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Abstract 

Amidst the epoch of the fourth industrial revolution, a discernible imperative surface within the steel industry 
necessitated the replacement of the archaic Defect Inspection System (DIS). The profound fiscal repercussions 
stemming from substandard steel underscore the exigency for this transition. Real-time diagnostics, a pivotal facet of 
quality control in manufacturing, grapples with inherent challenges, notably low automation and inconsistent flaw 
detection on steel surfaces. In response, a groundbreaking approach has materialized in the form of machine vision-
based models, strategically devised to surpass the capabilities of conventional DIS and elevate the quality of produced 
steel. In the course of our study, we addressed flaws in six hot-rolled steel predicaments, leveraging a dataset 
encompassing ten critical surface defects: inclusion, pitted surface, crazing, rolled-in scale, patches, and scratches, 
thereby confronting the challenges previously articulated. Upon meticulous analysis of the dataset, our model, the 
Vision-Based Transformer (VIT), attained an exceptional accuracy rate of 98%. Four distinct machine learning 
models—Xception, ResNet50V2, EfficientNetB2, and MobileNetV2—were enlisted for performance evaluation, 
ultimately revealing the superiority of the VIT in the domain of vision-based Defect Inspection Systems. 
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1. Introduction
In terms of quantity and versatility of application, steel is arguably the most significant metal. The rise of industrial 
society has benefited greatly from steel. The most crucial quality factors, especially for items made of flat-rolled steel, 
are surface characteristics coupled with other attributes (Neogi et al 2014). These steels are employed in the production 
of various industrial machinery. The most crucial step in lowering the risk to safety and monetary loss is the 
identification of industrial machinery and associated workpieces. Surface imperfections differ amongst workpieces. 
There are various defects in the surface of steel plates such as "pitting”, “burr", "scratch”, “crack" etc. These flaws 
pose a risk to consumer safety in addition to lowering product quality. As a result, a popular area of study is the 
classification of surface defects in industrial workpieces. Workpiece defects can originate from a variety of industries, 
including manufacturing, construction, and electrical work (Li. et al 2022). Hot-rolled steel stands as a pivotal 
constituent in construction applications owing to its robustness and economic viability. Commonly available hot-
rolled steel is produced by rolling steel at temperatures above 1700°F, which is far higher than the temperature at 
which most steels recrystallize. Steel products subjected to hot-rolling processes are known to have an extremely high 
rate of surface flaws of various kinds during the manufacturing process. Because of human error, manual strip 
inspection during production is labor-intensive and prone to mistakes. Therefore, automated techniques are preferred 
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in order to reasonably confidently ensure the consistency of examination. In particular, Steel strip images can be 
acquired utilizing specific sensing hardware and subsequently analyzed employing specialized computer algorithms, 
employing image processing and computer vision methodologies. To guarantee a surface free of defects, traditional 
manual surface inspection techniques are woefully inadequate (Konovalenko et al 2020). The quality of steel bands is 
lowered by surface imperfections, but the way these damage types are classified allows for a prompt identification 
and removal of the underlying causes. Thus, the secret to metal product quality control is the effectiveness and 
precision of defect classification. Recently, a large number of optical-digital systems have been developed that enable 
defectoscopy of the surface of the rolled metal at a high enough level. A myriad of neural network architectures, 
including but not limited to GoogLeNet, AlexNet, and ResNet, are strategically harnessed to address a spectrum of 
challenges within the domain of defectoscopy. Its speed is determined by the model's complexity. neural systems are 
taught using pictures of specific metallurgical plant flaws (Ashour et al 2019). Driven by the remarkable achievements 
in natural language processing, computer vision transformers, which can prove to be highly advantageous in the 
domain of surface defect detection in metals.  
 
Transformers are models that carry out a self-attention mechanism by giving each component of the incoming data a 
unique weight. Transformers are now the go-to models for jobs involving Natural Language Processing (NLP). Due 
to its scalability and computational efficiency, models can undergo training with an excess of 100 billion parameters 
without encountering performance saturation. Proposing an application of the same architecture, albeit with minor 
adjustments, for image classification is motivated by the proven effectiveness of transformers in natural language 
processing. The underlying assumption is that the self-attention mechanism, which has demonstrated utility in 
language tasks, could also prove advantageous in image classification endeavors. Transformers emerge as a favorable 
option for image-related tasks due to their capability to simulate long-range dependencies, adapt to diverse input sizes, 
and potentially process data in parallel (Maurício et al 2023). These days, vision transformers are widely used and 
have achieved great success in a variety of domains, including object identification, semantic segmentation, pose 
estimation, image and video classification, and posture estimation (Ruan et al. 2022). In contrast to CNN models that 
heavily depend on convolutional layers, the vision transformer utilizes the transformer architecture, a deep neural 
network grounded in the self-attention mechanism. Originally introduced in natural language processing (NLP), the 
transformer structure has been expanded into computer vision.  
 
When compared to CNN models, those built on the transformer architecture demonstrate superior performance in 
image classification (Jiang et al. 2021). If we consider the merits of Vision Transformer (ViT) over alternative 
approaches in computer vision tasks, it becomes evident that ViT employs key strategies rendering it well-suited for 
ultimate classification challenges. Unlike conventional CNN models, where input size can pose a significant 
impediment, ViT adeptly addresses this issue through linear scalability. ViTs leverage self-attention mechanisms, 
enhancing their ability to effectively capture long-range dependencies in images. Furthermore, their capacity to 
process images as sequences of patches facilitates parallelization and efficient utilization of hardware resources. 
Notably, ViTs exhibit robust performance across diverse image tasks without reliance on handcrafted features. 
Additionally, their scalability allows seamless handling of inputs of varying sizes without necessitating extensive 
architectural modifications. These factors collectively establish ViT as exceptionally compatible with image vision 
tasks. In our research, we utilized a dataset pertaining to surface defects in hot-rolled steel strips. The accuracy of a 
model applied to such a dataset is paramount, making ViT a compelling choice for this computer vision task due to 
its demonstrated efficacy. Unlike traditional convolutional neural networks (CNNs), ViT's reliance on self-attention 
mechanisms for capturing global dependencies in image data represents an innovative paradigm that has yielded 
success in tasks such as object detection, image classification, and segmentation. ViT's versatility and scalability 
position it as an optimal solution for a myriad of real-world challenges across industries like healthcare, 
manufacturing, and autonomous systems. Consequently, ViT emerges as a promising and highly suitable solution for 
addressing the complexities inherent in industrial applications.  
 
1.1 Objectives  
This study aims to develop a vision transformer-based classification model for swiftly identifying surface defects in 
hot-rolled steel strips. The goal is to automate defect detection, reduce human intervention, and minimize operational 
costs. The approach involves formulating a classification model inspired by natural language processing, applying it 
to a curated dataset of steel strip anomalies, and rigorously assessing its accuracy against contemporary models. The 
anticipated outcome is an industry-compliant model that enhances defect detection while lowering operational 
expenses. 
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2. Literature Review  
Autocorrelation is a statistical method used in defect detection systems (Cui et al., 2023) Other methods for defect 
detection include the random field model (Chen et al., 2019) hybrid and complementary fractal feature vector(Zhou 
et al., 2017) , and 2D-Wavelet Transform(Ghazvini et al., 2009) . Deep learning techniques, which have more benefits 
than standard approaches, provide an automated and proactive approach to surface flaw identification that may 
successfully replace traditional human inspection systems.The introduction and use of Deep Convolutional Neural 
Networks (DCNNs) to the task of defect classification in hot-rolled steel is a state-of-the-art development in this sector 
in recent years.In order to accomplish quick and accurate fault detection on steel surfaces,(Fu et al., 2019) have 
introduced a succinct but effective Convolutional Neural Network (CNN) model that combines numerous sensory 
fields and strongly emphasizes training of essential features at lower levels. It should be emphasized that the suggested 
technique may require a considerable amount of labeled data for training, a possible difficulty in certain cases where 
data gathering could be restricted. (Feng et al., 2021) adopted the RepVGG model to detect surface defects in hot-
rolled steel. They have found an outstanding accuracy of 95.10% and use X-SSD datasets of 1350 images to evaluate 
model performance. but the RepVGG+SA algorithm has high computational complexity, which leads to high 
deployment costs. (Luo & He, 2016) concentrate on the architecture, implementation, and assessment of the system, 
which employs image processing and FPGA methods to identify and categorize faults on steel surfaces in real time 
with a 92.11% average accuracy. CNNs automate the acquisition of surface fault characteristics, boosting efficiency 
over human techniques. 
 
 Nevertheless, their particular sensitivity limits their capacity to understand the complete input data. To better overall 
feature characterization, bigger convolutional kernels, and more advanced layers are necessary, however, this could 
increase the level of complexity and possibly delay training convergence, resulting in a dimensional disaster. To 
address the issues stemming from the convolutional operations' inherent bias in CNNs, researchers have turned to the 
Transformer model in computer vision for image classification. The Transformer model, (Vaswani et al., 2017), has 
demonstrated its prowess by achieving top-tier results in machine translation tasks. Notably, it exhibits superior 
parallelizability and markedly reduced training time requirements. Consequently, the Transformer has emerged as a 
mainstream algorithm in the domain of natural language processing. Building upon this inspiration, the Vision 
Transformer (ViT) (Dosovitskiy et al., 2021) presents an innovative approach by directly applying the standard 
Transformer architecture to image patches, eliminating the need for convolutional layers. The paper demonstrates 
ViT's capacity to attain leading performance in image classification tasks. Notably, ViTs exhibit efficient training 
characteristics by demanding fewer parameters compared to CNNs, marking a significant advancement in the field of 
computer vision. In our study, we perform the categorization of steel surface flaws via a vision-based transformer. By 
training the Vision Transformer (ViT) model with a steel defect dataset, we can successfully recognize and classify 
flaws, assuring quality control in steel manufacturing. This demonstrates the promise of transformer-based models in 
image recognition applications. Our study stresses the vital significance of precise defect detection and object 
identification in preserving steel product quality 
 
3. Methods  
The detailed methodology is elucidated in Figure 1, which is divided into three main phases: preprocessing, model 
creation, and evaluation. Each of these phases is further segmented into specific sub-phases. The data acquisition 
phase has been discussed in Section 4, and the subsequent sections of this paper delve into a thorough examination of 
the remaining phases. 
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Figure 1. Flow diagram of the overall system. 

 
3.1 Data Preprocessing  
The comprehensive dataset encompasses 1728 monochromatic images intricately documenting discernible anomalies 
present on metallic surfaces. These images are systematically arranged into six carefully curated folders, namely 
Crazing, Inclusion, Rolled, Patches, Pitted, and Scratches. Each folder encapsulates a diverse array of images, each 
representing unique defect classes. Figure 2 provides a visual representation of the images contained in these different 
folders. 

 

 
 

Figure 2. Hot Rolled Surface defects of different classes each 
 

The 1728 images are standardized to dimensions of 360×360 pixels. Analysis of the histogram, generated from a 
representative subset of the dataset, reveals that pixel values range from 0 to 255. To achieve normalization, the array 
values of each image are divided by the maximum pixel value present within that particular image. Figure 3 provides 
a visual representation of the histogram distribution of the images. 
 

 
 

Figure 3. Histogram of Images 
 

Crazing Inclusion Patches

Pitted Rolled Scratches
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3.2 Vision Transformer 
The Transformer framework, initially crafted for natural language processing, is characterized by its influential self-
attention mechanism. Transitioning this paradigm to the realm of vision, the Vision Transformer's architectural 
intricacies are meticulously illustrated in Figure 4. The primary input to this transformative network comprises original 
grayscale images, each boasting dimensions of 360×360 pixels. However, before integration into the Transformer, a 
pivotal transformation takes place, involving the partitioning of images into multiple patches. These individual 
segments are then embedded to seamlessly integrate into the network. Following this patch-based embedding, a critical 
turn occurs with the introduction of a Flatten layer. This layer adeptly projects the flattened image segments, setting 
the stage for linear projection – a precursor to the subsequent transformation stage: positional embedding. In the realm 
of positional embedding, spatial information is infused into the patches, with dimensions meticulously determined by 
a well-defined equation (Hen et al., 2022): 

                                                              𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 2𝑝𝑝) = 𝑝𝑝𝑝𝑝𝑝𝑝 � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
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�                                                               (2) 

Position, meticulously defined as a word's placement within a sentence, and 'i,' signifying the current dimension of 
positional encoding, play pivotal roles in this intricate framework. Following the indispensable steps of positional 
embedding and linear projection, the subsequent phase unfolds across eight Transformer encoder layers. Each layer 
initiates with the integration of a normalization layer, 
 
                                                                                𝜇𝜇 = 1

𝐻𝐻
∑ 𝑎𝑎𝑝𝑝𝐻𝐻
𝑝𝑝=1                                                                                    (3) 

                                                                      𝜎𝜎 = �1
𝐻𝐻
� (𝑎𝑎𝑝𝑝

𝐻𝐻
𝑝𝑝=1 − 𝜇𝜇)2                                                                          (4) 

where 'H' denotes the number of hidden units within each layer. The normalization layer, governed by equations (3) 
and (4), orchestrates a shared normalization for all hidden units in a layer. Notably, different training cases carry 
distinct normalization terms, adding a nuanced layer of complexity to the process. The normalized output progresses 
into the multi-head attention layer, symbolizing a symphonic crescendo in the integration of components. Each layer 
assumes a pivotal role in the intricate choreography of feature extraction and transformation. Following its traverse 
through this harmonious cascade of layers, the encoded output navigates through two layers of artificial neural dense 
architecture. The output bifurcates into two distinct sections: one dedicated to image classification. Given six distinct 
classes, the classification section comprises six dense layers, each employing the softmax activation function using 
the equation (5),  
                                                                      𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎𝑠𝑠(𝑍𝑍)𝑝𝑝 = 𝑒𝑒𝑖𝑖

� 𝑒𝑒𝑧𝑧𝑗𝑗
𝑘𝑘

𝑗𝑗=1

                                                                         (5) 

 
Here the 𝑍𝑍𝑝𝑝 is the input to the softmax function for class i and  𝑘𝑘 is the total number of classes. This architectural 
symphony is visually depicted in Figure 4. 
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Figure 4.  Architecture of Transformer Model 
 
3.3 Evaluation Metrics 
The model, composed of a sophisticated architecture featuring 8 layers of Transformer encoding, has undergone a 
rigorous training process within the Google Colab IDE. The training epochs meticulously honed the model's 
parameters, creating a refined configuration. In the realm of model evaluation, a comprehensive suite of metrics 
including accuracy, Mean Squared Error (MSE) loss, and Top-5-Accuracy has been deployed to assess its 
effectiveness. Accuracy, the primary metric among these, serves as a barometer for the model's precision in rendering 
predictions. It quantifies correctness by measuring the ratio of accurately classified instances to the total dataset size, 
expressed mathematically as in equation 5: 
                                                 𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑝𝑝𝑜𝑜 𝐶𝐶𝑝𝑝𝑁𝑁𝑁𝑁𝑒𝑒𝐶𝐶𝑝𝑝 𝑃𝑃𝑁𝑁𝑒𝑒𝑃𝑃𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
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MSE provides additional insights into the variability of errors. The MSE formula is defined as in equation 6: 
                                                           𝑀𝑀𝑝𝑝𝑎𝑎𝑝𝑝 𝑆𝑆𝑆𝑆𝐴𝐴𝑎𝑎𝐴𝐴𝑝𝑝𝑆𝑆 𝐸𝐸𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴 = 1

𝑝𝑝
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where 𝑝𝑝 is the number of observations, 𝐴𝐴𝑝𝑝 is the actual value, 𝐴𝐴�𝑝𝑝 and is the predicted value. The metric denoted as 
"Top-5 accuracy" finds its prevalent application in the realm of multi-class classification challenges, specifically 
tailored for scenarios necessitating the identification of the most probable class amid the top quintile of predicted 
classes. This metric represents a nuanced expansion beyond the conventional top-1 accuracy, accommodating a 
broader spectrum of potential correct predictions. 
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The metric denoted as "Top-5 accuracy" finds its prevalent application in the realm of multi-class classification 
challenges, specifically tailored for scenarios necessitating the identification of the most probable class amid the top 
quintile of predicted classes. This metric represents a nuanced expansion beyond the conventional top-1 accuracy, 
accommodating a broader spectrum of potential correct predictions.  
 
4. Data Collection  
Derived from the NEU Metal Surface Defects repository, this dataset comprises a compilation of six distinctive surface 
irregularities observed in hot-rolled steel strips, specifically identified as rolled-in scale, patches, crazing, pitted 
surface, inclusion, and scratches. Comprising 1,800 grayscale images, the dataset is meticulously organized into three 
directories: one designated for training, another for testing, and the final one for validation. Within each directory, a 
consistent number of images representing each defect class is meticulously curated.  
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Table 1. Distribution of images from different classes 
 

Class Count (Training) Count (Testing) Total (Count) Percentage 
Crazing 276 12 288 16.67% 

Inclusion 276 12 288 16.67% 
Patches 276 12 288 16.67% 
Pitted 276 12 288 16.67% 
Rolled 276 12 288 16.67% 

Scratches 276 12 288 16.67% 
 
An analysis of the tabulated data reveals that the testing directory houses 12 image instances for each defect class. 
Conversely, the training directory boasts a more substantial compilation, featuring 276 image instances for each defect 
class. The validation directory, mirroring the testing directory, accommodates 12 image instances for each defect class. 
However, the model was constructed without considering the image data from the validation directory; this set of 
images was excluded from the building process. The image dimensions are a crucial aspect of data gathering. Each 
image has a size of approximately 360 x 360 x 3. In essence, it is imperative to elucidate that each defect class 
encompasses a total of 288 image instances, accounting for training and testing collectively. This distribution equates 
to 16.67% of the entire image dataset per defect class, demonstrating a thorough and systematic approach to the 
organization of the data across the various directories. Table 1 comprehensively presents the information pertaining 
to all the classes. The figure below clearly indicates that each defect class comprises an equal quantity of image data. 
It can be inferred from the figure that all defect classes consist of 288 image data points, and each class represents the 
same percentage of the overall image data. 
 

 
 

Figure 5.  Distribution of images from different classes 
 
5. Results and Discussion  
 
5.1 Numerical Results 
Table 2 presents a meticulous comparative analysis of diverse trained models, encompassing CNN with transfer 
learning through architectures like Xception, MobileNetV2, ResNet50V2, EfficientNetB2, and our Vision 
Transformer model. Within this tableau, the Xception model manifests the least favorable performance, achieving a 
classification accuracy of 91.3% alongside a classification loss of 0.521. In stark contrast, the EfficientNetB2 model 
emerges as the epitome of performance, boasting a noteworthy accuracy of 97.3% coupled with a classification loss 
of 0.210. MobileNetV2, with a moderate accuracy of 97%, exhibits a classification loss of 0.295. The crowning 
achievement within the table, however, is reserved for our Vision Transformer-based model, showcasing unparalleled 
results with an accuracy of 98% and a classification loss of 0.172. This comprehensive comparison underscores the 
superior efficacy of the Vision Transformer model in the context of classification accuracy and loss. 
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Table 2.  Comparative analysis of Various models with our Model 
 

Model Classification 
Accuracy 

Loss Top-5-
Accuracy 

Our Model 98% 0.172 99.8% 
CNN with Xception 91.3% 

 
0.521 

 
99% 

 
CNN with 

ResNet50V2 
94.6% 

 
0.329 

 
99.3% 

CNN with 
MobileNetV2 

97% 0.295 
 

98% 
 

CNN with 
EfficientNetB2 

97.3% 0.210 99% 

 
5.2 Graphical Results  
Having undergone an extensive training regimen spanning 700 epochs, the Transformer model was subjected to 
dataset partitioning following the methodology explicated in Section 4. The quantitative outcomes, meticulously 
detailed in Table 2 of Section 5.1, unequivocally demonstrate that the model proposed in this paper outshines the 
performance of all referenced models in the aforementioned table. To further illuminate these findings, the graphical 
representation in Figure 6 delineates the comprehensive reduction in loss, comparing Training loss to Validation loss. 
Specifically, the ultimate convergence of training loss to 0.172 stands in stark contrast to the validation loss stabilizing 
at 0.276. 
 

 
 

Figure 6.  Training Loss vs Validation Loss 
 
In tandem, Figure 7 provides a visual narrative of the training accuracy versus validation accuracy. The discerned 
trends unveil an impressive 99.8% training accuracy, juxtaposed with the validation accuracy plateauing at 
approximately 95.6%. The nuanced fluctuations in accuracy throughout the epochs are perceptibly evident in this 
graphical depiction. 
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Figure 7. Training Accuracy vs Validation Accuracy 
 

Furthermore, Figure 8 supplements these insights by illustrating the top-5-accuracy, offering a holistic perspective on 
the model's classification performance beyond the singular top-1 accuracy metric. These comprehensive analyses 
collectively underscore the robust performance and generalization capabilities of the proposed Transformer model. 
 

 
 

Figure 8: Training Top-5-Accuracy vs Validation Top-5-Accuracy 
 

5.3 Validation  
Figure 9 visually encapsulates the representation of predicted image classes, wherein the labels discerned are 
indicative of the contrast between predicted and actual labels. This graphical depiction serves as a visual testament to 
the model's accuracy in real-world image prediction, offering a nuanced insight into the model's efficacy in translating 
predictions to real-life scenarios. 
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Figure 9. Prediction of Image classes 
 

6. Conclusion  
In the contemporary landscape, the domain of computer vision tasks has evolved into a complex realm, captivating 
both scholarly exploration and industrial applications. The demand for heightened accuracy in computer vision tasks 
has become imperative. In the course of our investigation, we have introduced a meticulously crafted neural network 
architecture tailored for the intricacies of computer vision tasks. The incorporation of the Vision Transformer into our 
model has proven instrumental, particularly in discerning and classifying surface defects. Through rigorous 
comparative analyses with alternative models, we sought to assess the model's adaptability to real-time challenges. 
The attained accuracy is notably commendable, boasting a training accuracy of 98% and an even more remarkable 
testing accuracy of 95%. These precision metrics surpass the requisites for adeptly tackling intricate computer vision 
tasks. Various deep learning models, encompassing CNNs with Xception, ResNet50V2, MobileNetV2, and 
EfficientNetB2, underwent rigorous evaluation alongside our proposed model. Ultimately, our model showcased 
superior adaptability, marked by its highest training and testing accuracy values. In summary, our model stands as a 
testament to its efficacy in executing classification tasks with unparalleled precision. Its applicability seamlessly 
extends to industrial contexts, proving invaluable in categorizing surface defects and proactively identifying their root 
causes, thereby facilitating timely remediation. This not only translates into economic savings by mitigating monetary 
losses but also serves as a judicious means of optimizing manpower costs. In essence, the deployment of the Vision 
Transformer model transcends mere efficiency, presenting itself as a boon to industries grappling with the temporal 
and financial challenges associated with manual detection processes. 
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