1992, Argote, 1999, Dar-El  2000). 
 
 
 
 
 
 
 
 
 
 
 
 
  
3.2 Plateau model 
The plateau model completes Wright's model by introducing a constant 𝐶𝐶 to overcome the problem of zero time/cost 
at large production quantities (Figure 2). The constant 𝐶𝐶 denotes a phenomenon known as plateauing, which indicates 
that the learning effect is finite (Baloff, 1971). This model suggests that the unit time/cost can decrease until reaching 
the steady-state level 𝑄𝑄𝑠𝑠 , after which the unit time/cost becomes constant. The mathematical formulation of the 
Plateau LC is as follows:  

  𝑌𝑌(𝑄𝑄) = �𝑎𝑎.𝑄𝑄𝑏𝑏      𝑖𝑖𝑖𝑖  𝑄𝑄 < 𝑄𝑄𝑠𝑠  
𝐶𝐶          𝑖𝑖𝑖𝑖   𝑄𝑄 ≥ 𝑄𝑄𝑠𝑠

     

 
 
 
 
 
 
 
 
 
 
 
 
4. Formulation of the modified SALB-1 model  
In this section, a modified SALBP-1 model which incorporates the effect of learning is presented. The applied 
notations are summarized in table 1. Tasks are numbered in a continuously increasing order. The number 𝑖𝑖 assigned 
to a task is called the task index. We refer to a task either by its name or task index. Those tasks which are not 
succeeded by any other task are called last tasks. The index set of last tasks is denoted by 𝐹𝐹. 
 
Workstations are also numbered in a continuously increasing order. The first workstation is numbered 1 
and the last workstation is numbered 𝐽𝐽 . The number 𝑗𝑗  assigned to a workstation is called the workstation 
index. Workstations are referred to in this paper by the workstation index. Before task assignment, an assumption 
must be made about the possible number of stations. Similarly, workers are numbered in a continuously increasing 
order. We refer to a worker by its index 𝑘𝑘, which is a number between 1 and 𝐾𝐾. 𝐾𝐾 is the number of available workers. 
 
The assignment of tasks and workers to workstations is expressed with the 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 binary decision variable. If task 𝑖𝑖 and 
worker 𝑘𝑘 are assigned to the same workstation 𝑗𝑗, then 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1, otherwise 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖= 0. Similarly, the assignment of workers 

𝑄𝑄 

𝑌𝑌(𝑄𝑄) 

Figure 1.  Wright's learning curve model 

𝑄𝑄 

𝑌𝑌(𝑄𝑄) 
 

𝐶𝐶 

𝑄𝑄𝑠𝑠 

Figure 2.  Plateau learning curve model  
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to workstations is expressed with the 𝑦𝑦𝑖𝑖𝑖𝑖 binary decision variable. If worker 𝑘𝑘 is assigned to workstation 𝑗𝑗, then 𝑦𝑦𝑖𝑖𝑖𝑖 = 
1, otherwise 𝑦𝑦𝑖𝑖𝑖𝑖 = 0.  The following integer linear programming formulation of the modified SALBP-1 is used in this 
paper, 
 

 
𝑀𝑀𝑖𝑖𝑀𝑀 (𝑁𝑁)  (1) 

��𝑡𝑡𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑐𝑐 
𝐾𝐾

𝑖𝑖=1

𝐼𝐼

𝑖𝑖=1

 ∀𝑗𝑗 (2) 

��𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1
𝐾𝐾

𝑖𝑖=1

𝐽𝐽

𝑖𝑖=1

 ∀𝑖𝑖 (3) 

�𝑗𝑗�𝑥𝑥𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑝𝑝𝑖𝑖𝑖𝑖� ≥ 0
𝐽𝐽

𝑖𝑖=1

 ∀(𝑝𝑝, 𝑞𝑞) ∈ 𝑅𝑅 (4) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (5) 

�𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 1
𝐽𝐽

𝑖𝑖=1

 ∀𝑘𝑘 (6) 

�𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 1
𝐾𝐾

𝑖𝑖=1

 ∀𝑗𝑗 (7) 

��𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑁𝑁
𝐾𝐾

𝑖𝑖=1

𝐽𝐽

𝑖𝑖=1

 ∀𝑖𝑖 ∈ 𝐹𝐹 (8) 

 
 
The objective of the model is to constantly minimize the number of workstations 𝑁𝑁 while the workers' learning effect 
is taking place. As a worker 𝑘𝑘 performs a certain task 𝑖𝑖, the corresponding task time 𝑡𝑡𝑖𝑖𝑖𝑖 starts decreasing according to 
the learning curve depending on how many times the task has been performed. Therefore, the task times 𝑡𝑡𝑖𝑖𝑖𝑖  are 
constantly updated for each worker after each unit produced. Task times keep decreasing until fewer workstations are 
required, and consequently, tasks and operators are differently allocated.  
 
Minimizing the number of workstations can be done by minimizing the largest index (𝑁𝑁) pertaining to a station with 
task assignment. The left-hand side of constraint (8) determines the index of those workstations which perform the 
last tasks. The highest such index must be minimized. If each of these indices is smaller than or equal to 𝑁𝑁, and 𝑁𝑁 is 
minimized, then the index of the final workstation, and hence the number of workstations, is minimized. 
 
Cycle time constraints are expressed by constraint (2). For each workstation 𝑗𝑗 at which a worker 𝑘𝑘 performs a certain 
task(s) 𝑖𝑖, the sum of task times of the assigned tasks is not allowed to exceed the predefined cycle time 𝑇𝑇𝑐𝑐. Constraint 
(3) ensures that each task is performed by one of the workers at a workstation. Precedence constraints are expressed 
by constraint (4). Since task 𝑝𝑝 must be assigned to an earlier or to the same workstation as task 𝑞𝑞; the weighted sum 
of these differences is always higher than or equal to 0 if the weights are the indices of the corresponding workstations. 
 
The assignment constraints are expressed by constraints (5), (6), and (7). Constraint (5) ensures that to each 
workstation 𝑗𝑗 where a task 𝑖𝑖 is performed, a worker 𝑘𝑘 must be assigned. Constraint (6) makes sure that each worker k 
can be assigned at most to one of the workstations. Finally, Constraint (7) ensures that to a workstation j, at most one 
worker is assigned.  
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Table 1.  Summary of notations applied in the model 

Indices: 
𝑖𝑖         = index of tasks (𝑖𝑖=1 ,…, І),  
p        = index of subtasks, 
q        = index of subtasks, 
j         = index of workstations (𝑗𝑗=1,.., J), 
k        = index of workers (𝑘𝑘=1,…, K), 

Parameters: 
I         = number of tasks, 
J        = maximum number of workstations, 
𝑁𝑁∗      = minimum number of stations (the result of the station number minimization of the basic SALBP-1 model), 
K       = number of available workers (𝐾𝐾>=𝑁𝑁∗), 
𝑡𝑡𝑖𝑖       = initial task time of task 𝑖𝑖, 
𝑄𝑄𝑖𝑖𝑖𝑖    = rank of the part on which task 𝑖𝑖 is performed by worker 𝑘𝑘, 
𝑄𝑄𝑠𝑠      = rank of the part at which the learning effect stops for the workers (Plateau LC model), 
𝑡𝑡𝑖𝑖𝑖𝑖     = time necessary to perform task 𝑖𝑖 by worker 𝑘𝑘 on 𝑄𝑄𝑖𝑖𝑖𝑖,  
b       = power of the learning curve function, 
𝐿𝐿       = learning rate (𝐿𝐿 = 2𝑏𝑏), 

Sets: 
𝐹𝐹        = set of final tasks, 𝑖𝑖 ∈ 𝐹𝐹, if task 𝑖𝑖 does not precede any other task, 
R        = set of pair of indices which belong to tasks with precedence relations, that is, (𝑝𝑝; 𝑞𝑞)  ∈  𝑅𝑅, if task 𝑝𝑝 immediate precedes 
task 𝑞𝑞, 

Decision variables: 
𝑁𝑁        = objective function variable for the number of workstations, 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖    = 0-1 decision variable, if 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖=1, then task 𝑖𝑖 is performed by worker 𝑘𝑘 at workstation 𝑗𝑗, otherwise 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖=0, 
 𝑦𝑦𝑖𝑖𝑖𝑖     = 0-1 decision variable; if  𝑦𝑦𝑖𝑖𝑖𝑖 =1, then worker 𝑘𝑘 is assigned to workstation 𝑗𝑗, otherwise  𝑦𝑦𝑖𝑖𝑖𝑖 =0, 

𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑖𝑖  . (𝑄𝑄𝑖𝑖𝑖𝑖)𝑏𝑏 

𝑡𝑡𝑖𝑖𝑖𝑖 = �𝑡𝑡𝑖𝑖 . (𝑄𝑄𝑖𝑖𝑖𝑖)𝑏𝑏    𝑖𝑖𝑖𝑖  𝑄𝑄𝑖𝑖𝑖𝑖 < 𝑄𝑄𝑠𝑠  
𝑡𝑡𝑖𝑖 . (𝑄𝑄𝑠𝑠 )𝑏𝑏      𝑖𝑖𝑖𝑖  𝑄𝑄𝑖𝑖𝑖𝑖 ≥ 𝑄𝑄𝑠𝑠

     

 
5. Practical illustration of the presented model 
5.1 Problem description 

To illustrate the performance of the presented model, let us consider a simple example taken from the textbook 
“Production and operations management: Manufacturing and services” by Richard B. Chase and Nikolas J. Aquilano.  

The table shows the list of tasks of the assembly, the immediately preceding tasks, and the task times. Based on the 
information of Table 2, the precedence graph of tasks can be easily depicted (see Figure 3).  
 

Summary of notations: 

Case 1: Wright’s LC model 

Case 2: Plateau LC model 

211

Proceedings of the 5th European International Conference on Industrial Engineering and Operations Management Rome, Italy, July 26-28, 2022

© IEOM Society International 211



Table 2.  Assembly tasks and task times for Model J Wagon 

 
500 Wagons are required daily, and the production time is 420 minutes per day. Based on these data, the required 
cycle time is 50.4 seconds (420 × 60/500). The objective is to minimize the number of workstations while taking the 
learning effect into consideration without the deterioration of the predefined cycle time. 
 
5.2 Modified SALBP-1 model application 
The effect of learning on the optimal number of stations is analyzed with two learning curve models: Wright’s LC 
model and Plateau LC model. For each of the LC models, four learning rates are chosen: 0.6, 0,7, 0.8, and 0.9, which 
gives the corresponding four values of b respectively: -0.74, -0.51, -0.32, and -0.15.  We note that any number of 
operators 𝐾𝐾 equal to or higher than the minimum number of WSs can be chosen. Since in this example the minimum 
number of WSs is 4, we opted for a 𝐾𝐾 value of 4.  
  
For the sake of simplicity, we assume that work-in-process inventory cannot accumulate between stations. This 
implies that the worker assigned to station (𝑗𝑗 + 1) cannot start his task(s) unless the worker assigned to station 𝑗𝑗 has 
finished the task(s). 
 
The solution of the modified SALBP-1 model defined for each of the two learning curves requires a flexible 
mathematical modeling tool. Such a tool is provided by the AIMMS Prescriptive Analytics Platform, which is often 
applied for solving commercial optimization problems (Roelofs and Bisschop  2018). AIMMS offers a straightforward 

𝒊𝒊 Time of task  
𝒊𝒊 (s) Tasks  

Immediate 
precedent of task 

𝒊𝒊 
A 45 Position rear axle support and hand fasten four screws to nuts. - 
B 11 Inset rear axle. A 
C 9 Tighten rear axle support screws to nuts. B 

D 50 Position front axle assembly and hand fasten with four screws to 
nuts. - 

E 15 Tighten front axle assembly screws. D 
F 12 Position rear wheel #1 and fasten hubcap. C 
G 12 Position rear wheel #2 and fasten hubcap. C 
H 12 Position front wheel #1 and fasten hubcap. E 
I 12 Position front wheel #2 and fasten hubcap. E 

J 8 Position wagon handle shaft on front axle assembly and hand 
fasten bolt and nut. F, G, H, I 

K 9 Tighten bolt and nut. J 

A 

D 

B C 

E 

F 

G 

H 

I 

J K 

Figure 3.  Precedence relations between tasks 
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mathematical modeling environment and a wide range of available solvers, including CPLEX to solve LP problems. 
In this research, AIMMS version 4.84 was used to create the required mathematical models, implement the algorithms, 
and create a simple user interface. CPLEX version 12.7.1 was used to solve the generated LP. 
 
To monitor the evolution of the minimum number of workstations as the learning effect occurs for the workers, we 
solved the model after the production of each unit, which means that when a unit exits the last station the station times 
updated according to the learning curve and the problem is resolved. Since the demand in the example is 500 units per 
day, we repeated the solution of the models 500 times. 
 
Figure 4 shows the minimum number of WSs in function of the output units 𝑄𝑄 in the case of Wright’s LC. We notice 
that for all the four learning rates (L=0.6, 0.7, 0.8, 0.9), the minimum number of workstations after the production of 
the first unit(𝑄𝑄 = 1) is 4, which is the same minimum number of stations that can be obtained if the basic SALPB-1 
model is solved. At this stage, the workers have not progressed yet along the learning curve, consequently, the learning 
effect has not started yet.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As the workers repeat the assigned tasks, the task times decrease exponentially. The decrease of the task times for the 
allocated workers causes the decrease of the station times as well. The drop of the station times continues until fewer 
stations are required to satisfy the predetermined cycle time constraint. 
 
The minimum number of WSs keeps decreasing until we reach one workstation, which means that all the tasks are 
assigned to only a single station. For instance, for 𝐿𝐿=0.6, the number of workstations decreases from 4 to 3 at 𝑄𝑄=2, 
then to 2 at 𝑄𝑄=10, and finally to 1 at 𝑄𝑄=40. Similarly, for 𝐿𝐿=0.7, the number of workstations drops from 4 to 3 at 𝑄𝑄=3, 
then to 2 at Q=17, and finally to 1 at 𝑄𝑄=65. We know that the higher the learning rate is, the slower the decrease of 
the station times, that is why for 𝐿𝐿=0.8 and 0.9, we could not reach the single workstation optimum for a maximum 
output of 500 units. A single station optimum could be reached if we opted for a higher number of output units.  
 
Table 3 summarizes the allocation of the tasks and operators to the minimum number of WSs and the corresponding 
station times at the output units where the minimal number of WSs changes in the case of the Wright’s LC model for 
the four chosen learning rates. We note that at the start of production, when 𝑄𝑄=1, for all the four learning rates, the 
minimal number of stations, tasks, operators, and station times is the same since the learning effect has not begun yet. 
However, after the first unit, the task times start constantly decreasing until fewer WSs are required. Consequently, 
the tasks and operators are differently allocated, as the table shows. 
 
 
 
 
 
 
 
 

Figure 4. Tracking of the minimum number of WSs in function of the output units in case of the Wright’s model  
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Figure 5 shows the minimum number of workstations in function of the output units 𝑄𝑄 in the case of the Plateau LC 
model. The same remarks mentioned before about the Wright’s LC case can be valid for this case as well, with the 
exception that we set a 𝑄𝑄𝑠𝑠 of 100 units. This means that when a worker repeats a certain task 100 times, the learning 
effect for this worker about this task stops, and the plateau is reached. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the three learning rates 0.6, 0.7, and 0.8, the minimal number of WSs drops precisely at the same output points as 
for the Wright’s LC model, because all the drops occurred before 𝑄𝑄𝑠𝑠, and the Plateau does not affect the results since 
none of the workers could repeat a task more than 100 times. However, for 𝐿𝐿=0.9, we could not reach two workstations 
as in the previous case due to slow learning. In the Wright’s LC case, the shift from two to three workstations occurred 
at 𝑄𝑄=307. In this case the plateauing effect influences the final result. 
 
Table 4 summarizes the allocation of the tasks and operators to the minimum number of WSs and the corresponding 
station times at the output units where the minimal number of WSs changes in the case of the Plateau LC model for 
the four chosen learning rates. The results are identical to the Wright’s LC model for the four learning rates, because 
the minimal number of WSs’ drops happened before 𝑄𝑄𝑠𝑠. The Plateauing effect could not influence the allocated tasks 
and operators and consequently the station times in these cases. If, however, 𝑄𝑄𝑠𝑠 is set below the output quantity at 
which the minimal number of WSs decreases, the results might be completely different. 
 
 
 

Output unit(Q)
Stations 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

tasks D A B,E,H,I C,F,G,J,K D A B,E,H,I C,F,G,J,K D A B,E,H,I C,F,G,J,K D A B,E,H,I C,F,G,J,K
Operators O1 O2 O3 O4 O1 O2 O3 O4 O1 O2 O3 O4 O1 O2 O3 O4

Station time(s) 50.00 45.00 50.00 50.00 50.00 45.00 50.00 50.00 50.00 45.00 50.00 50.00 50.00 45.00 50.00 50.00
Output unit(Q)

Stations 1 2 3 1 2 3 1 2 3 1 2 3
tasks A,B,C D,E F,G,H,I,J,K A,B,C D,E F,G,H,I,J,K D,E A,B,H C,F,G,I,J,K A,B,C D,F E,G,H,I,J,K

Operators O2 O1 O4 O2 O1 O4 O1 O2 O4 O2 O1 O4
Station time(s) 47.0 45.0 48.6 45.57 43.4 47.3 44.8 49.8 43.5 49.5 49.2 50.4
Output unit(Q)

Stations 1 2 1 2 1 2 1 2
tasks A,B,C,F,G D,E,H,I,J,K A,B,C,F,G D,E,H,I,J,K D,E,H,I A,B,C,F,GJ,K A,B,C,F,G D,E,H,I,J,K

Operators O2 O1 O2 O1 O1 O2 O2 O1
Station time(s) 40.8 49.4 33.9 47.5 36.3 49.2 41.6 50.4
Outpt unit(Q) 40 65

Stations 1 1

tasks A,B,C,D,E,F,G
,H,I,J,K

A,B,C,D,E,
F,G,H,I,J,K

Operators O1 O4
Station time(s) 43.4 49.8

16

307

0.8 0.9
Learning rate(L)

10

2

0.7

3

17

5

27

1 1 1
0.6
1

Table 3.  Minimum number of WSs, the allocated tasks and operators, and the station times in case of Wright’s LC model 
 

 
 
 

Figure 5. Tracking of the minimum number of WSs in function of the output units in case of the Plateau model LC 
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We can conclude that there are two distinct cases: 

• If the minimum number of WSs decreases before 𝑄𝑄𝑠𝑠 is reached in the Wright’s LC model, the minimum 
number of WSs, the allocated tasks and operators, and the station times will be identical to the results of the 
Plateau LC model.  

• However, If the minimum number of WSs decreases after 𝑄𝑄𝑠𝑠 in case of the Wright’s LC model, the allocated 
tasks, and operators and consequently the station times would be different in case of the Plateau LC model, 
and the decrease of the minimal number of WSs could be delayed or never be reached. 

 
6. Conclusion 
In simple assembly lines without the learning effect, the task times are constant, and consequently, so are the station 
times; therefore, when solving the SALBP-1 model, merely one solution is found.  In the presence of the learning 
effect, as tasks are repeated frequently, task times and station times decrease, causing the minimal number of 
workstations to drop along with the output units and the SALBP-1 has more than one solution. 
 
In this paper, a modified SALBP-1 model incorporating the learning effect is formulated and applied. The modified 
SALBP-1 model developed in section 4 is illustrated with a simple example in section 5. The Wright’s and the Plateau 
learning curves were chosen for our model because of their wide use. The model, however, can be valid for any other 
learning curves. 
 
In the illustrative example, two learning curves were chosen with four different learning rates: 0.6, 0.7, 0.8, and 0.9. 
The results showed that the minimal number of workstations at the start of production (𝑄𝑄=1 units) is the same as the 
basic SALBP-1 model (In our case, it was 4), which is logical since the learning effect has not started yet. However, 
for both LC models, the minimal number of WSs decreases along with the output unit due to the learning effect causing 
the allocation of tasks and operators and consequently the station times to change after each produced unit. 
 
Comparing the two learning curves, the results showed that if the decrease of the minimal number of workstations in 
the case of Wright’s LC model occurs before the plateauing quantity 𝑄𝑄𝑠𝑠, the results will be identical in the case of the 
Plateau LC model regardless of the learning rate. Nonetheless, if it happens after 𝑄𝑄𝑠𝑠, then the decrease of WSs in case 
of the Plateau LC model can be either delayed or never reached. 
 
In the present paper, the evolution of the minimal number of workstations in the presence of the learning effect is 
investigated. As a result, different task allocations and station number configurations were obtained during a 
production run. In practice, it is not practical and frequently not even feasible to change line configuration frequently 
during a production run. The solution for this problem is a unique line configuration that considers the evolution of 
task time in the early stages of operation when the decrease of task time is significant. How to obtain the optimal task 
allocation, which considers the change of task times as a consequence of learning, and also the stability requirement 

Output unit(Q)
Stations 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

tasks D A B,E,H,I C,F,G,J,K D A B,E,H,I C,F,G,J,K D A B,E,H,I C,F,G,J,K D A B,E,H,I C,F,G,J,K
Operators O1 O2 O3 O4 O1 O2 O3 O4 O1 O2 O3 O4 O1 O2 O3 O4

Station time(s) 50.00 45.00 50.00 50.00 50.00 45.00 50.00 50.00 50.00 45.00 50.00 50.00 50.00 45.00 50.00 50.00
Output unit(Q)

Stations 1 2 3 1 2 3 1 2 3 1 2 3
tasks A,B,C D,E F,G,H,I,J,K A,B,C D,E F,G,H,I,J,K D,E A,B,H C,F,G,I,J,K A,B,C D,F E,G,H,I,J,K

Operators O2 O1 O4 O2 O1 O4 O1 O2 O4 O2 O1 O4
Station time(s) 47.0 45.0 48.6 45.57 43.4 47.3 44.8 49.8 43.5 49.5 49.2 50.4
Output unit(Q)

Stations 1 2 1 2 1 2

tasks A,B,C,F,G D,E,H,I,J,K A,B,C,F,G D,E,H,I,J,K D,E,H,I A,B,C,F,GJ,
K

Operators O2 O1 O2 O1 O1 O2
Station time(s) 40.8 49.4 33.9 47.5 36.3 49.2
Outpt unit(Q) 40 65

Stations 1 1

tasks A,B,C,D,E,
F,G,H,I,J,K

A,B,C,D,E,
F,G,H,I,J,K

Operators O1 O4
Station time(s) 43.4 49.8

10 17 27

1 1 1 1

2 3 5 16

Learning rate(L)
0.6 0.7 0.8 0.9

Table 4.  Minimum number of WSs, the allocated tasks and operators, and the station times in the case of Plateau LC model 
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of task allocation during the whole production run is a challenging topic for further research. The proposed challenging 
research problem, however, cannot be addressed without the knowledge of the change of optimal assignment explained 
by the change of task times. This information is generated by the calculation proposed in this paper.  
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