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Abstract 

Scheduling is a vital function for efficiently operating flexible job-shop systems. Traditionally, that function considers 
assigning jobs to machines and their sequence. However, machines need to be operated by another set of resources 
(i.e., workers). Due to the fact that operators are skilled workers, the available pool is limited. Hence, the interaction 
of machines and humans needs to be studied in an integral manner to address the scheduling problem. In this article, 
a novel precedence variable-based, mixed-integer linear programming model is developed for the dual-resource 
flexible job-shop problem. The mathematical formulation deals with the optimal assignment of machines and workers 
to operations and the operation sequence in both resources by minimizing the makespan. The model gives an exact 
solution by solving both the assignment and the sequencing problems concurrently. The model was implemented in 
Docplex and was run on three instances of varying sizes. The model solved the three introduced examples, including 
a large instance involving 20 operations with 4 workers and 4 machines, using only 1662 variables and 5217 
constraints in 156.43 seconds, indicating that the proposed model is adequate. The model can be used to label training 
examples for machine learning-based techniques as well as help track and compare models developed using heuristics. 

Keywords 
Dual-Resource, Flexible Job-shop Scheduling Problem, Makespan, Mathematical Model, and Mixed-integer linear 
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1. Introduction
Manufacturing systems have evolved to adapt to the changing requirements, and while they have experienced several 
industrial revolutions and moved from manual operations to automation, human-centred manufacturing systems are 
still required. Skilled workers are needed to operate the systems. Hence, to optimize the efficiency of manufacturing 
systems, the consideration of workers’ capabilities is required.  

Scheduling has been an integral part of every organization, which might involve the interaction of humans and 
machines, the dual resources, to carry out the organization's principal function (i.e., manufacturing). Each resource 
group (e.g., machines or workers) can interact with one or more resources in flexible environments. The schedules for 
every entity of the two resource groups must be feasible and optimal to carry out the process without any clashes 
efficiently. Therefore, the scheduling for the dual-resource problem needs to be studied.  

Various iterative or search-based methods for solving the scheduling problem involve breaking down this problem 
into two parts. First is the optimal assignment of a machine and worker pair to the different operations. Second is the 
optimal sequence of the other jobs based on the optimal assignments. However, it is to be noted that these two parts 
need to be solved simultaneously or concurrently because the optimal assignment depends on the optimal sequence as 
well. Therefore, the objective of this study is to propose a novel precedence variable-based, mixed-integer linear 
programming (MILP) model which provides an exact solution to the dual-resource flexible job-shop scheduling 
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problem (DR-FJSP), solving both the parts concurrently and minimizing the makespan value while using a minimum 
number of decision variables. 
 
The rest of the paper is organized as follows. Section 2 studies the literature review, highlighting the important work 
done in this field. Section 3 incorporates the formal problem description and the proposed mathematical model. 
Section 4 illustrates the numerical methods and examples for testing the mathematical model. Section 5 introduces the 
results and discussion on the examples solved. Finally, Section 6 presents the conclusion and future work. 
 
2. Literature Review 
Job-shop scheduling (JSP) can be dated as early as the 1950s. The simpler version of the problem involved designing 
schedules for jobs that need to be processed on specific machines that can handle only one type of operation. Later, a 
flexible approach to JSP, known as flexible job-shop scheduling problem (FJSP), was introduced where individual 
machines can handle more operations, making the scheduling problem more flexible and complex. JSP and FJSP aim 
to solve for the optimal schedule by minimizing various objectives (e.g., makespan, tardiness, and earliness) and are 
defined as NP-Hard (Sotskov and Shakhlevich 1995).  
 
This field has been popular since the late 90s, with numerous contributions. Traditional approaches to solving the 
FJSP involved designing mathematical models and looking for feasible methods to obtain their solutions quickly. 
According to Demir and Kürşat Işleyen (2013), different mathematical models formulated to solve FJSP can be 
classified depending on the type of binary variable used for sequencing the operations. They introduced three 
categories: sequenced positioned variable, precedence variable, and time-indexed variable. The sequenced position 
variable model works with the schedule of jobs on a particular machine and defines the sequencing variable such that 
each operation can be fit into slots in the machine schedule (Unlu and Mason 2010; Wagner 1959). Manne (1960) 
introduced the precedence variable model in job shop scheduling. The precedence variable helps to define constraints 
based on the relative precedence of different operations scheduled on the same resource, ensuring no overlap. 
Furthermore, Özgüven et al. (2010) formulated a mathematical model for FJSP and FJSP with process plan flexibility 
using the precedence variable model. The most significant disadvantage of this approach is the computation 
complexity that cannot handle problems involving a greater number of machines in feasible times. Later, this field 
evolved by incorporating various heuristic and metaheuristic approaches, which gave an approximate solution to the 
problem in less time (Xie et al. 2019). Recent studies have used deep reinforcement learning and graph neural networks 
to solve the FJSSP by assigning multiple agents, each for every machine (Zhang et al. 2023). 
 
Despite all the advancements to solve the FJSP, the machines' schedule is often insufficient to carry out the production 
process. A human worker operates the machines in most scenarios, and the work efficiency depends on the operator. 
Therefore, DR-FJSP was introduced to incorporate the involvement of another resource (worker) along with the 
machines. This helped to lay out a more practical planning strategy that considers the different efficiencies related to 
each worker-machine pair for each operation. Also, this helped to ensure no overlap between the schedules of different 
workers and machines so that different workers could work on more than one machine at different times, providing 
flexibility while increasing the complexity. A state-of-the-art review on dual-resource-constrained systems has been 
listed in the literature (Dhiflaoui et al. 2018). 
 
Incorporating an additional resource introduced new challenges, and several studies have been developed in the 
previous decades concerning industry management aspects. For instance, Wang et al. (2018) presented a dual-resource 
constrained mathematical model for small-batch multi-variety job shops, which provides an exact solution to minimize 
costs and maximize efficiency based on the capacity and productivity requirements for the work center. Similarly,  
Wirojanagud et al. (2007) analyzed the workforce decisions about hiring, firing, and cross-training to ensure minimal 
loss to the organization considering dual-resourced constraints. Gomes da Silva et al. (2006) developed a multiple 
criteria mixed integer programming model for aggregate planning, considering practical aspects like worker training 
and legal restrictions on downsizing.  
 
Yildiz and Eski (2006) worked on the dual-resource-constrained assembly lines using artificial neural networks to get 
optimum schedules for the arrangement of workers on different workstations, considering production efficiency 
metrics. Lobo et al. (2013, 2014) developed heuristics to determine a lower bound to the maximum job lateness and a 
possible schedule that fits the determined lower bound in a dual-resource-constrained job shop setup. Huang et al. 
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(2014) worked on scheduling the optimization strategy for dual-resource job-shop scheduling (DR-JSP) with 
heterogeneous workers by using a pheromone branch genetic algorithm.  
 
Elmaraghy et al. (1999) applied the genetic algorithm to compare various rules and heuristics in machine and worker 
assignments and schedules for DR-JSP and JSP. Chaudhry and Drake (2009) gave a generalized GA implementation 
for DR-JSP for identical parallel machines and worker assignments. The approach was easy to implement on 
spreadsheets and surpassed various benchmarks.  
 
Various approaches have been developed to solve problems involving machine-worker pairs in a flexible setup. Often, 
this complete problem is divided into two parts. At first, a machine-worker pair is assigned to all the operations of 
different jobs. Later, as a second step, an optimal schedule is laid out depending on the assignments. Now, these steps 
are iterated until a feasible solution is obtained. Lei and Guo (2014) implemented a variable neighborhood search 
(VNS) algorithm for optimizing DR-FJSP worker-machine assignments. They introduced a novel method for 
representing a task sequencing list in the form of a quadruple string for describing machine-worker assignments of 
different operations. Zheng and Wang (2016) encoded a novel knowledge-guided fruit fly search algorithm for DR-
FJSP. The problem was broken into two stages: the resource assignment stage and the operation sequencing stage. 
The algorithm incorporated a knowledge-guided search along with a smell-based search to ensure both exploration 
and exploitation in the search space. Gong et al. (2018) implemented a novel hybrid genetic algorithm (NHGA) that 
uses a three-layer chromosome encoding method to solve the DR-FJSP optimization problem involving machine and 
worker schedules. The algorithm's hyperparameters were determined using Taguchi’s experimental design, and 
various benchmarks were set for the DR-FJSP for comparison to the proposed NHGA. 
 
Several mathematical models for solving DR-FJSP are available. Foroutan et al. (2023) developed a mixed integer 
mathematical model for parallel machine scheduling while incorporating the involvement of workers for set-up and 
transport of jobs. Meng et al. (2019) linearly modeled the DR-FJSP using time-indexed mixed-integer decision 
variables. Two mathematical models were developed based on idle-time and idle-energy ideas. Further, the models 
were solved using a VNS algorithm. The mathematical model introduced does not clarify non-overlap constraints for 
the workers, and the model focuses on machine constraints only. Also, the model introduced is ideal for job sequencing 
and does not look into the assignments and sequencing concurrently. The number of decision variables in the time-
indexed models increases with the maximum duration of processing times. Moreover, it constrains the model to divide 
the time into fixed intervals and thus cannot incorporate fractional processing times. Vital-Soto et al. (2022) developed 
a precedence variable-based linear mathematical model for DR-FJSP with sequencing flexibility. The model is solved 
using an elitist, non-dominated sorting genetic algorithm. The model involves a large number of decision variables, 
and therefore, its mathematical complexity is high.  
 
Various search-based heuristics and meta-heuristics discussed above solve DR-FJSP in two sequential steps: 
assignment and sequencing. However, dividing the problem into these two steps could be more efficient. The 
assignment and the scheduling must be done concurrently because they depend on each other. Therefore, there is a 
need to develop a linear mathematical model which could provide an exact solution. It is essential to lay out the 
mathematical model to have a deeper understanding of the problem and to pave the way for developing advanced 
techniques (Unlu and Mason 2010). Also, with the invention of high computational power and the emergence of 
quantum computing, it might be possible to get an exact solution using mathematical models alone. Hence, this study 
aims to provide an alternative formulation of the DR-FJSP and a benchmark for obtaining an exact optimal solution 
to the problem. Moreover, it reports and analyses solving problems of different sizes and complexities. 
 
3. Mathematical Programming Model 
In the DR-FJSP problem, there is a set of N numbers of jobs, indexed from 1 to N. Each job has a defined set of 
operations from indexed from 1 to 𝛾𝛾𝑖𝑖 that needs to be performed in a strict sequence one after another. Each operation 
is performed from one among the set of machines indexed from 1 to M, which is operated by a worker among the set 
of workers indexed from 1 to W. Both machines and workers are flexible to process different kinds of operations. The 
workers have different efficiencies associated with various operations on different machines. The processing times of 
each worker-machine combination for every operation are defined beforehand and are used as parameters for the 
problem.  
 
The DR-FJSP problem determines the optimal resource schedules for both the worker and machines, with a single 
objective function to minimize makespan. 
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Assumptions: 

• There is no precedence relationship between operations of different jobs. 
• All the machines and workers are available at time zero.  
• No pre-emption is allowed.  
• Setup times are negligible or incorporated in different operations' processing times. 
• Infeasible worker-machine pairs are assigned with a high processing time. 

 
Indices and parameters: 
𝑖𝑖 ∶ 𝐽𝐽𝐽𝐽𝐽𝐽 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∈ [1,𝑁𝑁],𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑁𝑁 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 
𝑗𝑗 ∶ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∈ [1, 𝛾𝛾𝑖𝑖],𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛾𝛾𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗𝑗𝑗𝑗𝑗 𝑖𝑖 
𝑢𝑢:𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∈ [1,𝑊𝑊] 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑊𝑊 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
𝑘𝑘 ∶ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∈ [1,𝑀𝑀] 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑀𝑀 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
𝑂𝑂𝑖𝑖𝑖𝑖: 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑗𝑗 𝑜𝑜𝑜𝑜 𝑗𝑗𝑗𝑗𝑗𝑗 𝑖𝑖 
𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∶  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑂𝑂𝑖𝑖𝑖𝑖  𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑘𝑘 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑢𝑢 
 
Decision Variables: 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  �1 𝑖𝑖𝑖𝑖 𝑂𝑂𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑢𝑢
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑘𝑘 =   �1  𝐼𝐼𝐼𝐼 𝑂𝑂𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑂𝑂𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑘𝑘
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑢𝑢 =   �1  𝐼𝐼𝐼𝐼 𝑂𝑂𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑂𝑂𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑢𝑢
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

𝑆𝑆𝑖𝑖𝑖𝑖 ∶ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑂𝑂𝑖𝑖𝑖𝑖 
𝐶𝐶𝑖𝑖𝑖𝑖 ∶ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑂𝑂𝑖𝑖𝑖𝑖 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ∶ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
 
 
 
Objective: 

 Minimize 𝐶𝐶𝑚𝑚ax (1) 
Constraints: 

 

 ��𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1
𝑀𝑀

𝑘𝑘=1

𝑊𝑊

𝑢𝑢=1

  ∀ 𝑖𝑖 𝜖𝜖 [1, N], 𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖] (2) 

 𝑆𝑆𝑖𝑖𝑖𝑖+1 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖 𝜖𝜖 [1, N],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖−1] (3) 

 �𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢

≥ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑘𝑘 ∀ 𝑖𝑖 𝜖𝜖 [1, N − 1],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], 𝐼𝐼 𝜖𝜖 [𝑖𝑖 + 1,𝑁𝑁],  J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑘𝑘 𝜖𝜖 [1,𝑀𝑀] (4) 

 �𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑢𝑢

≥ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑘𝑘 ∀ 𝑖𝑖 𝜖𝜖 [1, N − 1],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], 𝐼𝐼 𝜖𝜖 [𝑖𝑖 + 1,𝑁𝑁],  J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑘𝑘 𝜖𝜖 [1,𝑀𝑀] (5) 

 𝑆𝑆𝑖𝑖𝑖𝑖 ≥ 𝐶𝐶𝐼𝐼𝐼𝐼 + �2 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑘𝑘 − ��𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢

� − ��𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑢𝑢

� � ∗ 𝐿𝐿 

∀ 𝑖𝑖 𝜖𝜖 [1, N − 1],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], 𝐼𝐼 𝜖𝜖 [𝑖𝑖 + 1,𝑁𝑁],  J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑘𝑘 𝜖𝜖 [1,𝑀𝑀] 
(6) 

 𝑆𝑆𝐼𝐼𝐼𝐼 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 + �1 − 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑘𝑘� ∗ 𝐿𝐿 ∀ 𝑖𝑖 𝜖𝜖 [1, N − 1],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], 𝐼𝐼 𝜖𝜖 [𝑖𝑖 + 1,𝑁𝑁],  J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑘𝑘 𝜖𝜖 [1,𝑀𝑀] (7) 

 �𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

≥ 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑢𝑢 ∀ 𝑖𝑖 𝜖𝜖 [1, N − 1],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], 𝐼𝐼 𝜖𝜖 [𝑖𝑖 + 1,𝑁𝑁],  J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑢𝑢 𝜖𝜖 [1,𝑊𝑊] (8) 
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 �𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑘𝑘

≥ 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑢𝑢 ∀ 𝑖𝑖 𝜖𝜖 [1, N − 1],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], 𝐼𝐼 𝜖𝜖 [𝑖𝑖 + 1,𝑁𝑁],  J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑢𝑢 𝜖𝜖 [1,𝑊𝑊] (9) 

 𝑆𝑆𝑖𝑖𝑖𝑖 ≥ 𝐶𝐶𝐼𝐼𝐼𝐼 + �2 + 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑢𝑢 − ��𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

� − ��𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑘𝑘

� � ∗ 𝐿𝐿 

∀ 𝑖𝑖 𝜖𝜖 [1, N − 1],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], 𝐼𝐼 𝜖𝜖 [𝑖𝑖 + 1,𝑁𝑁],  J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑢𝑢 𝜖𝜖 [1,𝑊𝑊] 

(10) 

 𝑆𝑆𝐼𝐼𝐼𝐼 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 + �1 − 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑢𝑢� ∗ 𝐿𝐿 ∀ 𝑖𝑖 𝜖𝜖 [1, N − 1],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], 𝐼𝐼 𝜖𝜖 [𝑖𝑖 + 1,𝑁𝑁],  J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑢𝑢 𝜖𝜖 [1,𝑊𝑊] (11) 

 𝐶𝐶𝑖𝑖𝑖𝑖 ≥ 𝑆𝑆𝑖𝑖𝑖𝑖 + ���𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑢𝑢

∗ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�  ∀ 𝑖𝑖 𝜖𝜖[1, N],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖] (12) 

 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖  ∀ 𝑖𝑖 𝜖𝜖 [1, N],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖] (13) 

 𝑆𝑆𝑖𝑖𝑖𝑖 ≥ 0 ∀ 𝑖𝑖 𝜖𝜖 [1, N],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖] (14) 

 𝐶𝐶𝑖𝑖𝑖𝑖 ≥ 0 ∀ 𝑖𝑖 𝜖𝜖 [1, N],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖] (15) 

 Xijku ϵ {0,1} ∀ 𝑖𝑖 𝜖𝜖 [1, N],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑘𝑘 𝜖𝜖 [1,𝑀𝑀],𝑢𝑢 𝜖𝜖 [1,𝑊𝑊] (16) 

 𝑌𝑌ijIJ−k ϵ {0,1} ∀ 𝑖𝑖 𝜖𝜖 [1, N − 1],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], 𝐼𝐼 𝜖𝜖 [𝑖𝑖 + 1,𝑁𝑁],  J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑘𝑘 𝜖𝜖 [1,𝑀𝑀] (17) 

 𝑍𝑍ijIJ−u ϵ {0,1} ∀ 𝑖𝑖 𝜖𝜖 [1, N − 1],  𝑗𝑗 𝜖𝜖 [1, 𝛾𝛾𝑖𝑖], 𝐼𝐼 𝜖𝜖 [𝑖𝑖 + 1,𝑁𝑁],  J 𝜖𝜖 [1, 𝛾𝛾𝐼𝐼],  𝑢𝑢 𝜖𝜖 [1,𝑊𝑊] (18) 

   
 
Equation (1) presents the objective function of the MILP as the minimization of makespan. Inequality (2) ensures that 
only a single worker and machine pair are assigned to complete a single operation. Constraint (3) provides the linear 
precedence constraints for successive operations of a particular job. Constraints (4), (5), (8), and (9) are logical 
constraints that allow the resource precedence variables to hold unity only when the two concerned operations (𝑂𝑂𝑖𝑖𝑖𝑖  

and 𝑂𝑂𝐼𝐼𝐼𝐼) are scheduled on the same resource. Constraints (6) and (7) prevent overlapping between operations in the 
machine 𝑘𝑘. Constraints (10) and (11) ensure no operations overlap in worker 𝑢𝑢. Constraint (12) defines the completion 
time of an operation. Inequality (13) illustrates the makespan. Constraints (14) to (18) represent the variable types. 
 
4. Numerical Analysis 
The mathematical model was implemented and tested on three examples of varying sizes. Table 1 shows the number 
of jobs, operations, machines, and workers per example.  
 
For each instance, the processing times (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) for each operation (𝑂𝑂𝑖𝑖𝑖𝑖) of job 𝑖𝑖 on machine 𝑘𝑘 with worker 𝑢𝑢 are 
presented in Tables 2 to 4. In Table 2, the symbol “-” represents an infeasible assignment of the machine-worker pair, 
and the numerical values represent the processing time (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) in time units. For instance, in Table 2, for job 𝑖𝑖 = 2, 
operation 𝑗𝑗 = 1,  machine 𝑘𝑘=2, and worker 𝑢𝑢 = 2, the processing time is 𝑡𝑡2122 = 7. Moreover, Examples 2 and 3 as 
presented in Table 3 and Table 4, illustrate fully flexible systems as all the machines and workers can perform all the 
operations.   
 

Table 1. Size complexity of the different examples 

 
Example 
Number 

Number of Jobs Total Number of 
Operations 

Number of 
Machines 

Number of 
Workers 

1 4 8 2 2 
2 4 16 2 3 
3 5 20 4 4 
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Table 2. Processing times for example 1 

 
   𝒌𝒌 =1 𝒌𝒌 =2 

Jobs 𝑶𝑶𝒊𝒊𝒊𝒊 𝒖𝒖 =1 𝒖𝒖 =2 𝒖𝒖 =1 𝒖𝒖 =2 
𝒊𝒊 =1 O11 - 4 2 - 

O12 - 2 - - 
𝒊𝒊 =2 O21 - 4 3 7 

O22 - 5 1 4 
𝒊𝒊 =3 O31 - - - 2 

O32 - - - 4 
O33 - - - 5 

𝒊𝒊 =4 O41 - 2 - 6 
 

Table 3. Processing times for example 2 

 
  𝒌𝒌 =1 𝒌𝒌 =2 𝒌𝒌 =3 

Jobs 𝑶𝑶𝒊𝒊𝒊𝒊 𝒖𝒖 =1 𝒖𝒖 =2 𝒖𝒖 =1 𝒖𝒖 =2 𝒖𝒖 =1 𝒖𝒖 =2 
𝒊𝒊 =1 O11 2 4 1 2 4 5 

O12 5 5 2 2 4 2 
O13 5 1 5 3 2 2 
O14 1 4 1 5 4 5 

𝒊𝒊 =2 O21 1 3 5 4 1 3 
O22 2 1 3 5 1 2 
O23 1 2 2 1 3 5 
O24 5 5 1 2 3 5 

𝒊𝒊 =3 O31 4 2 5 2 5 3 
O32 2 3 2 2 2 1 
O33 2 5 5 2 4 5 
O34 2 2 1 4 2 4 

𝒊𝒊 =4 O41 5 5 5 1 4 4 
O42 5 1 2 2 2 5 
O43 1 4 3 3 4 1 
O44 4 5 3 4 1 5 

 
 
Example 1 was taken from (Zheng and Wang 2016). The other two examples (i.e., 2 and 3) were generated using a 
Python program that takes the problem sizes as input and randomly generates the processing times (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) using a 
uniform distribution. Since the processing times for each operation are industry-specific, it can have any value, 
depending upon the customization of the job. For more complex industries with a more flexible manufacturing setup, 
the processing times can hold a variety of values. Further, we generated the problem sets with all the workers being 
eligible to carry out each and every operation, such that there can be a large pool of feasible solutions from which we 
have to find the optimal one. Therefore, the generated example sets, as shown in Tables 3 and 4, are designed to be 
complex enough to be a good test for our proposed mathematical model. 
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Table 4. Processing times for example 3 

 
  𝒌𝒌 =1 𝒌𝒌 =2 𝒌𝒌 =3 𝒌𝒌 =4 

Job 𝑶𝑶𝒊𝒊𝒊𝒊 𝒖𝒖 =1 𝒖𝒖 =2 𝒖𝒖 =3 𝒖𝒖 =4 𝒖𝒖 =1 𝒖𝒖 =2 𝒖𝒖 =3 𝒖𝒖 =4 𝒖𝒖 =1 𝒖𝒖 =2 𝒖𝒖 =3 𝒖𝒖 =4 𝒖𝒖 =1 𝒖𝒖 =2 𝒖𝒖 =3 𝒖𝒖 =4 
𝒊𝒊 =1 O11 4 5 1 5 1 5 1 1 5 4 3 1 2 4 2 4 

O12 1 3 4 5 3 1 2 3 3 1 2 4 4 5 2 3 
O13 5 1 5 3 2 4 4 4 4 4 3 5 3 2 5 1 
O14 2 5 2 4 4 1 1 4 3 5 5 2 1 2 3 4 

𝒊𝒊 =2 O21 1 5 2 3 1 5 2 5 1 3 5 3 3 2 5 1 
O22 1 4 4 2 1 3 2 5 5 4 1 5 3 2 1 2 
O23 5 1 1 1 3 4 3 3 5 4 4 5 5 4 3 4 
O24 1 3 4 3 2 1 1 1 5 3 4 1 2 5 4 2 

𝒊𝒊 =3 O31 4 3 5 1 1 1 2 4 4 4 4 2 3 5 5 2 
O32 3 4 5 1 3 1 1 4 5 4 4 2 4 3 2 5 
O33 5 5 5 2 3 4 1 2 5 2 3 1 1 3 4 5 
O34 4 2 4 4 5 5 1 5 1 4 3 3 5 4 2 1 

𝒊𝒊 =4 O41 5 3 2 2 5 4 4 5 3 4 5 3 5 2 2 3 
O42 4 2 2 1 2 5 5 3 1 2 2 2 4 2 1 3 
O43 5 5 2 4 4 1 1 5 2 4 5 2 2 5 4 3 
O44 5 4 3 1 5 3 1 4 1 1 2 3 4 3 2 4 

𝒊𝒊 =5 O51 2 1 2 4 4 5 1 5 3 4 2 3 2 2 1 3 
O52 5 5 4 5 2 4 5 5 5 1 4 1 5 1 2 4 
O53 2 2 4 5 4 3 3 5 1 4 1 2 4 4 1 5 
O54 3 3 2 4 5 5 1 3 5 3 3 3 1 5 2 4 

 
5. Results and Discussion 
The three instances mentioned above were solved using the API in DOcplex Python library provided by IBM. The 
Python instance was run on a PC with an Intel(R) Core(TM) i7-1065G7 CPU 1.30GHz and 8 GB of RAM. The 
problem was formulated using the model class in docplex.mp.model, a MILP model in the library.  
 
Figures 1, 2, and 3 depict the worker and machine Gantt charts solutions for each example, respectively. It can be 
observed that there is no overlap in the jobs in any of the charts, and the precedence constraints are satisfied. Moreover, 
there is minimal idle time in the resources, which increases the productivity of the workspace.  
 

 
(a) (b) 

 

Figure 1. Machine (a) and worker (b) Gantt charts for example 1 
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For example 2, as shown in Figure 2, it can be noted that the workers do not have idle time. In contrast, the machines 
have some unused time. This situation happens as the number of workers is less than the number of machines.  
 

 
(a) (b) 

Figure 2. Machine (a) and worker Gantt (b) charts for example 2 

Also, since examples 2 and 3 are generated using a uniform distribution, increasing the number of worker-machine 
combinations also increases the possibility of having a machine-worker pair having a lower processing time, which 
can fit into an optimal schedule. Therefore, it can be seen in example 3 Gantt chart that almost all the selected machine-
worker pairs have processing times equal to one, which is the lowest possible processing time value. Hence, the total 
makespan is also the lowest for the third example, even after having a greater number of operations. 
 

 
(a) (b) 

Figure 3. Machine (a) and worker (b) Gantt charts for example 3 

The number of variables, constraints, optimal makespan value, and time taken to solve the examples are given in Table 
5. It can be seen that the number of variables and constraints increases with an increase in operations, workers, and 
machines. Moreover, Table 5 shows the computational time in seconds (s). 
 

Table 5. Summary table of solutions 

 
Example No. of Variables No. of Constraints Makespan Time Taken(s) 

1 150 406 12 0.4 
2 626 1998 10 94.9 
3 1662 5217 6 156.43 
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Table 5 provides insights into the algorithm’s performance and its ability to solve scheduling instances of varying 
complexity by using the minimum number of variables and constraints. These results are essential for evaluating the 
algorithm’s efficiency and effectiveness in real-world scenarios. Furthermore, they serve as a basis for comparing the 
proposed approach to existing methods and showcasing the potential advantages of the proposed algorithm. 
 
6. Conclusion 
This study provides a novel MILP that offers an exact solution for DR-FJSP. The model is formulated using mixed 
integer and precedence variables and optimizes the total makespan. The model succeeded in providing optimal 
machine - worker assignments and schedules. Moreover, the model was tested on problems of various sizes, and their 
solutions were reported in the form of both machine and worker Gantt charts, along with their solving times. It is 
shown that this model uses a minimum number of variables to solve this problem, making it both simpler and faster. 
 
It is worth mentioning that the model does not use worker-machine eligibility sets; instead, a high processing time 
value is assigned for infeasible pairs. This can cause a problem if the size of the problem grows and the total makespan 
is comparable to the high value assigned for the infeasible pair. Hence, measures to deal with this problem need to be 
devised. 
 
Future research includes the development of efficient solution methods, such as metaheuristics, hyperheuristics, and 
the integration with machine learning. For instance, this model will provide optimal solutions for labeling training 
examples required in supervised machine learning models. Also, the model presented is uniform and unbiased towards 
the two kinds of resources. Therefore, this can be extended to formulate a general model for a multi-resource flexible 
job-shop scheduling problem.  
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