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Abstract 

Electric load forecasting, also known as Probabilistic Load Forecasting (PLF), has played a role in the electric power 
industry. Forecasting the electricity consumption in business is necessary for planning power system operations, 
stability, and energy trading. Many business entities, such as commercial airports, require electric load forecasting to 
meet service and regulatory needs. Therefore, forecasting is needed to become a reference in determining strategic 
management energy. This research aims to forecast the electricity consumption of Soekarno-Hatta International 
Airport using the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. The study uses daily 
historical data collected from airport operator companies from 01 January 2022 to 31 December 2022 to build and 
evaluate the model's performance. The findings show that the SARIMA model (1,1,1)(0,1,1)7 has the best model 
accuracy with a MAPE of 4.62%. The study conclusions highlight the potential of the model to support energy 
management practices at Soekarno Hatta International Airport and other similar facilities.  
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1. Introduction
Electrical load forecasting, or Probabilistic Load Forecasting (PLF), has played a role in the electric power industry 
in the last few decades. The need for load forecasting in business is used as a basis for planning power system 
operations, revenue projections, tariff design, the stability of the entire power system, and energy trading. Apart from 
electric utilities, various business entities such as regulatory bodies, large industrial companies, and commercial 
companies have a need for electrical load forecasting (Hong & Fan, 2016; Tang et al., 2022). Moreover, accurately 
forecasting electricity loads in electricity generation and distribution systems can help better balance electricity 
production and demand (Gunawan & Huang, 2021). The dynamic nature of generating capacity and electricity 
consumption poses challenges due to the inability to store electricity. Synchronizing power generation with changes 
in electricity demand is crucial for maintaining a dynamic equilibrium. Failure to do so can impact the quality of 
electricity supply and potentially jeopardize the safety and stability of the power system (Hu et al., 2017). (Kang et 
al., 2017) research developed a basic model of airport energy specifically by including flight information, time, and 
outside temperature using the Piecewise Linear Regression Technique. Nevertheless, this study lacks the ability to 
fully capture the actual influence of passengers on airport demand. The association between passenger volume and 
the power demand of airports is anticipated to exhibit non-linearity. Airports require substantial electricity for 
fundamental operational necessities, such as conveyors and lighting, which remain consistent regardless of flight 
schedules. In addition, airport power data includes electricity demand for air-side buildings and all facilities, including 
parking lots and hotels. Soekarno-Hatta Airport currently only has historical records regarding the use of electricity 
loads, but does not yet have forecasts of electricity loads. Based on this background, airport management companies 
need an electric load forecasting model as a reference in carrying out strategies related to electrical equipment and 
airport operations. 

1.1 Objectives  
With the background that has been discussed previously, the purpose of this research is as follows. 

1. Using forecasting methods, create a SARIMA model to estimate the airport's electrical consumption.
2. Comparing the performance of the performance models used.
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2. Literature Review
2.1 Electricity Load Forecasting
The current load on the power system is so dynamic that it requires sophisticated technology to monitor and control
the power system, such as forecasting the electric load. Although demand forecasting was first discussed in 1925, it
received a significant boost with the introduction of statistical methods (Yashwanth et al., 2021). However, there is
no standard yet to classify the forecasting range of electrical loads. The classification of the forecasting process by
(Hong & Fan, 2016) is structured into four distinct categories, determined by the time intervals and their respective
applications. These categories include very short-term load forecasting (VSTLF), short-term load forecasting (STLF),
medium-term load forecasting (MTLF), and long-term load forecasting (LTLF). The consumption of electricity is
subject to a range of factors, comprising weather conditions (such as temperature, wind speed, and rainfall), the level
of daily business activities (including peak and off-peak hours, weekdays and weekends, holidays, and approaching
holidays), as well as seasonal patterns at the daily, weekly, and yearly levels. These factors can result in unforeseen
spikes in electricity demand. Consequently, electric load forecasting has emerged as a crucial component for planning
and operating energy systems (Abunofal et al., 2021).

Various electrical load forecasting methods, such as neural network-based forecasting, support vector machines, 
decision trees, time series analysis, and linear regression, have been introduced. While nonlinear models, such as 
neural networks and support vector machines, often yield superior predictive accuracy and can effectively capture 
non-linearity within a dataset, they present challenges in result interpretation and entail high computational burdens 
during model training and testing. On the other hand, linear regression models are user-friendly and provide easily 
interpretable results. In certain cases, they have demonstrated success in predicting building energy consumption 
(Kang et al., 2017). However, linear regression models are not suitable for datasets with nonlinear characteristics. 
Therefore, this research uses a time series analysis model, namely Seasonal ARIMA, because it is easier to interpret 
and can handle nonlinear and seasonal data types. 

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model has gained significant traction in the field 
of forecasting. In a similar vein, Hasanah et al. (2021) employed the SARIMA model to predict loads of electricity on 
several national holidays, specifically Independence Day & New Year, during the period of 2015-2018. Their study 
aimed to identify suitable SARIMA models for accurately estimating loads of electricity in the future periods. The 
findings indicate that SARIMA (2,2,0) (0,1,0)24 and SARIMA (1,1,0) (1,1,0)24 are appropriate models for forecasting 
electricity loads on New Year and Independence Day, respectively. In the various models of forecasting, SARIMA 
models can be enhanced by incorporating exogenous factors to improve accuracy. As demonstrated by Abunofal et 
al. (2021), SARIMA models were employed to forecast future electricity prices for Germany by considering various 
input parameters and selecting the optimal modeling approach. The results indicate that the SARIMAX model 
outperformed other models, including SARIMA, multiple linear regression, and ARIMA, in terms of predictive 
performance. Apart from the demand side, SARIMA can also be used for forecasting on the energy production side, 
such as (Vagropoulos et al., 2016), which compares several methods for forecasting power generation from 
Photovoltaic (PV) generators connected to the grid (grid), including modeling Seasonal Autoregressive Integrated 
Moving Average (SARIMA). The results show that the SARIMA model is relatively accurate regarding future 
forecasting. 

2.2 Seasonal Autoregressive Integrated Moving Average (SARIMA) 
The SARIMA model is a method of modeling univariate time series with high seasonal patterns (Box et al., 2016). 
This model is adding seasonal effect as an extension of the ARIMA model, representing a generalization of the ARMA 
model. (Al-Shaikh et al., 2019) illustrated that a stationary time series can be represented by an Autoregressive Moving 
Average (ARMA) model with an order of (p, q). This model consists of two distinct polynomials: an Autoregressive 
(AR) polynomial of order p, as denoted by equation 1, and a Moving Average (MA) polynomial of order q, as 
represented by equation 2. 

𝑦𝑦(𝑡𝑡) = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜙𝜙1𝑦𝑦𝑡𝑡−1 + 𝜙𝜙2𝑦𝑦𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 (1) 
𝑦𝑦(𝑡𝑡) = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + 𝜃𝜃2𝜖𝜖𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 (2) 

In equation 3, the constant c represents a constant term, y(t) denotes the value of the time series at time t, 𝜖𝜖𝑡𝑡 represents 
a white noise error, 𝑦𝑦𝑡𝑡−𝑝𝑝 represents the value of the time series at lag pth, and ϕ and θ are parameters of the ARMA 
model. The ARIMA model with an order of (p, d, q) can be represented by equation 3. 
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𝑦𝑦′(𝑡𝑡) = 𝑐𝑐 + 𝜖𝜖𝑡𝑡 + 𝜙𝜙1𝑦𝑦𝑡𝑡−1 + ⋯+ 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜃𝜃1𝜖𝜖𝑡𝑡−1 + ⋯+ 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 (3) 
 

Here, 𝑦𝑦′(𝑡𝑡) is defined by differencing as 𝑦𝑦′(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝑦𝑦(𝑡𝑡 − 1). Equation 4 can alternatively be expressed with 
the inclusion of first differencing. 
 

𝑦𝑦′(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝐵𝐵1(𝑦𝑦(𝑡𝑡))      (4) 
 
The operator B1 in Equation 4 is referred to as the backward shift operator with an order of 1. The subsequent 
equations depict the SARIMA model with an order of (p, d, q) x (P, D, Q) L. 
 

𝜙𝜙1𝑝𝑝(𝐵𝐵)𝜑𝜑𝑃𝑃(𝐵𝐵𝐿𝐿)𝑦𝑦(𝑡𝑡) = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝜗𝜗𝑄𝑄(𝐵𝐵𝐿𝐿)𝜖𝜖𝑡𝑡    (5) 
 
Here, L represents the seasonal period, and 

𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 −  𝜙𝜙1𝐵𝐵 −⋯− 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝,     (6) 
𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 −  𝜃𝜃𝑞𝑞𝐵𝐵 −⋯− 𝜙𝜙𝑞𝑞𝐵𝐵𝑞𝑞 ,     (7) 
𝜑𝜑𝑃𝑃(𝐵𝐵𝐿𝐿) = 1 − 𝜑𝜑1𝐿𝐿𝐵𝐵𝐿𝐿 − ⋯− 𝜑𝜑𝑃𝑃𝐿𝐿𝐵𝐵𝑃𝑃𝐿𝐿    (8) 
𝜗𝜗𝑄𝑄(𝐵𝐵𝐿𝐿) = 1 − 𝜗𝜗1𝐿𝐿𝐵𝐵𝐿𝐿 −⋯− 𝜗𝜗𝑄𝑄𝐿𝐿𝐵𝐵𝑄𝑄𝐿𝐿    (9) 
 

Here, 𝜙𝜙 , 𝜃𝜃 , 𝜑𝜑 , and 𝜗𝜗  are parameters of the SARIMA model. 𝜙𝜙  represents the parameter for autoregressive, 𝜃𝜃 
parameter for moving average, 𝜑𝜑 represents the parameter for seasonal autoregressive, and 𝜗𝜗 represents the parameter 
for the seasonal moving average. 
 
3. Methods  
In the forecasting research process using the SARIMA model, starting with determining objectives, data collection, 
data preprocessing, descriptive statistics, splitting data into train and test, stationarity test, model identification, 
model selection, model diagnostics, parameter evaluation, residual evaluation, model evaluation, and forecasting. 
The research process is described in Figure 1 as follows.  
 

 
 

Figure 1. Research Flowchart 
 
 
3.1 Model Identification 
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The preliminary specification stage is also referred to as model identification using the Box-Jenkins methodology that 
can only be applied effectively to stationary time series data. In these instances, the time series graph should ideally 
be analyzed, and data transformations should be made as needed. A time plot of the data should be first constructed, 
and any anomalies in the graph should be scrutinized. The variance would need to be stabilized if it was observed to 
increase over time (Chang, 2012; Damrongkulkamjorn & Churueang, 2005). Determining the ARIMA order (p,d,q) 
is typically based on the patterns observed in plots of ACF and PACF. The most critical elements are the 
Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF). The Autocorrelation Function 
(ACF) quantifies the linear relationship between observations in a time series with a time lag of q. The Partial 
Autocorrelation Function (PACF) aids in determining the required number of autoregressive terms, p. The parameter 
d signifies the order of differencing needed to transform a non-stationary time series into a stationary one. Moreover, 
examining a time series plot and the ACF can provide insights into whether differencing is necessary. If differencing 
is utilized, the time plot will exhibit a discernible linear trend. 
 
The determination of the appropriate values for p and q is based on the identification of significant lags in the 
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF), as outlined by (Hasanah et al., 2021). 
A summary of this identification procedure is presented in Table 1. 
 

Table 1. ACF and PACF Pattern Theoretically for Stationary Process  
 

Models ACF PACF 
AR (p) Exponentially decreasing/sinusoidal Cut off the significant level at lag p 
MA (q) Cut off the significant level at lag q Exponentially decreasing/sinusoidal 

ARMA (p,q) Cut off the lag p and the vast 
majority decreasing after a lag 

Cut off the lag q and the vast 
majority decreasing after lag q 

 
In datasets that exhibit seasonality, it is common to employ ARIMA models that account for seasonal patterns. A 
seasonal ARIMA model extends the conventional ARIMA models by incorporating additional seasonal terms. This 
model is denoted as SARIMA (p, d, q)(P, D, Q)m, where the non-seasonal components are represented by the order 
(p, d, q), while the seasonal components are denoted by (P, D, Q), and m indicates the seasonality of the model. Once 
the initial values of D (seasonal difference) and d (non-seasonal difference) have been established, the subsequent step 
involves examining the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of seasonality 
to ascertain the appropriate values for Q and P. Subsequently, the selection of model parameters is guided by Akaike's 
Information Criterion (AIC), which aids in determining the optimal parameter values. 
 
Box-Cox transformation 
The initial step in forecasting involves data analysis to identify if the variances are stationary and to verify if the time 
series mean stationarity. When variances prove to be unstable, we can utilize the Box-Cox transformation. This 
traditional method aids in maintaining a stable residual variance (Halim et al., 2007). The formula for this 
transformation is as follows: 

𝑔𝑔(𝑦𝑦) = �
𝑙𝑙𝑙𝑙𝑔𝑔 (𝑦𝑦), 𝜆𝜆 = 0

𝑦𝑦𝜆𝜆−1
𝜆𝜆

, 𝜆𝜆 ≠ 0
       (10) 

In the context of the analysis, y represents the original data, while λ is the selected parameter. 
 
Unit Root Test 
A time series is considered stationary if all the roots of its characteristic equation (such as equation (6)) have an 
absolute value greater than one, as stated by (Halim et al., 2007). In the case of an AR (1) model, the characteristic 
equation is given by 1-ϕB = 0, which yields a root of B = 1/ϕ. If the absolute value of this root exceeds one, the time 
series, denoted as yt, is deemed stationary. Consequently, the AR (1) model demonstrates stationarity when |ϕ| < 1. 
When the root equals one, it is referred to as a unit root. 
 
1) Dickey-Fuller Test 
Dickey and Fuller proposed three regression equations to identify the presence of unit roots, namely: 
∆𝑦𝑦𝑡𝑡 = 𝛾𝛾𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡        (11) 
∆𝑦𝑦𝑡𝑡 = 𝑎𝑎0 + 𝛾𝛾𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡       (12) 
∆𝑦𝑦𝑡𝑡 = 𝑎𝑎0 + 𝛾𝛾𝑦𝑦𝑡𝑡−1 + 𝑎𝑎1+𝜀𝜀𝑡𝑡      (13) 
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The Dickey-Fuller test is based on a set of hypotheses, which are: 
𝐻𝐻0: 𝛾𝛾 = 1 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 𝑡𝑡𝑠𝑠 𝑛𝑛𝑙𝑙𝑡𝑡 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑙𝑙𝑛𝑛𝑎𝑎𝑠𝑠𝑦𝑦) 
𝐻𝐻0: 𝛾𝛾 < 1 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 𝑡𝑡𝑠𝑠 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑙𝑙𝑛𝑛𝑎𝑎𝑠𝑠𝑦𝑦) 
 
The primary version of the Dickey-Fuller (DF) test is expressed by Equation (11). This version does not consider the 
potential presence of drift and trend in the series. When Equation (11) matches the original data, but the value of y0 
in the series is uncertain, it is recommended to introduce a constant, a0, into the regression model while testing for a 
unit root, as demonstrated in Equation (12). Additionally, if a time trend, t, is incorporated, the regression model 
specified in Equation (13) can be employed to test for a unit root.  Testing continues toward more restricted 
specifications if the null hypothesis cannot be rejected using the most inclusive specification. The testing process 
ceases once we can reject the null hypothesis, which suggests the presence of a unit root. 
 
2) Augmented Dickey-Fuller Test 
When a basic AR (1) Dickey-Fuller (DF) model is used but the actual process followed by yt is an AR(p), the error 
term will exhibit autocorrelation to adjust for the incorrect representation dynamic structures of yt. Therefore, if yt 
follows an AR process of order pth, the enhanced version of the Augmented Dickey-Fuller test can be applied, which 
is (Halim et al., 2007; Noureen et al., 2019): 
 
𝑦𝑦𝑡𝑡 = Ѱ1𝑦𝑦𝑡𝑡−1 + Ѱ2𝑦𝑦𝑡𝑡−2 + ⋯+ Ѱ𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡     (14) 
∆𝑦𝑦𝑡𝑡 = Ѱ∗𝑦𝑦𝑡𝑡−1 + Ѱ1∆𝑦𝑦𝑡𝑡−1 + Ѱ2∆𝑦𝑦𝑡𝑡−2 + ⋯+ Ѱ𝑝𝑝−1∆𝑦𝑦𝑡𝑡−𝑝𝑝+1 + 𝜀𝜀𝑡𝑡  (15) 
Where, Ѱ∗ = �Ѱ1 + Ѱ2 + ⋯+ Ѱ𝑝𝑝� − 1 𝑎𝑎𝑛𝑛𝑎𝑎 𝜀𝜀𝑡𝑡~𝐼𝐼𝑎𝑎𝑡𝑡𝐼𝐼𝑡𝑡𝑛𝑛𝑎𝑎𝑡𝑡𝑛𝑛𝑡𝑡 𝑎𝑎𝑛𝑛𝑎𝑎 𝐼𝐼𝑎𝑎𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙𝑦𝑦 𝐷𝐷𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑎𝑎 (𝐼𝐼𝐼𝐼𝐷𝐷)(0,𝜎𝜎2)  
 
The Augmented Dickey-Fuller test is based on a set of hypotheses, which are: 
𝐻𝐻0: Ѱ∗ = 0 (𝑡𝑡ℎ𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑠𝑠 𝑎𝑎 𝐷𝐷𝑛𝑛𝑡𝑡𝑡𝑡 𝑠𝑠𝑙𝑙𝑙𝑙𝑡𝑡) 
𝐻𝐻1: Ѱ∗ < 0 (𝑡𝑡ℎ𝑡𝑡𝑠𝑠𝑡𝑡 𝑡𝑡𝑠𝑠 𝑛𝑛𝑙𝑙 𝐷𝐷𝑛𝑛𝑡𝑡𝑡𝑡 𝑠𝑠𝑙𝑙𝑙𝑙𝑡𝑡) 
 
The p-value acquired from performing the ADF test determines the acceptance or rejection of the null hypothesis. For 
a confidence level of 95%, if the p-value is equal to or greater than 0.05, the null hypothesis is true. Conversely, if the 
p-value is less than 0.05, the value is significant enough to reject the null hypothesis, indicating that the time series is 
stationary. 
 
Differencing 
Differencing is a technique used to transform a time series into a stationary process by sequentially calculating the 
differences between consecutive observations. This approach aids in stabilizing the mean of the time series by 
removing variations in the time series' rate, thereby mitigating or eliminating trend and seasonality effects. ACF will 
decrease to zero relatively quickly for stationary time series, while non-stationary ACF will decrease slowly. The 
formula of differencing is shown as follows: 
 
First order differencing: 
𝑦𝑦𝑡𝑡′ = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1        (16) 
Second-Order Differencing: 
𝑦𝑦𝑡𝑡′′ = 𝑦𝑦𝑡𝑡′ − 𝑦𝑦𝑡𝑡−1′ = (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1) − (𝑦𝑦𝑡𝑡−1 − 𝑦𝑦𝑡𝑡−2) = 𝑦𝑦𝑡𝑡 − 2𝑦𝑦𝑡𝑡−1 + 𝑦𝑦𝑡𝑡−2  (17) 
Seasonal Differencing: 
𝑦𝑦𝑡𝑡′ = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−𝑚𝑚        (18) 
Where yt is the value observed, and m is seasonality. 
 
Diagnostic Check 
Akaike's Information Criterion (AIC) can be used to determine the order of the ARIMA model; this value evaluates 
the adequacy of a fitted statistical model by assessing its goodness of fit., which is obtained as follows. (Hyndman & 
Athanasopoulos, 2018) 
 
𝐴𝐴𝐼𝐼𝐴𝐴 =  −2 log(𝐿𝐿) + 2(𝐼𝐼 + 𝑞𝑞 + 𝑘𝑘 + 1)     (19) 
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In the above equation, represents the likelihood of the data, where k=1 if 𝑐𝑐 ≠ 0 and k = 0 if c = 0, and k is equal to 0 
if c is equal to zero. The last term enclosed in parentheses denotes the count of parameters in the model, which 
encompasses the variance (σ2) of the residuals. The model with the lowest Akaike Information Criterion (AIC) value 
is considered the most favorable. The approach of AIC aims to identify a model that provides the best representation 
of the data while utilizing the least number of free parameters. 
 
Preliminary Parameter Estimation 
Some of the model parameters do not exhibit statistical significance. The associated ratios are presented as 
� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃
1.96×𝑆𝑆𝑡𝑡𝑆𝑆.𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃

� > 1       (20) 
The recommendation could be to experiment with a model where some parameters are assigned a value of zero [5]. 
After each parameter has been set to zero, it becomes necessary to re-evaluate the model. 
 
Ljung-Box Statistic 
The Ljung-Box statistic is used to evaluate whether the autocorrelations of a time series fall below zero (Halim et 
al., 2007). The computation of the test statistic proceeds as follows: 
𝑄𝑄 = 𝑇𝑇(𝑇𝑇 + 2)∑ 𝑃𝑃𝑘𝑘

2

𝑇𝑇−𝑘𝑘
𝑠𝑠
𝑘𝑘=1        (21) 

Where, 
• T: Number of observations 
• s: length of coefficients to test autocorrelation 
• rk: autocorrelation coefficient (for lag k).  

The Ljung-Box test involves the formulation of hypotheses, which include 
• H0: Residual is white noise 
• H1: Residual is not white noise 

 
When the observed value of Q exceeds the critical value obtained from a chi-square distribution with s degrees of 
freedom, it can be concluded that, at the specified significance level, there exists at least one non-zero value of r that 
exhibits statistical significance. 
 
3.2  Model Evaluation 
The magnitude of the forecast error is aligned with the scale of the underlying data. Consequently, accuracy measures 
solely dependent on the data scale are inadequate for comparing series that involve varying units of measurement 
(Hyndman & Athanasopoulos, 2018). Fundamentally, the accuracy of prediction outcomes can be evaluated using 
several statistical analysis techniques (Mado et al., 2018), including root mean square error (RMSE), mean absolute 
error (MAE), and mean absolute percentage error (MAPE). The definition of each model evaluation is as follows: 
 
𝑀𝑀𝑡𝑡𝑎𝑎𝑛𝑛 𝑎𝑎𝐷𝐷𝑠𝑠𝑙𝑙𝑙𝑙𝐷𝐷𝑡𝑡𝑡𝑡 𝑡𝑡𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠:𝑀𝑀𝐴𝐴𝑀𝑀 = 𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛(|𝑡𝑡𝑡𝑡|)     (22) 
 
𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡 𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛 𝑠𝑠𝑞𝑞𝑎𝑎𝑠𝑠𝑡𝑡𝑎𝑎 𝑡𝑡𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠:𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛(𝑡𝑡𝑡𝑡2)    (23) 
 
When evaluating forecasting methods on a single time series or multiple time series with consistent units, Mean 
Absolute Error (MAE) is widely recognized for its simplicity in interpretation and calculation. Optimal performance 
in terms of MAE corresponds to a median forecast, whereas minimizing Root Mean Square Error (RMSE) yields an 
average estimate. Consequently, the Root Mean Square. Error (RMSE) is frequently utilized, despite its comparatively 
more complex interpretation. 
For a given percentage error is obtained by the following equation. 
 
𝐼𝐼𝑡𝑡 = 100𝑡𝑡𝑡𝑡/𝑦𝑦𝑡𝑡        (24) 
 
The utilization of percentage error offers the benefit of being dimensionless, making it a commonly employed metric 
for comparing forecast performance across different datasets. The most commonly used measures include: 
 
𝑀𝑀𝑡𝑡𝑎𝑎𝑛𝑛 𝑎𝑎𝐷𝐷𝑠𝑠𝑙𝑙𝑙𝑙𝐷𝐷𝑡𝑡𝑡𝑡 𝐼𝐼𝑡𝑡𝑠𝑠𝑐𝑐𝑡𝑡𝑛𝑛𝑡𝑡𝑎𝑎𝑔𝑔𝑡𝑡 𝑡𝑡𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠:𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛(|𝐼𝐼𝑡𝑡|)   (25) 
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4. Data Collection  
The research data, comprising daily electricity consumption, was collected from the management company of 
Soekarno Hatta International Airport (CGK) for a year, from 01 January 2022 to 31 December 2022, as shown in 
Figure 2.  

 
Figure 2. Electricity Consumption 

 
Because these data tend to have trend, seasonality, and remainder characteristics, a time decomposition process is 
carried out to examine these characteristics. From Figure 3, it is shown that the data has regular seasonal characteristics 
at frequency = 7. Because the data is in the form of daily data, it can be assumed that the data has a weekly seasonal 
pattern. 

 
 

Figure 3. Data Time Series Decomposition 
 
This dataset was subsequently divided into two segments: a training set and a test set shown in Figure 4. The training 
set, representing approximately 70% of the data, spans from 01 January 2022 to 12 September 2022. The remaining 
30% of the data, running from 13 September 2022 to 31 December 2022, was reserved as the test set. The statistical 
description of the data is shown in Table 2. 

  
(a) Training Data    (b) Test Data 

 
 

Figure 4. Training Data and Test Data 
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Table 2. Statistical Descriptive 
 

Parameter Data Set Training Data Test Data 
Number of Observation 365 255 110 
Min 485.71 485.71 605.59 
Max 730.45 687.20 730.45 
Mean 613.39 592.88 662.20 
Median 630.14 609.12 655.74 
Variance 328.72 292.51 769.06 
Std. Deviation 573.34 540.84 277.31 

 
In the early stages of SARIMA modeling, stationary data to variance and mean is required. Where the stationarity test 
for variance is carried out on the training data, using the BoxCox function on RStudio, it is obtained that the Lambda 
value = -0.53 so that a BoxCox transformation is needed to change the training data to be stationary to variance. The 
results of the BoxCox transformation on the data are shown in Figure 5, which has the same shape as Figure 4 (a) but 
is stationary to variance. 
 

 
 

Figure 5. Transformed Training Data 
 
The next step is to ensure that the data is stationary to the means by carrying out the ADF Test. The results of the ADF 
test on training have a p-value of 0.93 because the confidence interval is 5%, so it fails to evaluate H0, and the data 
has a unit root or non-stationary. Before the differencing process, it is necessary to pay attention to the ACF plot and 
the PACF plot shown in Figure 6. The plot shows a seasonal effect for each lag 7, so seasonal differencing is needed, 
followed by differencing regular because it has a clear autocorrelation pattern, namely a slow decline. 
 

  
 
   (a) ACF Plot     (b) PACF Plot 
 

 
Figure 6. ACF Plot and PACF Plot of Transformed Data 

 
If seasonal differencing is only used, it will be seen in Figure 7 (a) that the plot still has a trend. After the first regular 
differencing is done at the continuation of the previous process, the data has no trend and is stationary to the mean, as 
shown in Figure 7 (b). 
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(a) Seasonal Differencing     (b) First Regular Differencing 

 
 

Figure 7. Seasonal Differencing and First Regular Differencing Data Plot 
 

Thus, the ACF plot is shown in Figure 8, and the PACF plot is shown in Figure 9. From the plot in Figure 9, a candidate 
model can be made by looking at the lag that passes the confidence interval. Figure 8(a) and Figure 9(a) show the 
ACF plot and PACF plot respectively, where the seasonal differencing process is carried out. Meanwhile, Figure 8 (b) 
and Figure 9 (b) show the ACF plot and PACF plot which are then subjected to a regular differencing process after 
seasonal differencing. 

   
 

(a) ACF Plot Seasonal Differencing   (b) ACF Plot First Regular Differencing 
 
 

Figure 8. ACF Plot: Seasonal Differencing and First Regular Differencing 
 

   
 

(a) PACF Plot Seasonal Differencing   (b) PACF Plot First Regular Differencing 
 

Figure 9. PACF Plot: Seasonal Differencing and First Regular Differencing 
 

For the non-seasonal model, it can be seen in Figure 8 (b) the ACF plot that the lag spikes at lag 1 and in Figure 9 (b) 
PACF is at lag 1,2,3, while for the seasonal model, there is a lag spike in Figure 8 (b) the ACF plot at lag 7, and PACF 
at lags 7 and 14, but at lag 8 in the Figure 9 (b)  as PACF plot contains lag spikes so that the candidate models can be 
written as follows: MA (0,1), SMA (0,1), AR (0,1,2,3), and SAR (0,1,2). 
 
5. Results and Discussion 
5.1 Numerical Results  
This combination of parameters creates candidate models, which will be compared with the significance values of the 
parameters, residuals, and AIC values  Each model has parameters d = 1 and D = 1 because they have experienced 
seasonal differencing with seasonal values = 7 and first regular differencing. Then a diagnosis of the model is carried 
out by looking at the significance of the parameters of each model, the absence of autocorrelation in the residuals 
(white noises), and the residuals are normally distributed. The model that has passed the diagnosis is then selected 
with the criterion of having the smallest AIC value.  The best model chosen is SARIMA (1,1,1)(0,1,1)7 because it has 
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the lowest AIC value of 2051, the parameters in this model are significant, then this model passes the diagnosis of 
residuals with residuals that do not have autocorrelation (white noise), has zero mean, and is normally distributed 
 
5.2 Graphical Results 
The SARIMA (1,1,1)(0,1,1)7 model was chosen because it met the criteria, so the model will be used in the forecasting 
process later. The results of the diagnostic checking on the model are shown in Figure 10(a) for the residual model to 
have a zero mean, so the model residual are stationary. Figure 10 (b) shows that the residual model does not have a 
lag spike that exceeds the confidence interval, therfore the model residual have no autocorrelation, and Figure 11 
shows that the model has residuals that follow a normal distribution. 

   
 

(a) Model Residual Mean     (b) Model Autocorrelation Residual 
 
 

Figure 10. Model Residual Mean and Autocorrelation 
 

 
  
 

Figure 11. Histogram of Residual Distribution 
 

The suitability of the model with the training data is shown in Figure 12. The figure shows that the model can capture 
patterns from data with an accuracy level of 1.83% MAPE compared with training data. 

 
 

Figure 12. Plot Comparison of Model and Training Data 
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The following process is forecasting using the model for the following several periods, where the forecast results are 
compared with the previously prepared Test Data to measure the accuracy of the forecasting model. As a result, the 
model has an accuracy of MAE 31.37, RMSE 38.59, and MAPE 4.62%. A comparison plot of the forecasting model 
with Test Data is shown in Figure 13. 

 
 

Figure 13. Model and Test Data Plot Comparison 
 
5.3 Discussion 
Because the data has a complex pattern, there may be more than one seasonal effect in the data used. Furthermore, 
there are various environmental factors, such as temperature, day type, and occupancy, which contribute to the 
dynamic nature of the airport electricity consumption model. The current time series model employed in this study 
exhibits limitations in effectively capturing extreme values. Future research endeavors could address this limitation 
by incorporating interventions in time series analysis, such as the inclusion of exogenous factors in Seasonal Auto-
Regressive Integrated Moving Averages models. 
 
6. Conclusion 
This research introduces an ARIMA model that including the seasonal patterns of the time series called Seasonal 
Autoregressive Integrated Moving Average (SARIMA). The model was applied to analyze the daily electrical 
consumption data of Soekarno Hatta International Airport (CGK), a seasonal SARIMA (1, 1, 1) (0, 1, 1)7 model is 
built with MAPE 4.62%. The findings demonstrate that the proposed model exhibited a good fit to the data, effectively 
capturing the stochastic seasonal fluctuations with the exception of a few extreme values. The predictions derived 
from this model suggest a gradual increase in electricity consumption for the upcoming month, aligning with the 
observed weekly seasonal patterns. This changing trend could be a recommendation for airport management to make 
proper energy and financial management strategies in response to electricity demand. 
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