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Abstract 

This work explores the feasibility of modernizing the current leak detection method used by the City of Kitchener 
which involves manual acoustic readings performed on a third of the city annually. We seek to develop software to 
detect leaks in real time using pressure and flowrate data collected by remote sensors in water pipelines. The 
primary objective is to update the detection to be in real time and increase sensitivity in the process by detecting 
smaller leaks that could have previously gone undetected. We have decided to achieve this using a time-series 
classification algorithm: MLSTM-FCN and the LeakDB dataset to represent a scaled-down version of the water 
distribution network in the City of Kitchener. The configuration of using pressure sensors only was selected from 
the results of the reduced feature test. It provided satisfactory performances in the proceeding generalization and 
localization tests. The solution fulfills all constraints and criteria. Based on the analysis, it is recommended to install 
388 pressure sensors in the City of Kitchener as it minimizes the cost, without sacrificing the accuracy of the model. 

Keywords 
Leak detection, Time-series classification, MLSTM-FCN and Reduced feature test. 

1. Introduction
Municipal water pipelines are important infrastructure in the City of Kitchener as they provide water to many 
residents, companies, and industrial plants in the city. Over time, water can leak out of these pipelines due to 
corrosion or old age, as the pipe material starts to degrade (Cody et al. 2020). Water leakages can often go 
undetected for long periods of time, leading to large water losses of up to 7 million liters of water in a day within 
Kitchener (WaterWorld 2023). The percentage of water lost due to leaks varies by region, with an average estimated 
to be up to 22% of total volume (Cody et al. 2020). The most common type of water leakage detection currently 
being used for municipal water pipelines is an acoustic method which is based on the sound of water within the 
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pipes (Khulief et al. 2012). However, this method is ineffective when detecting small leaks (Bakhtawar and Zayed 
2021). The demand for high-accuracy water pipeline leak detections systems has been increasing in recent years due 
to the improvement in AI techniques. 
 
2. Problem Statement and Specifications  
2.1 Problem Statement 
The City of Kitchener currently relies on a traditional acoustic method for leak detection and localization, which is 
costly, requires heavy labor, and is not real-time: only 1/3 of the city is tested each year. Many leakages cannot be 
detected until they surface and not only cause a loss of up to 30% of water supply but also affect residents and 
companies as their water supply may be cut for a prolonged period until the leakage is fixed, interrupting daily life 
and operations. 
 
2.2 Criteria and Constraints 
The three identified criteria that must be met are ease of operation, system reliability, and project costs, which are 
shown in Table 1. After the project is implemented, specially trained operators will be required for the daily 
operation of the software. A detailed training manual will need to be developed to train operators on the 
specifications of this software. Most operators will only be required to know front end details of the software and 
training can be expected to only take a few days. It would be advised to have one lead operator trained to 
troubleshoot the software if problems arise. This role would not be considered normal operation and the complexity 
of it is not included in the ease of operation criteria. Regarding the reliability of the model, it is not enough to simply 
detect leaks, but it must correctly identify leaks at a high degree of accuracy, which is set to be 90%. This includes 
not only correct detection of leaks but also not falsely flagging leaks when there is not one present. The minimum 
accuracy level will be achieved by a variety of sensor setups. This allows for flexibility in determining the best 
sensor setup, which will be explained in further detail later in this report.  
 

Table 1. Description of criteria 
 
Criteria Description/Explanation 
Ease of 
Operation Training of employees on new systems should not be lengthy or strenuous 

System 
Reliability 

The new system should consistently and correctly detect leaks with an 
accuracy > 90% 

Project Costs The implementation and operation costs of the new system should be 
minimized 

 
Table 2. Description of constraints 

 
Constraints Description/Explanation 

Localization Ability The municipal water pipeline leak detection system must locate leaks 
within 5 meters of the actual leak point 

Generalization Ability Percent difference in fault detection rate at each potential leak node 
should be less than 20% 

Maximum Operating 
Pressure (MOP) 

The system must monitor and alert the user when the municipal water 
pipeline network is being operated near or above MOP (100 psi) 

       
As shown in Table 2, the three constraints that should be met are the localization ability of the leak detector model, 
the generalization ability, and the final constraint being the maximum operation pressure of the network. For 
localization, nodes are established in the theoretical network, and leaks should be identified by the nearest node. 
Upon detection at a node, traditional methods should be utilized to confirm the presence of a leak and narrow down 
its location. The pipeline network in Kitchener has pipe diameters ranging from 4” to 30” and so our project needs to 
properly operate anywhere in the distribution system regardless of the pipe diameter. To ensure generalization is 
met, a range of diameters are used in the simulated network sample to verify acceptable detection rates. The final 
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constraint is the maximum operating pressure. There are already pressure sensors installed at many locations 
throughout the distribution system, however they do not transmit the data in real time. As such, upgrading these 
sensors and installing additional sensors where needed must not impact the operating pressure of the pipeline 
network.  
 
3. Solution Selection 
3.1 Potential Solutions 
• Use Multivariate LSTM-FCN (MLSTM-FCN), a time-series classification neural network in Deep Learning, to 

build a real-time model-free leak detection system. Leak detection is achieved by detecting the leak patterns in 
the pressure and flowrate data (Punukollu et al. 2022).  

• Use You Only Look Once (YOLO) Version 5, a real-time object detection neural network in Deep Learning, to 
build a real-time model-free leak detection system. Leak detection is achieved by detecting leak patterns in 
sound waves (acoustic signals) (Cody et al. 2020). 

• Increase inspection and maintenance frequency of current leak detection method to prevent leakage from 
happening. 

 
3.2 Weighted Decision Matrix 
Reference Solution: The existing method used in the city is the traditional acoustic leak detector, which covers about 
1/3 of the city per year. The corresponding criteria solution screening is illustrated in Table 3. 
 

Table 3. Criteria solution screening 
 

Constraint/Criteria List Weight (%)  
Potential Solutions 

Ref 1 2 3 
R S R S R S R S 

Localization ability  20 0 0 -1 -20 -1 -20 0 0 
Generalization Ability 20 0 0 2 40 0 0 0 0 
Maximum Operating Pressure (MOP) 20 0 0 1 20 1 20 0 0 
Ease of Operation  10 0 0 -1 -10 -1 -10 0 0 
System Reliability  15 0 0 2 30 1 15 1 15 
System Cost 15 0 0 1 15 1 15 -2 -30 
Total  100 0 75 20 -15 
Rank    1 2 3 
Selected   Yes No No 
 
* Note: 
• Localization ability: in Solutions 1 & 2 the localization precision is limited by the sensor distribution within the 

network, and thus poorer performance than traditional acoustic leak detector (Solution 3 and reference solution). 
• Generalization ability and system reliability: reference solution and Solutions 2 & 3 are acoustic methods that 

are subjected to background noise (Cody et al. 2020), but Solution 1 isn’t affected by background noise. Thus, 
reference solution and Solutions 2 & 3 are less reliable (system reliability) and can’t be applied to all sections of 
the pipeline network (generalization ability) compared to Solution 1.  

• Maximum Operating Pressure: reference solution and Solution 3 require manual leak detection while Solutions 
1 and 2 are real-time detection. So, Solutions 1 & 2 are better than Solution 3 and reference solution. 

• Ease of operation: Compared to reference solution, Solutions 1 & 2 require employees to be familiar with the 
new system, but Solution 3 doesn’t. Thus, Solution 3 is better than Solutions 1 & 2. 

• System cost: Solutions 1 & 2 cost less compared to reference solutions, since algorithms are open-sourced and 
able to use the existing sensors for measurement. Solution 3 increases inspection and maintenance frequency, 
which will increase the cost dramatically compared to reference solution.  
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4. Technical Solution Analysis 
As shown in Figure 1 below, the solution analysis consists of three main parts: data pre-processing, training, and 
testing. 

 
 

Figure 1. Design process flowsheet 
 
4.1 Data Pre-Processing 
The City of Kitchener possesses a complex water distribution network, as illustrated in Figure 1 above. 
Unfortunately, real data from the city was not obtained. As a result, the LeakDB dataset was selected to represent a 
scaled-down version of the water distribution network in the City of Kitchener. It is a benchmark dataset for leak 
detection in water distribution networks with 1000 different artificial scenarios. Each scenario contains pressure 
data, flowrate data and leak information such as whether the network is with leaks or without a leak (Vrachimis et 
al. 2018).  
Before the data pre-processing of the LeakDB dataset, the following assumptions and approximations are utilized: 
• Assume only one leak can simultaneously occur in the water distribution network. 
• If a leak occurs, assume the leak continuous for at least 48 hours (Kammoun et al. 2022). 
With the assumptions listed above, three steps were taken for data pre-processing. First, pressure and flowrate data 
as well as leak information were extracted from the raw LeakDB dataset. Second, use the extracted pressure and 
flowrate data as an input and leak information as the corresponding output to construct a customized dataset. The 
leak information was presented as different classes for classifications. A total of eight classes were used: leak at 
Nodes 12, 13, 21, 22, 23, 31, 32 and no leak. After filtering out the scenarios that don’t satisfy the two assumptions 
listed above, a total number of 493 scenarios were selected to build the customized dataset. Each class contains 50 to 
73 samples, leading to a relatively small and imbalanced dataset. The final step divides the customized dataset into 
training, validation, and testing sets in a ratio of 7:2:1. 
 
4.2 Training and Testing 
For training and testing, the assumptions adopted are listed below. 
• Assume a “pressure at a node” or “flow at a link” represents a “sensor” measurement, which is also referred to 

as a “feature” in this project. 
• Approximated leak location is at each potential leak node (red dots in Figure 1) 
However, these two assumptions lead to the problem that the leak detector’s localization precision is limited by 
sensor distribution in the water distribution network. Further statistical analysis methods can be applied to increase 
localization precision. For example, the variation in measurement at each sensor location is related to the relative 
distance to the leak point. The closer to the leak point, the greater the variation. Thus, the leak location can be 
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estimated by statistical distribution analysis regarding the variation in sensors’ measurements and their 
corresponding locations (Kammoun et al. 2023). 
 
4.2.1 Time-series Classification 
In the solution selection section, time-series classification using the MLSTM-FCN algorithm was identified as the 
selected solution. As illustrated in Figure 2 below, time-series classification is an engineering tool that learns 
patterns and their associated classes like “leak at node 3” in Graph C or “no leak” in Graph B from data (training) 
and uses this knowledge to predict the class associated with new data in Graph A (testing or leak detection).  

 

 
 

Figure 1. Working mechanism of time-series classification 
 
The training process utilized the training and validation sets, as well as the MLSTM-FCN algorithm from tsai, a 
state-of-the-art Deep Learning library for Time Series and Sequences. MLSTM-FCN is a widely adopted 
multivariate time-series classification algorithm in Deep Learning in the field of Artificial Intelligence. It extends 
the popular univariate time-series classification algorithm: LSTM-FCN to multivariate with the addition of a 
squeeze-and-excitation block to improve accuracy. Multivariate means multiple variables or sensors’ measurements. 
This means it is well-suited for leak detection tasks with multivariate inputs like pressure and flowrate data. 
Moreover, the MLSTM-FCN model provided by tsai is open-sourced (free), which significantly reduces the project 
cost. 
 
4.2.2 Reduced Feature Test  
Due to the assumption that a “feature” represents a “sensor”, the number of features used for leak detector training 
and testing is equal to the number of sensors that will be placed in the water distribution network. The lower the 
number of features utilized, the lower the number of sensors that are required, and thus the lower the project cost. 
Hence, a reduced feature test was conducted to explore the potential and feasibility of sensor reduction.  
The test results were obtained and illustrated in Figure 3a below. As observed from Figure 3a, the system reliability 
criteria are satisfied in all cases considered as they all resulted in an accuracy greater than 90%. For feature 
reduction, reducing the number of features (sensors) to pressure data only (Reduced Feature 1) or flowrate data only 
(Reduced Feature 2) is feasible without losing accuracy achieved at full feature: 93.62%. However, further 
decreasing the number of flowrate data used requires case-by-case analysis since it leads to inconsistent accuracy. 
This is due to that when using 6 flowrate links, Reduced Feature 3b led to a decreased accuracy of 91.49% while the 
accuracy for Reduced Feature 3b remained at 93.62%. Thus, Reduced Feature 1: 7-pressure node, was selected as 
the configuration adopted for further analysis of the leak detector’s generalization and localization ability.  
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    (a)                 (b) 

Figure 2. Test results for (a) reduced feature test and (b) generalization and localization ability test on Reduced 
Feature 1 

 
4.2.3 Generalization and Localization Ability Test 
The generalization and localization ability tests were conducted under Reduced Feature 1: using pressure data from 
seven pressure nodes to train and test the leak detector. Two evaluation metrics are of interest for this test: (1) fault 
detection rate (FDR) for each potential leak node and (2) false alarm rate (FAR) for no-leak scenarios (Swain et al. 
2020). They are given as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹 =
# 𝑜𝑜𝑜𝑜 𝑁𝑁𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆 𝑊𝑊𝑆𝑆𝑜𝑜𝑆𝑆𝑊𝑊𝑊𝑊𝑊𝑊 𝐷𝐷𝐿𝐿𝐷𝐷𝐿𝐿𝑆𝑆𝐷𝐷𝐿𝐿𝐷𝐷 𝐿𝐿𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

# 𝑜𝑜𝑜𝑜 𝑁𝑁𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆
 

𝐹𝐹𝐷𝐷𝐹𝐹 =
# 𝑜𝑜𝑜𝑜 𝐶𝐶𝑜𝑜𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝐷𝐷𝑊𝑊𝑊𝑊 𝐷𝐷𝐿𝐿𝐷𝐷𝐿𝐿𝑆𝑆𝐷𝐷𝐿𝐿𝐷𝐷 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆 𝐿𝐿𝐷𝐷 𝑁𝑁𝑜𝑜𝐷𝐷𝐿𝐿 𝑆𝑆

# 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆 𝐿𝐿𝐷𝐷 𝑁𝑁𝑜𝑜𝐷𝐷𝐿𝐿 𝑆𝑆  

The test results were displayed in Figure 3b above. As illustrated in Figure 3b, leaks are detected and localized at 
each potential leak node, which limited the localization precision. It can be improved using the statistical analysis 
methods mentioned at the beginning of this section. Although the percent difference in fault detection rate between 
leak nodes is 16.7%, less than the 20% generalization constraint. The leak detector isn’t well-performed since the 
FDR at Nodes 12 and 13 are only 83.3% while the FAR for no leak scenarios is 16%. This might be because of that 
the customized dataset used is small and imbalanced. Time-series data augmentation methods such as reversion had 
been utilized to increase and balance the number of samples in the dataset. However, this altered the sample 
distribution within the dataset (data bias) (Xu et al. 2020) and resulted in unreasonable trends observed in the 
reduced feature test.  
 
5. Sustainability (Impacts) Analysis 
5.1 Environmental Impact 
30% of energy used by The Region of Waterloo, the source for Kitchener’s treated water, is used in the treating and 
pumping of water (Region of Waterloo 2019). In the year 2018 the electricity used in the treatment of water was 
26,295 MWh, and for pumping and distribution was 14,143 MWh. Given an emission factor of 30 gCO2e per kWh, 
this results in 1,213 tons CO2e produced annually in water treatment and distribution throughout the region. The 
regions consist of three cities, Kitchener, Waterloo, and Cambridge, plus several small towns such as Elmira, 
Wellesley, and Woolwich. Approximately one hundred million liters of water, or 100,000 m3, is pumped throughout 
The Region daily, and anywhere from 12% to 40% of this water is lost depending on the area (Region of Waterloo 
2019). A conservative estimate of the percentage of water used by the city of Kitchener would be 25%. This puts the 
daily amount of water pumped throughout the city of Kitchener at roughly 25,000 m3. The city of Kitchener is 
divided into seven sections where water flow is measured, taking an average percentage lost for each of these 
sections a value of 28% lost water is estimated. This brings the volume of water lost throughout the city of Kitchener 
to approximately 7,000 m3 per day. This volume accounts for 7% of the daily volume of water pumped throughout 
The Region. If an assumption is made that 7% of the energy consumption goes towards the lost water, then 
2,831 MWh would be wasted. However, as any water reduction would be a reduction of water drawn from The 
Grand the treatment requirement would be higher than average. The treatment process can be broken down into 
three components. First, transportation from the source to the treatment station, which requires 0.002 kWh/m3. The 
main treatment process, requiring 0.75 kWh/m3. Lastly, pumping the treated water into the distribution network, 
which requires 0.68 kWh/m3 (Plappally and Lienhard V 2012). With the previously discussed lost water of 7000 m3 
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then for transportation, treatment, and pumping, the energy squandered is 1916 MWh, 26 MWh, and 1737 MWh 
respectively. At an emission factor of 30 g CO2e/kWh this accounts for 110 tons CO2e (Government of Canada 
2019). Identification and repair of leaks in the pipeline network will take time and as such these losses will not be 
recognized as reduced in full for many years. If the first-year reduction is taken to be 50% then the emission 
reduction would be 55,000 kg CO2e, with a steady increase to 90% reduction as seen in Figure 4 below.     
 

  
Figure 3. Annual GHG emission reduction 

 
The emissions that would be generated in comparison to the reduction are extremely small and could justifiably be 
considered negligible. The main new source of emissions would be the operation of the hardware required to run the 
model. To ensure enough processing power it would be recommended that each of the seven mentioned sections of 
the city have a dedicated processing server, which would require a 1500W power supply. It is within reason to 
assume an 80% efficiency rating on the power supply, so then an annual power requirement of 16,425 kWh 
annually. This would be 493 kg CO2e annually, which is less than 1% of the projected first year emission reduction. 
Once leaks are being identified and repairs are being performed there will be an increase of emissions associated 
with the repair process. That is, however, not a result of this project. The leaks are not a result of this project, only 
identified by the project. The leaks being repaired would need to be repaired eventually, this project is only 
expediting the process. As such, any emissions associated with the repair of leaks are not caused by a successful 
implementation.   
 
5.2 Economic Impact 
The City of Kitchener has a water distribution network with pipeline infrastructure totaling approximately 890 km 
(SCG Flowmetrix 2021). Our model uses a scaled-down water distribution network that only analyzes 16 km of 
pipeline. For the scaled-down version, as mentioned in the solution analysis, 4 different feature options were 
investigated, and Table 4 demonstrates the reduced feature accuracy for each type. 
To determine the best model, the criteria outlining project costs must be satisfied such that the total cost is 
minimized without sacrificing accuracy. The total savings from reduction in lost water and energy from the 
treatment process must be greater than the implementation cost. The 4 model types will be compared based on the 
implementation cost and payback period, which is the time it takes to recover the initial investment.  
 

Table 4. Reduced feature accuracy 
 

Type Number of Pressure 
Sensors 

Number of Flow 
Meters 

Associated 
Accuracy 

Type 1: Full Features 7 10 93.62% 
Type 2: Reduced Features – 
Pressure Only 7 0 93.62% 

Type 3a: Reduced Features – 
Flowrate Only 0 10 93.62% 

Type 3b: Reduced Features – 
Flowrate Only 0 6 92.60% 
 
The implementation cost includes the purchasing cost of all the pressure sensors or flowmeters for the City of 
Kitchener, the new hardware equipment needed to run the detector model, and the installation costs associated with 
newly purchased sensors, which are illustrated in Table 5.  
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Both the flowmeter and pressure sensors need to precisely record the flowrate and pressure of water in underground 
pipelines and send signals wirelessly to the main control system for data collection. The collected data will then 
subsequently be used to run the detector in real time. The flowmeter and pressure sensor models both use HART 
technology so that there is wireless communication of data between the sensors and control systems. The cost of the 
required flowmeter and pressure sensor were obtained through quotes priced to be $950 (ITM Instruments INC 
2023) and $837.50 (VERIS 2023) per sensor, respectively. Since the number of sensors are known for the 16 km of 
pipeline analyzed in our model, an extrapolation method was used to determine how many sensors were required for 
890 km of pipeline to calculate the total sensor costs. Based on the number of sensors required for each feature type, 
the labor costs associated with installing all these sensors will be calculated as well using hourly wages of City of 
Kitchener ‘s water utility workers (Job Bank 2023).  
 

Table 5. Reduced feature costs 
 

Type Pressure 
Sensors 

Flow 
Meters 

Implementation 
Cost 

Type 1: Full Features 389 556 $ 2,300,000 
Type 2: Reduced Features – Pressure 
Only 388 0 $ 973,000 

Type 3a: Reduced Features – Flowrate 
Only 0 556 $ 1,400,000 

Type 3b: Reduced Features – Flowrate 
Only 0 334 $ 880,000 

 
Our model currently only requires the use of one GPU server. A GPU server is a computational server that is used 
for data processing and the system which the detector-model runs on. To be able to have enough data processing 
power for 890 km of pipeline, 10 servers will need to be purchased by the city and this cost will also be accounted 
for in the implementation cost (GIGABYTE 2023). More detailed sample calculations are shown in the Appendix.   
Based on the implementation cost, Type 3b has the lowest capital cost, due to its low number of flowrates, closely 
followed by Type 2 which only uses pressure sensors in its model. While the design must minimize capital costs, it 
also must be lower than the total savings from preventing water loss.  
From Section 5.1, it is known that approximately 7000 m3 of water is lost in the City of Kitchener per day. The 
consumer water rate in the City of Kitchener is $2.62/m3 (Utility rates - City of Kitchener 2023) and so the total cost 
of the water loss to the City of Kitchener is $18350 per day. In addition, from Section 5.1, it was determined that the 
total energy wasted due to treatment, transport and pumping of water was 10080 kWh per day. Using the city’s 
energy rate of $0.07/kWh, the city’s annual cost of water loss is $7 million.  
By implementing our leak detector model, with accuracy of the Type 2 and Type 3b leak detectors being greater 
than 90%, there is potential savings of $6.3 million per year, without accounting for the operating costs of the leak 
detector. After year 0 in which all the equipment is purchased and installed, from year 1 onwards, there will be 
annual operating costs which include labor costs for running the actual leak-detector software and annual costs for 
maintenance which involves city personnel checking the sensors and ensuring they are well calibrated. Using the 
same extrapolation method as previously, for 890 km of pipeline, 10 workers are needed to monitor and operate the 
leak-detector model. Using the hourly wages of City of Kitchener’s water utility workers (Job Bank 2023), the 
annual operating costs are determined to be $880,000. 
The payback period was calculated based on an analysis of 5 years. The cumulative cash flow for each year was 
determined by taking the difference of potential savings and annual operating costs. By doing so, the break-even 
point of the investment was ascertained as shown in Table 6. 
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 Table 6: Reduced feature payback period 
 

Type Capital Cost Payback 
Period 

Associated 
Accuracy 

Type 1: Full Features  $ 2,300,000  2.3 years 93.62% 
Type 2: Reduced Features – Pressure 
Only  $ 973,000 1.3 years 93.62% 

Type 3a: Reduced Features – Flowrate 
Only  $ 1,400,000 1.7 years  93.62% 

Type 3b: Reduced Features – Flowrate 
Only  $ 880,000  1.4 years  92.60% 
The lowest payback periods are for Type 2 and Type 3b models. While the implementation cost of Type 3b is a bit 
lower than the Type 2 implementation cost, it is important to note that using only pressure sensors will provide 
better accuracy. As such, installing 388 pressure sensors will lower the cost of this project and increase the return on 
investment.  
5.3 Safety 
With the implementation of our software, the city of Kitchener can achieve real time detection of pipeline leakages. 
In this way leakages can be detected before they can surface or cause sinkholes and prevent these safety issues from 
escalation. However, implementing the detection software also means that future detection will be heavily relying on 
the software. If the detection model failed or experienced any technical difficulties, such as power outage or service 
disconnection, water leakages may be undetected for a longer period of time. If the model fails without notice, 
leakage will not be detected until it surfaces. This could ultimately result in worse incidents than with current 
methods. 
Some potential safety issues may also occur during the implementation stage of the leakage detection system. 
Currently, pressure sensors in the pipelines of City of Kitchener do have wireless transmission of data, which is 
needed for our leakage detection software. As such, updated pressure sensors will be installed in the water pipes 
across the city of Kitchener as part of the implementation process. As most of the pipelines are located on the 
roadside and underground, installing these instruments will mean roadworks, which poses risks of workplace injury 
and safety issues from traffic congestion.   
 
5.4 Social/Cultural Impact 
Implementation of our project would result in the automation of the leak detection process. This would see a 
reduction in the hours of the technicians performing the testing and the project manager that prepares the report. 
While this annual contract would be lost the city may wish to hire said company to investigate detected leaks. This 
project would also create new job opportunities, both in the initial implementation and in the continued operation. 
Installation of 388 sensors would require 3000 hours of labor. Maintenance on the new sensors would also need to 
be done regularly to ensure proper calibration. Operators will also be required to use the AI that was developed 
which will create up to seven full-time jobs.  
Water scarcity is not something most Canadians are concerned about, but it is a growing concern for a large portion 
of the world. It is believed that India and China, as well as some countries in Europe and Africa, will face water 
scarcity by 2025 (Water Scarcity 2023). Kitchener draws roughly 20% of its drinking water from the Grand River, a 
surface water source, which is particularly vulnerable to climate change. An example of this vulnerability can be 
seen as recently as July with Lake Mead water levels becoming dangerously low due to unprecedented drought 
(Earth Observatory 2023). As previously mentioned, any reduction in water lost would be a direct reduction in water 
that would need to be drawn from The Grand, which would provide protection against potential climate change 
concerns in the future. As well, by reducing the water lost in the distribution system now it allows for continued 
growth of the city, both residentially and commercially.   
 
6. Conclusions and Recommendations 
From technical analysis, the solution selected for building the leak detector is time-series classification on pressure 
and/or flowrate data using the MLSTM-FCN algorithm in Artificial Intelligence. The LeakDB dataset was utilized. 
A reduced feature test was conducted to explore the potential and feasibility of reducing the number of sensors used. 
It was found that using pressure or flowrate data is only feasible without losing accuracy. However, decreasing the 
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number of flowrate data used requires case-by-case analysis since it leads to inconsistent accuracy. All cases 
considered in the test resulted in an accuracy greater than 90%, satisfying the system reliability criteria. Using 
pressure sensors only was selected as the desired configuration and further analysis was performed to test its 
localization and generalization ability. The test results showed that the leaks were localized and detected at each 
potential leak node. The 20% generalization constraint was met with a 16.7% difference in fault detection rate 
between leak nodes. Nevertheless, the performance was limited by the relatively small and imbalanced dataset. 
Moreover, the current solution can achieve the 5-meter localization precision constraint, but it is significantly 
confined by the sensor distribution in the water distribution network. Additional statistical analysis methods will be 
required to further increase leak localization precision.  
Overall, it was concluded that using a reduced features method of only pressure sensors will be the optimal solution. 
For the City of Kitchener, 388 pressure sensors will need to be installed. The return on investment is only estimated 
to be 1.5 years. Further technical analysis confirms that using pressure sensors only is feasible without sacrificing 
accuracy of the design.  
For the next steps, we recommend performing analysis on a larger dataset that is more complex to scale up the 
representation of the water distribution network for the City of Kitchener. Since the model only analyzes 16 km of 
pipeline, a model that uses a dataset of more than 100 km will be able to better reflect how the pipelines in City of 
Kitchener behave. In addition, further developing the model to detect 2 leaks that occur simultaneously in the water 
distribution network will be more representative of how leakages occur in real-world situations. 
Currently the pipeline network within the City of Kitchener is divided into seven subsections, where flowrate into 
each subsection is monitored and compared to billed water. However, these subsections are still very large and are 
not uniform in size, with the largest subsection representing over 200 kilometers of pipeline. At the time of 
collection, one specific area was losing 40% of water pumped into the area, but due to the size, it was not feasible to 
investigate ahead of the routine annual testing. By implementing our model and installing the proposed sensors, a 
more consistent view of the pipeline network will be achieved.  
 
7. Appendix 
7.1 Environmental Analysis Calculations 
Using the estimated lost water of 7,000 m3 an approximation of energy consumption that could potentially be saved 
is calculated. The treatment process can be broken down into three components, transfer to the facility, treatment, 
and distribution. Each of these phases has an associated power requirements as follows (Plappally and Lienhard V 
2012): 
Transport: 0.002 𝑘𝑘𝑘𝑘ℎ

𝑚𝑚3∗𝑘𝑘𝑚𝑚
 

Treatment: 0.75 𝑘𝑘𝑘𝑘ℎ
𝑚𝑚3  

Distribution: 0.68 𝑘𝑘𝑘𝑘ℎ
𝑚𝑚3  

Average distance for treatment facility from the Grand River is taken to be 5 kilometers, the daily energy used to 
treat lost water can be calculated to be: 

𝑇𝑇𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑇𝑇𝑜𝑜𝑆𝑆𝐷𝐷 = 0.002 
𝐿𝐿𝑊𝑊ℎ

𝑚𝑚3 ∗ 𝐿𝐿𝑚𝑚
∗ 5 𝐿𝐿𝑚𝑚 ∗ 7000

 𝑚𝑚3

𝐷𝐷𝐿𝐿𝑊𝑊
 ∗ 365 

𝐷𝐷𝐿𝐿𝑊𝑊𝑆𝑆
𝑊𝑊𝐿𝐿𝐿𝐿𝑆𝑆

 

𝑇𝑇𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑇𝑇𝑜𝑜𝑆𝑆𝐷𝐷 = 25550 
𝐿𝐿𝑊𝑊ℎ
𝑊𝑊𝑆𝑆

  

𝑇𝑇𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑇𝑇𝑜𝑜𝑆𝑆𝐷𝐷 = 25.6 
𝑀𝑀𝑊𝑊ℎ
𝑊𝑊𝑆𝑆

  

 

𝑇𝑇𝑆𝑆𝐿𝐿𝐿𝐿𝐷𝐷𝑚𝑚𝐿𝐿𝑆𝑆𝐷𝐷 = 0.75 
𝐿𝐿𝑊𝑊ℎ
𝑚𝑚3  ∗ 7000

 𝑚𝑚3

𝐷𝐷𝐿𝐿𝑊𝑊
∗ 365 

𝐷𝐷𝐿𝐿𝑊𝑊𝑆𝑆
𝑊𝑊𝐿𝐿𝐿𝐿𝑆𝑆

 

𝑇𝑇𝑆𝑆𝐿𝐿𝐿𝐿𝐷𝐷𝑚𝑚𝐿𝐿𝑆𝑆𝐷𝐷 = 1916250 
𝐿𝐿𝑊𝑊ℎ
𝑊𝑊𝑆𝑆

 

𝑇𝑇𝑆𝑆𝐿𝐿𝐿𝐿𝐷𝐷𝑚𝑚𝐿𝐿𝑆𝑆𝐷𝐷 = 1916 
𝑀𝑀𝑊𝑊ℎ
𝑊𝑊𝑆𝑆

 

 

𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑜𝑜𝑆𝑆 = 0.68 
𝐿𝐿𝑊𝑊ℎ
𝑚𝑚3 ∗ 7000

 𝑚𝑚3

𝐷𝐷𝐿𝐿𝑊𝑊
∗ 365 

𝐷𝐷𝐿𝐿𝑊𝑊𝑆𝑆
𝑊𝑊𝐿𝐿𝐿𝐿𝑆𝑆
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𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑜𝑜𝑆𝑆 = 1737400 
𝐿𝐿𝑊𝑊ℎ
𝑊𝑊𝑆𝑆

 

𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑜𝑜𝑆𝑆 = 1737 
𝑀𝑀𝑊𝑊ℎ
𝑊𝑊𝑆𝑆

 

𝑇𝑇𝑜𝑜𝐷𝐷𝐿𝐿𝑊𝑊 𝐸𝐸𝑆𝑆𝐿𝐿𝑆𝑆𝑊𝑊𝑊𝑊 = 3679 
𝑀𝑀𝑊𝑊ℎ
𝑊𝑊𝑆𝑆

 

With an emission factor in Ontario of 30 kgCO2e per megawatt-hour (Government of Canada 2023), the annual 
emissions from treating lost water can be calculated: 

𝐹𝐹𝑆𝑆𝑆𝑆𝐷𝐷𝐿𝐿𝑊𝑊 𝐸𝐸𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆 = 3679 𝑀𝑀𝑊𝑊ℎ ∗ 30 
𝐿𝐿𝑊𝑊𝐶𝐶𝐶𝐶2𝐿𝐿
𝑀𝑀𝑊𝑊ℎ

  
𝐹𝐹𝑆𝑆𝑆𝑆𝐷𝐷𝐿𝐿𝑊𝑊 𝐸𝐸𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆 = 110370 𝐿𝐿𝑊𝑊𝐶𝐶𝐶𝐶2𝐿𝐿 

 
7.2 Economic Analysis Calculations 
Shown below are sample calculations of the process taken to determine all the costs required to calculate the 
payback period. Note that only calculations for Type 2, which is pressure sensors only will be shown.  
• Implementation Cost:  
The price of each pressure sensor is $837.50 (VERIS 2023), and an extrapolation can be done to determine the 
number of pressure sensors needed and the cost of purchasing sensors for 890 km if 16 km of pipeline needs 7 
pressure sensors:  

𝑁𝑁𝐷𝐷𝑚𝑚𝐷𝐷𝐿𝐿𝑆𝑆 𝑜𝑜𝑜𝑜 𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆 =  
890 𝐿𝐿𝑚𝑚
16 𝐿𝐿𝑚𝑚

× 7 𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆 = 388 𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆 
𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆 𝐶𝐶𝑜𝑜𝑆𝑆𝐷𝐷𝑆𝑆 =  388 𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆 × $837.50 = $326101.56 

Based on estimates from the company Microsensor, it costs $1050 (VERIS 2023) to install a single pressure sensor 
and requires 3 personnel to assist in the installation which takes up to 4.5 hours. As such, the installation cost based 
on the City’s labor wage is (Job Bank 2023):  

𝐼𝐼𝑆𝑆𝑆𝑆𝐷𝐷𝐿𝐿𝑊𝑊𝑊𝑊𝐿𝐿𝐷𝐷𝑆𝑆𝑜𝑜𝑆𝑆 𝐶𝐶𝑜𝑜𝑆𝑆𝐷𝐷𝑆𝑆 =  388 𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆 × $837.50 × 3 𝑤𝑤𝑜𝑜𝑆𝑆𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ×
$36.25
ℎ𝑆𝑆

× 4.5 ℎ𝑆𝑆 × $1050 = $597277.5 
As mentioned in section 5.2, the city will need 10 GPU servers that cost $5000 (GIGABYTE 2023) and so the total 
hardware equipment cost is:  

𝐻𝐻𝐿𝐿𝑆𝑆𝐷𝐷𝑤𝑤𝐿𝐿𝑆𝑆𝐿𝐿 𝐸𝐸𝐸𝐸𝐷𝐷𝑆𝑆𝑇𝑇𝑚𝑚𝐿𝐿𝑆𝑆𝐷𝐷 𝐶𝐶𝑜𝑜𝑆𝑆𝐷𝐷 =  10 𝑆𝑆𝐿𝐿𝑆𝑆𝑠𝑠𝐿𝐿𝑆𝑆𝑆𝑆 × $5000 = $50000 
Therefore, the total implementation cost is:  

𝐼𝐼𝑚𝑚𝑇𝑇𝑊𝑊𝐿𝐿𝑚𝑚𝐿𝐿𝑆𝑆𝐷𝐷𝐿𝐿𝐷𝐷𝑆𝑆𝑜𝑜𝑆𝑆 𝐶𝐶𝑜𝑜𝑆𝑆𝐷𝐷 =  $326101.56 + $597277.5 +  $50000 = $973379.06 
• Operating Cost:  
As mentioned, 10 workers are needed to run the detector throughout the year and so based on the city’s hourly 
wages for utility workers (Job Bank 2023), the annual running cost of the detector is:  

𝐷𝐷𝐿𝐿𝐷𝐷𝐿𝐿𝑆𝑆𝐷𝐷𝑜𝑜𝑆𝑆 𝐹𝐹𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑊𝑊 𝐶𝐶𝑜𝑜𝑆𝑆𝐷𝐷 = 10 𝑤𝑤𝑜𝑜𝑆𝑆𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ×
$41
ℎ𝑆𝑆

× 8
ℎ𝑆𝑆
𝐷𝐷𝐿𝐿𝑊𝑊

×  5
𝐷𝐷𝐿𝐿𝑊𝑊
𝑤𝑤𝐿𝐿𝐿𝐿𝐿𝐿

× 50
𝑤𝑤𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆
𝑊𝑊𝐿𝐿𝐿𝐿𝑆𝑆

= $820,000 

In addition, the sensors must be maintained and re-calibrated every year so the maintenance costs per year is: 

𝑀𝑀𝐿𝐿𝑆𝑆𝑆𝑆𝐷𝐷𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝐿𝐿 𝐶𝐶𝑜𝑜𝑆𝑆𝐷𝐷 = 388 𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆 × 3 𝑤𝑤𝑜𝑜𝑆𝑆𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ×
$36.25
ℎ𝑆𝑆

× 1 ℎ𝑆𝑆 = $42195 
Therefore, the total operating cost is:  

𝐶𝐶𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐷𝐷𝑆𝑆𝑆𝑆𝑊𝑊 𝐶𝐶𝑜𝑜𝑆𝑆𝐷𝐷 = $42195 + $820,000 = $862195 
 
• Savings:  
As mentioned in section 5.1 and 5.2, by implementing our model, the potential savings is the cost associated with 
the City of Kitchener’s water loss: 

𝑆𝑆𝐿𝐿𝑠𝑠𝑆𝑆𝑆𝑆𝑊𝑊𝑆𝑆 = �
$2.62
𝑚𝑚3 × 7000 𝑚𝑚3 +  10080 𝐿𝐿𝑊𝑊ℎ ×

$0.07
𝐿𝐿𝑊𝑊ℎ

� × 365 𝐷𝐷𝐿𝐿𝑊𝑊𝑆𝑆 =   $6970000 

• Payback Period:  
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Table 7: Payback period 
 
Year Net Cash Inflow Cumulative Cash Flow 

0 −$973379.06 −$973379.06 
1 ($6970000 × 0.6)  −  $862195

= $3319805 
−$973379.06 + $3319805

= $2345622 
2 ($6970000 × 0.7)  −  $862195

= $4015867 
$2345622 + $4015867

= $6361489 
3 ($6970000 × 0.75)  −  $862195

= $4364300 
$6361489 + $4364300

= $10725790 
4 ($6970000 × 0.85)  −  $862195

= $5061166 
$10725790 + $5061166

= $15786956 
5 ($6970000 × 0.9)  −  $862195

= $5409599 
$15786956 + $5409599

= $21196555 
 
In year 0, the net cash inflow is just the implementation cost. For years 1 to 5, the net cash flow is the savings minus 
the annual operating cost of the model. The savings is multiplied by different values each year. This is based on the 
assumption that while the Type 2 model has a 95% accuracy, when implemented to a much larger and complex 
water distribution system, the savings will not exactly be that high. In the first year, we assume a 60% savings and 
then it increases to 70% in the second year. As the model is refined each year, the potential savings will increase 
with better maintenance of the system and understanding of how the model works.  
Based on table X above, between year 0 and 1 is when we see a positive cumulative cashflow. So, the payback 
period is calculated as follows:  
 

𝑃𝑃𝐿𝐿𝑊𝑊𝐷𝐷𝐿𝐿𝑆𝑆𝐿𝐿 𝑃𝑃𝐿𝐿𝑆𝑆𝑆𝑆𝑜𝑜𝐷𝐷 =  
$973379.06
$3319805

+ 1 𝑊𝑊𝐿𝐿𝐿𝐿𝑆𝑆 =  1.3 𝑊𝑊𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 
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