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Abstract 

This study aims to address the issue of range anxiety in electric vehicle (EV) drivers by developing optimal charging 
schedules that are based on individual driving habits, proximity to charging facilities, and environmental factors. A 
scheduling approach was employed to match the usage profile of the EV with charging windows, with the objective 
of minimizing charging cost, time loss, and overall degradation of the EV. The development of a driving profile was 
undertaken for three scenarios: short commute, long commute, and senior citizen, and charging windows were 
defined to reflect real-world situations. With this, an optimization model was implemented using Python's 
pyworkforce package, with the constraint of charging rate per hour. The results provide tabulated quantitative values 
for optimal charging schedules on a weekly basis and can assist EV drivers in adapting to an EV lifestyle and 
reducing range anxiety. This research provides valuable insights into addressing the critical issue of range anxiety in 
EV adoption and has the potential to encourage more individuals to switch to EVs by alleviating their concerns 
regarding limited driving range. 
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1. Introduction
With the insurgence of climate change concerns, the use of electric vehicles (EVs) has become more prevalent in 
consumer trends. Although EVs provide a functional solution to the negative environmental impacts of standard fuel 
vehicles, they also pose additional problems in efficiency and convenience as users often experience range anxiety. 
This consumer behavior pattern can be characterized by the fear of running out of charge prior to reaching the 
destination or prior to reaching a nearby charging station, leaving the driver stranded (Guo et al. 2018). As EVs are a 
relatively new technology in the automotive industry, consumers may not be as intuitively acclimated to developing 
an optimal charging schedule in accordance with their driving habits, in comparison to the instinctive refueling 
schedule that gas-powered vehicle drivers are accustomed to; moreover, gas stations are typically more frequently 
located within urban settings, allowing for a reduction in range anxiety. Given this, EV drivers are more likely to 
experience high rates of range anxiety and exhibit remunerative behaviors as a response. For example, some drivers 
might charge their EVs excessively, leading to increased energy consumption and less charger availability for other 
drivers. As such, there is a need to quantify and model an optimal EV charging schedule in consideration of daily 
activity constraints and energy consumption minimization. 

1.1 Objectives 
To better acclimatize individuals to an EV lifestyle, optimal charging schedules can be created that consider varying 
driving habits, proximity to charging facilities, and the environment in which the individual drivers reside. By 
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focusing on the individual rather than society as a whole, the aforementioned schedules can be far more flexible in 
terms of the input parameters, constraints, and priorities of the individual.  

 The goal of this paper is to create tabulated quantitative values for optimal charging schedules on a weekly basis 
based on varying input parameters. These input parameters include driving habits (amount driven), season of the 
year, and opportunity cost of missed time. The objective function of the created models primarily focus on the 
minimization of cost to the individual from charging cost, loss of time, and overall degradation of EV.  

2. Literature Review
2.1 Relevant Research
Optimal electric vehicle (EV) charging schedules are a topic of growing interest among researchers and
policymakers seeking ways to reduce the impact of EVs on the electric grid and optimize the use of renewable
energy sources. There are many factors that can affect the effectiveness of optimized charging schedules for electric
vehicles. A recent study investigated the impact of various parameters on the effectiveness of optimized charging
schedules (Zhang et al. 2019). The study used simulation models to analyze the impact of driving behavior, charging
infrastructure, and the cost of electricity on the cost and emissions savings achieved by optimized charging
schedules. The study found that optimized charging schedules can significantly reduce the cost and emissions of EV
ownership by 15%, but their effectiveness depends on the availability of charging infrastructure, the behavior of EV
drivers, and the cost of electricity. The study suggests that policymakers and EV owners should consider these
factors when developing and implementing optimized charging schedules.

Another similar study investigated the impact of different charging strategies on the adoption of electric vehicles 
(Wee et al. 2019). The study found that providing free public charging and incentivizing home charging can 
significantly increase the adoption of electric vehicles. The study also found that optimized charging schedules can 
play an important role in reducing the cost and emissions of EV ownership, particularly when combined with 
renewable energy sources. The findings suggest that policymakers should consider these factors when developing 
policies to promote the adoption of electric vehicles and the optimization of charging schedules.  

In 2018, the International Energy Agency (IEA) published a report analyzing the potential impact of policy 
measures on the adoption of electric vehicles and the deployment of charging infrastructure. The report concluded 
that policy measures supporting the use of smart charging technology and optimized charging schedules could 
accelerate the transition to a low-carbon transport system and reduce the cost of EV ownership. However, the 
effectiveness of these policy measures is dependent on the availability of charging infrastructure and the behavior of 
EV drivers. Therefore, the study highlights the importance of developing policy measures that support the adoption 
of smart charging technology and the optimization of charging schedules to realize significant economic and 
environmental benefits (IEA 2018).  

Finally, user preferences are an important consideration when developing optimal EV charging schedules, with 
research by the Electric Power Research Institute finding that EV owners prefer to charge their vehicles during the 
evening and overnight hours when electricity rates are lower (EPRI 2017).  

These studies highlight the importance of considering multiple factors when developing and implementing 
optimized charging schedules for electric vehicles. The findings suggest that factors such as driving behavior, 
charging infrastructure, and electricity costs should be considered to maximize the economic and environmental 
benefits of optimized charging schedules. Policymakers and EV owners should also consider the impact of charging 
strategies on the adoption of electric vehicles and the potential for renewable energy sources to further reduce the 
cost and emissions of EV ownership. 

2.2 EV Total Driving Time 
In the formulation of an optimized charging schedule, the total driving time in which a fully charged EV battery can 
travel is essential to understanding the points in which recharging is required. To calculate the total driving time of 
an electric vehicle (EV), several factors must be considered. The battery capacity is a key factor that reflects the 
amount of energy the battery pack can store and supply to the motor. Battery capacity is typically measured in 
kilowatt-hours (kWh). Additionally, driving efficiency and speed are essential variables. Driving efficiency 
determines how much energy is required to travel a certain distance and is affected by several factors such as vehicle 
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weight, aerodynamics, tire type, and driving style. Moreover, driving speed is an important variable to consider 
since it has a direct correlation with energy consumption. 
 
2.3 EV Charging 
Charging electric vehicles (EVs) is an essential aspect of owning an EV as it determines the amount of time the 
vehicle can operate before needing a recharge. Home charging can be accomplished by utilizing a Level 1 or Level 2 
charger, which typically takes several hours to fully charge the battery. Public charging stations, on the other hand, 
can offer faster charging rates, such as Level 3 DC fast charging, which can provide an 80% charge in as little as 30 
minutes. Tesla, one of the major EV manufacturers, has its own proprietary fast charging network known as 
Supercharging, which enables Tesla owners to recharge their vehicles swiftly while on long road trips. 
Superchargers use direct current (DC) charging and can offer up to 170 miles of range in just 30 minutes of 
charging. Nevertheless, overusing Supercharging can negatively affect the battery health, so it is recommended to 
use it sparingly and rely on home or public charging whenever possible (US DOE 2021). The availability of 
charging infrastructure is crucial to support the widespread adoption of EVs. Thus, governments, automakers, and 
private organizations are investing in building public charging infrastructure networks to facilitate EV adoption and 
make charging more accessible to drivers. Additionally, the development of smart charging technology is enabling 
more efficient and cost-effective EV charging, by allowing users to schedule charging sessions during off-peak 
hours when energy prices are lower, reducing the overall cost of EV ownership.  
 
According to the International Energy Agency (IEA), the number of publicly accessible charging points worldwide 
reached over 1.7 million in 2020, representing a significant increase from 60,000 in 2010. The IEA also reports that 
China, Europe, and the United States are the leading markets for EVs and charging infrastructure. In the United 
States, the Department of Energy (DOE) has launched the "EV Everywhere" initiative to promote the development 
of electric vehicle charging infrastructure. As of 2022, there were over 50,000 charging stations in the United States, 
with over 106,000 individual connectors available for public use (Han et al. 2016). The DOE has also funded 
research and development to improve EV charging technology and reduce charging times, resulting in the 
development of new fast-charging systems that can charge an EV in as little as 10 minutes. Smart charging 
technology is also being developed, with companies like ChargePoint and EVgo offering systems that allow EV 
owners to schedule charging during off-peak hours, which helps to reduce energy costs and improve the stability of 
the grid (Zhou et al. 2019). 
 
2.5 Relevant Mathematical Concepts 
To develop optimal charging schedules, objective functions, decision variables, and parameters/constraints must be 
considered. Objective functions are mathematical expressions that define the optimization problem's goal, such as 
minimizing the cost of EV charging or maximizing the use of renewable energy sources. Decision variables are the 
inputs that can be changed to achieve the objective function, such as the charging start time, charging duration, or 
charging rate. Parameters and constraints are the conditions that must be satisfied during the optimization process, 
such as the EV battery capacity, available charging infrastructure, and the user's driving schedule.  
 
To develop optimal EV charging schedules, objective functions can be defined based on the user's charging 
preferences, energy costs, and the availability of renewable energy sources. Decision variables can then be adjusted 
to achieve the objective function while satisfying the parameters and constraints, such as limiting charging during 
peak energy demand periods or ensuring that the EV is fully charged before the user's next trip. Policymakers and 
stakeholders can develop optimal EV charging schedules that minimize the cost and emissions of EV ownership, 
promote the use of renewable energy sources, and enhance the overall efficiency of the energy system. 
 
3. Methods 
3.1 Solution Approach 
The first step in the process of optimizing the EV charging is to accurately define the parameters of each of the cases 
that will be optimized. The most impactful parameter will be defining the weekly schedule of individual; this 
includes time where the EV can be charged, when the individual must be driving, and time where there are 
consequences for seeking charging. This is critical as it will serve as the largest constraints to the system as well as 
defining the system boundaries. After the schedules have been defined, the parameters that dictate the quality and 
quantity of charging will be defined from literature. This encompasses the rate at which the EVs can charge, the cost 
to charge, the capacity of the EVs, etc. These parameters can also be changed by each case to accurately fit the 
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system, such as reducing the EV capacity during the winter months. As previously mentioned, the results of this 
study tabulated, and the differences in performance based on parameters are correlated to find what constraints and 
parameters are the most impactful to the system. This will lead to conclusions on which parameters are the most 
important to consider when a given individual is seeking to use their EV more optimally.  
 
3.2 Solution Assumptions 
As the development of EV charging schedules need to account for a multitude of factors that are unique to each 
individual user, this paper considers three different weekly schedules, varied based on EV use frequency. The three 
schedules are formulated based on the weekly driving needs of a user that is a senior citizen (infrequent use), a user 
that a short-distance commute to work (moderate use), and a user that has a long-distance commute to work 
(frequent use). The total driving time in a week for each user is 10 hours, 22 hours, and 32 hours, respectively. The 
weekly driving needs of users will form the foundation of the optimized charging schedules as it will dictate the 
location and time in which the EV is available for charging.  
  
In the three optimal charging schedules, all calculations are based on users driving a Tesla Model 3, which is the 
most popular EV model as of 2021 (EPRI 2017). Moreover, a constant speed of 50 miles/h throughout all driving 
activities is assumed.  
 
4. Data Collection 
4.1 Total Driving Time 
The depletion rate of a Tesla Model 3 was calculated using data related to the Tesla Model 3 battery pack. 
According to Tesla, Inc., the Model 3 is equipped with a high-capacity lithium-ion battery pack that delivers an 
estimated efficiency of 3.5 miles per kWh (US EPA 2021). The battery pack comprises thousands of individual 
cylindrical battery cells connected in series and parallel to achieve the desired voltage and capacity. The battery 
pack has a total energy capacity of 75 kWh, which is one of the highest in its class. 
 
To estimate when the total driving time of a Tesla Model 3 from a full charge, the total distance range will need to 
be computed first. 
 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟𝑑𝑑 = 75 𝑘𝑘𝑘𝑘ℎ × 3.5
𝑚𝑚𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑
𝑘𝑘𝑘𝑘ℎ

= 262.5 𝑚𝑚𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 
 
If an average driving speed of 50 miles per hour is assumed, the total driving time of a Tesla Model 3 is: 
 

262.5 𝑚𝑚𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 ÷ 50
𝑚𝑚𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑
ℎ𝑡𝑡𝑜𝑜𝑟𝑟

= 5.25 ℎ𝑡𝑡𝑜𝑜𝑟𝑟𝑑𝑑 
 
Hence, after a full charge and assuming a constant speed of 50 miles per hour, the total driving time is 5.25 hours. It 
is important to note that this calculation is only an estimate and is subject to variations depending on specific driving 
conditions and the vehicle's configuration. Therefore, it is essential to acknowledge that this estimated driving range 
of a Tesla Model 3 will be used as a reference point in the development of the optimized charging schedules to form 
adequate guidelines for calculations, and may not reflect the actual driving range achievable in real-world scenarios. 
Further, as the system was defined on a time basis, it was assumed that 1 hour of driving equates to a 19% decrease 
in the battery of the EV linearly. 
 
4.2 Formulation of Problem 
To formulate the charging problem, the system can be interpreted as a scheduling problem: when is it most optimal 
to charge the EV based on the usage. The main goal of the charging profile is to match the usage profile such that 
the difference is minimized. This was done using the Python package pyworkforce which uses the principle of 
minimum absolute difference. Minimum absolute difference with scheduling can be defined as an optimization 
problem where the goal is to choose pre-defined shifts to have the smallest difference from the resources defined. 
For the purposes of this paper, the resources are the amount that needs to be charged or the percentage of battery 
consumed from driving. The shifts are windows in time where the EV can be charged which would in turn increase 
the percentage of the battery. The main constraint added to the model was the amount that could be charged in an 
hour. This would influence how fast the charging could counter the effects of discharging. An optimal solution is 
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defined as a solution that would match the driving profile the closest. This can never be a perfect fit as the EV 
cannot charge while it is being driven, thus optimization is extremely valuable. 
 
4.3 Battery Usage Profile 
Creating the driving profile was pivotal to creating a suitable model. This profile would represent the battery percent 
consumed over a week of driving. This profile would be different for everyone, so for the purposes of this paper 
three separate profiles were created, one for a short commute, one for a long commute, and one for a senior citizen. 
Below is a visualization of the driving profile for the short commute (Figure 1) individual; it can be noted that as 
time goes on, consumption only increases and that horizontal lines signify time where there is no driving. 

 
Figure 1. Driving profile for a short commute driver. 

 
4.4 Defining Charging Windows 
To represent the real world, charging windows were created to represent periods of time where the EV could be 
charged. These windows can simply be thought of as times where the EV is plugged in, and in which the battery will 
increase. Again, to align with the real world, there are no charging windows in the middle of the night during 
working hours or activities, only at times where it would be, it would be feasible for the individual to charge their 
EV. Additionally, the windows were modified if there was an opportunity for the individual to charge at a 
supercharger. For the purposes of this model, it was assumed that the supercharger could charge twice as fast as 
regular charging. More specifically, it was assumed that regular charging could recover 50% of the EV battery while 
supercharging could recover 100% of the EV battery in each hour. These different windows were added on to the 
individual’s schedules. 
 
 
5. Results and Discussion 
5.1 Creating Optimized System 
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Solving the system requires utilizing the Python package pyworkforce with the appropriate input profiles and 
windows. A Python notebook was created to take in this data such that the problem could be solved. By creating 
profiles and windows for each of the different systems, this allowed for the problems to be solved individually. After 
setting up the scripts, the system was optimized, and solutions were found for each of the profiles which can be seen 
below. 

 
Figure 2. Optimized charging profile for a short commute driver. 

 

Figure 3. Optimized charging profile for a long commute driver. 
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Figure 4. Optimized charging profile for a senior driver. 

 
 
5.2 Optimized Charging Profiles 
These profiles can be further interpreted into what time windows the EV should be charged in and what percentage 
the EV battery should be charged to within these windows. Using a spreadsheet to denote each hour within a week 
yields the following tables in which the yellow represents a time window where the EV should be charged, and the 
numbers represent the percentage of the EV battery that should be charged during that window. It is important to 
note that at any point where there is a value above 50, the EV is utilizing supercharging. 
 

 
Figure 5. Optimized charging windows and amounts for short commute driver. 
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Figure 6. Optimized charging windows and amounts for long commute driver. 

 
 

 
Figure 7. Optimized charging windows and amounts for senior driver. 

 
6. Conclusion 
There are many conclusions that could be drawn from the optimized results of this paper. Firstly, since the objective 
function is to minimize the difference between the resource profile and the associated charging windows, the model 
preference is always having a full battery rather than letting the battery get to lower values and getting a larger 
charge. This can be not as ideal as many drivers would prefer to charge fewer times in the week and for larger 
charges than many small charges throughout the week. As well, the model prefers to charge very close to or after 
driving instances such that it recuperates or matches the profile very closely. This could potentially lead to issues for 
the drivers as they don't want to charge prior or immediately after driving and rather have designated times to charge 
their EV. The long commute profile is the only profile in which supercharging is utilized. In both the short and 
senior profiles there is never a charging window that goes above 50%, this is likely is due to the long commute 
profile having 4 hours of driving before any opportunity to charge the EV whereas the short and senior profiles only 
ever had two hours of driving in between charging windows. Lastly, it can be seen in every single profile that the 
charging values exceed that of the consumed values. Although from a scheduling perspective this would be desirable 
as it is minimizing the absolute difference, this is not feasible in the real world. As a battery only has a finite amount 
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of storage it cannot exceed 100% of the charge, this means that anytime the charging profile surpassed the driving 
profile, the real-world battery would be capped at 100% and thus the full value from that charging window would 
not be utilized.   
 
In consideration of the three different profiles tested, the senior profile provided a charging profile that was the most 
feasible. There were very few times where the charging profile exceeded the driving profile as this is a problem 
mentioned above. However, the long commute profile made best use of the superchargers as the model relied on 
using the superchargers after four hours of commuting during the day. When comparing the short commute and long 
commute profiles, they share many similarities to the times of charging with the main differences being the amount 
of charged as would be expected as the long commute drives further. 
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