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Abstract 

Solving the one-dimensional cutting stock problem (1-D CSP) has been widely integrated in construction industry for 
better managing cutting reinforcement steel bars (rebars). To provide the required tensile strength to the structure, the 
structural designer determines the diameter sizes of rebars, which can be adjusted as long as the rebar to concrete area 
ratio remains constant. The decision-maker has the option to alter the diameter size to optimize cutting patterns, 
thereby reducing raw material usage. In our study, we address the cutting stock problem by considering not only the 
cutting patterns but also the diameter sizes, with the objective of minimizing raw material usage. Unlike the classical 
cutting stock problem, where the number of pieces to be cut is known in advance, in this case, the number of pieces 
is not known until the diameter sizes are selected. To tackle this challenge, we propose a solution that employs a 
pseudo-polynomial formulation. Our computational study shows that converting diameters could enhance the 1-D 
cutting stock problem's solution quality by up to 6%. 

Keywords 
Construction industry, 1-5 D cutting stock, diameter conversion, reflect formulation, open dimension. 

1. Introduction
The construction industry is a significant contributor to the global economy, with many countries relying on 
construction to account for a significant percentage of their GDP. Estimates suggest that the construction industry 
accounts for approximately 6% of the global economy (World Economic Forum, 2016), but its contribution is 
relatively more significant in the GDP of developing countries. In addition to its economic impact, the construction 
industry can also have a significant impact on the environment, with construction waste being a major issue. As a 
result, there is a growing need for cost reduction measures that also promote sustainability. Despite technological 
advancements and cost-saving measures, there is still considerable potential for further improvements in the 
construction industry through planning of construction activities. Such improvements could lead to both economic 
benefits, including cost reduction, and environmental benefits, such as a reduction in construction waste. 

Reinforcement steel bars, commonly referred to as rebars, are crucial components in the construction industry and 
provide tensile strength to the structures. Efficient utilization of reinforcement steel bars is vital for reducing the cost 
of building structures and conserving natural resources. Rebars are custom-cut to meet specific needs, and one-
dimensional cutting stock problem (1-D CSP) is often employed to cut rebars in an economical manner for utilization 
of raw materials. Suppose that there are m item types of rebars, each of them has length wj and demand dj, k different 
diameter sizes, and a sufficiently large number of stocks (j = 1, 2,...,m). The objective is to cut dj copies for each item 
type j using the minimum number of stocks so that the total length of items for each stock does not exceed the capacity. 
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However, the application of the 1-D CSP necessitates categorizing items according to their diameter sizes, leading to 
a separate solution for each diameter group k. This approach sacrifices the advantage of the convertibility of diameter 
sizes in the design of structural elements, potentially resulting in waste of resources. 
 
The diameter size and number of rebars required are determined to achieve the necessary tensile strength for each 
structural element. The designer can alter the number of rebars and diameter sizes by following conversion rules. 
Basically, opting for larger diameter sizes can lead to a reduction in the required number of rebars, while selecting 
smaller diameter sizes can increase the required number of rebars. This enables decision maker to group different sizes 
of diameters and change dj to generate more efficient cutting patterns. 
 
The diameter dimension, in addition to the length dimension, distinguishes the problem from the classical 1-D CSP. 
Determining the proper diameter size is a crucial aspect of the decision-making process, making diameter size a 
decision variable in the problem and distinct from the classical 2-D CSP. The 1-D and 2-D cutting stock problems 
have received significant attention in the literature. Nevertheless, only a few studies have addressed problems similar 
to ours, which is referred to as the 1.5-dimensional cutting stock problem (1.5-D CSP). In this paper, we propose a 
pseudo-polynomial arc-flow formulation, specifically the reflect formulation of Delorme and Iori (2020), to solve the 
1.5-D CSP in the construction industry. It is quite a powerful technique even for large size problem instances because 
it uses the half capacity of the stock size. 
 
The main contributions of the paper can be summarized as follows. First, we present a pseudo-polynomial formulation 
that efficiently addresses the 1.5-D CSP in the construction industry. Second, to the best of our knowledge, this is the 
first study to consider the convertibility of diameter sizes for reinforcement steel bars together with the cutting stock 
problem. Third, we develop computational experiments to demonstrate the value of the proposed decision framework 
based on the real projects in the construction industry such as hospitals, apartments, business centers, and public 
buildings. 
 
The organization of the remaining sections is as follows. Section 2 provides a summary of related work on cutting 
stock problem and its extensions. Section 3 defines our problem, presents background information on it, and 
summarizes the reflect formulation and graph generation. Section 4 presents the results of our computational 
experiments and provides a detailed analysis of those results. Finally, Section 5 offers concluding remarks and presents 
further research opportunities. 
 
2. Literature Review 
Cutting and packing problems are classified based on five main characteristics, as proposed by Wäscher et al. (2007). 
These characteristics include dimensionality, kind of assignment, assortment of small items, assortment of large 
objects, and shape of small items. The first criterion, dimensionality, classifies problems as one, two, three, or higher 
dimensional categories. The second criterion, type of assignment, categorizes problems as either input minimization 
or output maximization. The third criterion, assortment of small items, classifies problems into three main groups: 
identical small items, weakly heterogeneous assortment, and strongly heterogeneous assortment. The fourth criterion, 
large object assortment, categorizes problems as having one large object or several large objects. The final criterion, 
the shape of small items, classifies problems based on their geometric shapes. By considering these five characteristics, 
cutting and packing problems can be systematically categorized and addressed using appropriate techniques. 
 
In open dimension problem smaller items are fitted into one or multiple larger objects, with at least one dimension 
being treated as a variable in the problem. Our problem can be classified as an input minimization, open dimension 
with more than one large object, and cutting stock problem according to typology of Wäscher et al. (2007). Moreover, 
this class of problems is also defined as the 1.5-dimensional cutting stock problem (1.5-D CSP) in the literature. 
Haessler (1978) first studied the 1.5-D cutting stock problem for coil slitting in the metal industry. Han and Chang 
(2015) selected the proper large objects to minimize slitting loss and overproduction with given cutting patterns. They 
also addressed the issue of overproduction with penalties and developed a pseudo-polynomial time algorithm to solve 
the problem. Gasimov et al. (2007) studied the 1.5-D assortment problem in the production of corrugated boxes in the 
paper industry. Paper orders are typically cut from rectangular-shaped rolls, with large objects assumed to be 
sufficiently long sheets for practical purposes, and infinite in length. Furthermore, the problem involves multiple stock 
sizes, with several options available in the market. Maintaining an inventory of various stock sizes can be 
advantageous in achieving lower trim loss levels. They leverage the trade-off between inventory holding cost and trim 

436



Proceedings of the 8th North American International Conference on Industrial Engineering and Operations 
Management, Houston, Texas, USA, June 13-16, 2023 

© IEOM Society International 

loss. Song et al. (2006) tackled a real-life 1.5-D CSP in the plastic industry, considering the waste of material and 
production time under limitations of cutter knife changes, machine restrictions, and due dates. 
 
Minimizing waste of reinforcement steel bar has taken significant attention in the literature due to its significant cost 
impact on the construction industry. Nadoushani et al. (2018) dealt with minimizing cutting waste of reinforcing steel 
bars by considering designing issue, lap splicing, which affects ordered lengths of reinforcement steel bar. The concept 
of flexibility in the length of rebars for specific structural elements enables decision makers to achieve more efficient 
material utilization during the process of generating cutting patterns. Zheng and Lu (2016) considered rebar material 
costs related to trim loss and rebar installation costs including labor hours used in rebar stock processing, delivering, 
placing, and tying.  Benjaoran et al. (2019) studied the effect of demand variations on steel bars cutting loss and 
experimentally showed how the distribution of pieces of length ordered affects material utilization.  
 
There are many different mathematical formulations and solution methodologies employed on cutting stock and bin 
packing problems including Branch and Price (B&P), column generation, heuristics, and metaheuristics (Vance et al. 
(1994), Vance (1998), Belov and Scheithauer (2006), Wei et al. (2020)). We refer to the review paper published by 
Delorme et al. (2016) and Iori et al. (2021) for solution methods related to the cutting stock problems.  Delorme and 
Iori (2020) suggested the reflect formulation, an enhanced version of the arc-flow formulation of Valério de Carvalho 
(1999) that is formulated as a minimum flow network problem. These are pseudo-polynomial formulations. They 
become weak because an increase in stock length capacity leads to a substantial increase in network size. However, 
the reflect formulation uses half the stock length capacity, resulting in a reduction of the number of nodes and arcs.  
 
This study makes a significant contribution by leveraging Operations Research techniques to address the cutting stock 
problem in the construction industry. Specifically, we propose a solution approach for the 1.5-D CSP that accounts 
for the conversion of reinforcement steel bar diameters into different sizes and the optimization of cutting patterns in 
the construction industry. This problem is novel and unique, and to the best of our knowledge, it has not been 
previously addressed in the literature. Moreover, we demonstrate the practical relevance of our approach by 
considering a real-world case study in the construction industry, which adds further value to the research. 
 
3. Problem Formulation 
Cutting stock problems have been widely studied in the literature and can be categorized as 1-D and 2-D CSPs. The 
former involves finding optimal cutting patterns for a single dimension, typically length, to minimize raw material 
waste. This is common in the construction industry for cutting reinforcement steel bars to meet demand. The latter 
extends the problem to two dimensions, width and length, to generate optimal cutting patterns for pieces. In this study, 
we propose a novel approach that considers the convertibility of diameter sizes and cutting patterns simultaneously, 
which we refer to as a 1.5-D CSP. Unlike the classical 1-D CSP, where the sizes of all dimensions are fixed, the 1.5-
D CSP allows for the diameter sizes to be changed by the decision maker. This means that the number of pieces being 
cut is not known until the sizes of the variable dimensions are fixed. The goal is to minimize material usage by 
determining cutting patterns and selecting the proper sizes of variable dimensions. While the problem is distinct from 
both the 1-D and 2-D CSPs, it shares similarities with both. The early definition of the problem was made by Haessler 
(1978) on the coil slitting problem in the industry. The cutting stock problem with diameter conversion in the 
construction industry can be classified as a 1.5-D CSP due to the variable order sizes of diameter that can be converted 
by adjusting the required number of rebars. 
 
This section provides essential background information on diameter conversion, which is explored in detail in Section 
3.1. Subsequently, we present the mathematical formulations for reflect formulation and graph generation in Sections 
3.2 and 3.3, respectively. 
 
3.1. Diameter Conversion 
Reinforcement steel bars are essential components in the construction industry, providing the necessary tensile 
strength to structures when placed in concrete. Given their importance, managing their usage is crucial for construction 
companies since they constitute a significant cost. In practice, rebars are used in various diameters ranging from 8 to 
40 millimeters for different applications such as stirrups, shear walls, slabs, columns, and beams. Typically, rebars 
come in lengths of 12 meters, the maximum amount that trucks can carry, and cutting processes are performed by 
workers on a workbench in the construction zone. During the cutting process, the 1-D CSP occurs, and generating 
cutting patterns that minimize the usage of materials becomes vital.  
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The diameter size and number of reinforcement steel bars used in construction are determined by structural designers 
to provide the necessary tensile strength. Once the load of concrete is calculated, the required cross-sectional area 
between the rebar and concrete is determined for each structural element. The diameter size and number of required 
rebars can be converted, as long as the necessary ratio of the rebar cross-sectional area to the concrete area remains 
constant. This allows for greater flexibility in the selection of diameter sizes and reduces the amount of waste generated 
during the cutting process. The conversion formula is shown below: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑛𝑛𝑟𝑟𝑅𝑅𝑟𝑟 =  
𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑁𝑁 𝑁𝑁𝑅𝑅𝑜𝑜𝑟𝑟𝑟𝑟 𝑟𝑟𝑅𝑅𝑁𝑁𝑠𝑠𝑅𝑅𝑜𝑜𝑛𝑛 𝑟𝑟𝑅𝑅𝑅𝑅𝑟𝑟

𝜋𝜋(𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟)2       

 
When determining the size and number of rebars for a concrete structure, there is some flexibility as long as a constant 
ratio between the rebar cross-section area and the concrete area is maintained. This means that the total area of the 
rebars in the concrete should remain constant. Consequently, a decision maker can adjust the number of rebars by 
changing the diameter size using the following conversion formula: 
 

(diameter)2 (required number of rebar) = (new diameter)2 (new required number of rebar) 
 
The number of required rebars can be reduced by increasing their diameter size, and vice versa, as long as the required 
ratio of rebar cross-section area to concrete area remains constant. This conversion formula allows decision makers to 
explore different options and achieve more efficient use of materials. For example, instead of using 100 rebars of Ø16, 
the decision maker could choose to use 64 rebars of Ø20 while maintaining the necessary cross-section area, as shown 
below. 

(Ø16)2 ∗ 100 = (Ø20)2 ∗ 64       
 
It is important to consider the conversion of diameter sizes before generating cutting patterns, as it can lead to more 
efficient material utilization. For example, suppose that the orders are as follows: 6 pieces of 3 meters from Ø12, 6 
pieces of 7 meters from Ø12, and 3 pieces of 2 meters from Ø14, and the stocks are 12 meters long. If the conversion 
is not taken into account during pattern generation, the best patterns would be six times 3-7 and a 2-2-2. However, if 
we convert the last order to diameter 12 using the conversion formula 3x14x14$=$Rx12x12 (where R is the conversion 
ratio), we get R=4.08, which we can round up to 5 for safety reasons. As a result of changing the diameter from Ø14 
to Ø12, we now need to cut 5 pieces of 2 meters instead of the original 3. By doing so, we can generate cutting patterns 
more efficiently, resulting in five times 3-7-2 and a 3-7 with 2 m loss, thereby reducing material consumption by using 
leftover parts of rebars from diameter 12. Thus, considering the conversion of diameter sizes before generating cutting 
patterns can lead to more optimal and cost-effective solutions. 
 
Our problem involves the conversion of diameter sizes using specific rules. To minimize material usage, the decision 
maker must determine which diameter size to use for each demand item and generate cutting patterns accordingly. 
Since the selection of diameter sizes and cutting patterns are interrelated, the decision should be made concurrently. 
Table 1 presents the original diameter requirements for each item and the possible conversions to different diameters. 
For instance, the fourth item requires 48 pieces of Ø12, which can be converted to 108, 70, 36, and 27 in quantity if a 
diameter size of Ø8, Ø10, Ø14, and Ø16 is chosen, respectively. Therefore, there is flexibility in the diameter sizes 
and corresponding quantities for each item, as specified by the designer. Note that the range of convertibility is usually 
limited to two size steps up or down, but it can be tighter or non-convertible in some cases. By converting these 
requirements, the decision maker can generate more effective cutting patterns and achieve a higher level of material 
utilization (Table 1). 

Table 1. Conversion Table 
 

Items Dia. Length Quant. Ø8 Ø10 Ø12 Ø14 Ø16 Ø18 Ø20 
1 8 8.50 808 808 518 360 - - - - 
2 8 3.45 202 202 130 90 - - - - 
3 10 6.65 265 415 265 185 136 - - - 
4 12 7.00 48 108 70 48 36 27 - - 
5 12 9.15 105 237 152 105 78 60 - - 
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6 14 8.05 203 - 398 277 203 156 123 - 
7 14 3.15 1685 - 3303 2294 1685 1291 1020 - 
8 16 1.50 24 - - 43 32 24 19 16 

* Dia: Diameter (mm), Length: Stock length (m), Quant: Quantity (units) 
 
3.2. Reflect Formulation 
To formulate the problem, we draw upon existing knowledge in literature. Valério de Carvalho's arc-flow formulation 
(1999) is a useful starting point, but its pseudo-polynomial nature, with O(mc) variables and O(m + c) constraints, 
limits its effectiveness as the stock capacity increases. To address this issue, Delorme and Iori (2020) introduced the 
reflect formulation, which utilizes only half of the stock capacity, leading to a substantial reduction in the number of 
arcs and nodes. This approach results in a more powerful formulation with fewer constraints and variables, making it 
a more efficient solution method for cutting stock problems. In addition, Delorme and Iori’s (2020) reflect formulation 
also improves computation times, making it a highly effective tool for tackling these problems. 

 
The reflect formulation has properties as listed below: 
 
    1. It uses vertices as in the normal patterns but from 0 to 𝑊𝑊

2
 and extra vertex, called R, whose corresponding size is 

    𝑊𝑊
2

. 

2. The formulation converts each item arc (d, e) in the arc-flow formulation whose d <  𝑊𝑊
2

 and e > 𝑊𝑊
2

 whose d >  𝑊𝑊
2

        
into arc (d, W-e). 
3. It eliminates all items and loss arcs (d, e) whose d <  𝑊𝑊

2
. 

    4. It adds a last loss arc between the right most vertex before R with R. 
 

A cutting pattern can be represented as a pair of two intersecting paths. Both paths start from 0 and reach the same 
vertex, but only one of them can pass through the R. This means that only one of the paths can include reflected arcs. 
Figure 1 illustrates the reflection of these paths (Figure 1). 
 

 
 

Figure 1. Example for network representation of the reflect formulation (Delorme and Iori (2020)) 
 
The Multi Graph G = (V,A) utilized in the reflect formulation consists of a set vertices denoted by V=0 ∪ e ∈ N, 
0<e<𝐶𝐶

2 
∪𝐶𝐶

 2
. The set of arcs, A, comprises two different types of arcs: standard arcs, As, and reflected arcs, Ar. Ar include 

arcs that are reflected from arc (d, e) where d <  𝑊𝑊
2

 and e > 𝑊𝑊
2

 to (d, W-e). The notation (d, e, r) and (d, e, s) represent 
arcs from d to e reflected and standard respectively, whereas (d, e, k) used for generic arcs from either As or Ar. 
 
We modified reflect formulation proposed by Delorme and Iori (2020) by adding diameter dimension according to 
the structure of the 1.5-D CSP based on sets, parameters and decision variables summarized in Table 2. The reflect 
formulation for our problem is also provided below (Table 2). 
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 Table 2. Notation of the reflect formulation for 1.5-D CSP 
 

Sets: 
I  Items 
J Diameters 
d,e,f Nodes 
Ar Set of reflected arcs 
As Set of standard arcs 

Ai Set of arcs, include both reflected and standard arcs, whose sizes correspond to the length of item i 
r,s,k Arc type 
δ-

s(e) Denotes the set of standard arcs entering e 

δ-
r(e)  Denotes the set of reflected arcs entering e 

δ+(e) Denotes the set of arcs emanating from e 
Parameters: 

 bij Demand of item i in diameter j 
 cj Unit cost of stock with diameter j 

Decision Variables: 
 ξdekj Arc between d and e with arc type k for diameter j 
       1, If diameter j is chosen for item i  

       0, Otherwise 
 
 
Mathematical Formulation: 
 
𝑀𝑀𝑅𝑅𝑛𝑛 � � 𝑁𝑁𝑗𝑗 ξ𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗

(𝑑𝑑,𝑑𝑑,𝑑𝑑) ∈ 𝐴𝐴𝑟𝑟 𝑗𝑗

 

s.t. 
 

�  ξ𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗
(𝑑𝑑,𝑑𝑑,𝑑𝑑) ∈ δ𝑠𝑠

−(e)

 = �  ξ𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗
(𝑑𝑑,𝑑𝑑,𝑑𝑑) ∈ δ𝑟𝑟

−(e)

 + �  ξ𝑑𝑑𝑒𝑒𝑒𝑒𝑗𝑗
(𝑑𝑑,𝑒𝑒,𝑒𝑒) ∈ δ+(e)

 

 
�  ξ0𝑑𝑑𝑒𝑒𝑗𝑗

(0,𝑑𝑑,𝑒𝑒) ∈ δ+(0)

 = 2 �  ξ𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗
(𝑑𝑑,𝑑𝑑,𝑑𝑑)  ∈ 𝐴𝐴𝑟𝑟

  

 
�  ξ𝑑𝑑𝑑𝑑𝑒𝑒𝑗𝑗

(𝑑𝑑,𝑑𝑑,𝑒𝑒) ∈ 𝐴𝐴𝑖𝑖

 ≥  𝑛𝑛𝑖𝑖𝑗𝑗 𝑛𝑛𝑖𝑖𝑗𝑗 

 
�  𝑛𝑛𝑖𝑖𝑗𝑗

𝑗𝑗

= 1 

 
ξ𝑑𝑑𝑑𝑑𝑒𝑒𝑗𝑗 :integer  ∀ (d, e, k) ∈ A, ∀ j ∈ J;  𝑛𝑛𝑖𝑖𝑗𝑗 ∈ {0,1} ∀ i ∈ I, ∀ j ∈ J 
 
The objective function (1) is designed to minimize the reflected arcs with unit cost of stock cj from diameter j. Since 
each pattern consists of two colliding paths, where the first path includes only standard arcs and the second path 
includes reflected arc, the total number of bars utilized is equal to the number of reflected arcs. Thus, minimizing the 
number of reflected arcs is same as minimizing the total bars used. Constraints (2) ensure that the flow balance is 
maintained, and they guarantee that amount of flow on standard arcs entering node e equals the sum of flow on every 

mij 

            e ∈ V– {0}, ∀ j ∈ J (2) 

                             ∀ j ∈ J (3) 

               ∀ i ∈ I,  ∀ j ∈ J (4) 

                            ∀ i ∈ I (5) 

                                         (6) 

                                          (1) 

440



Proceedings of the 8th North American International Conference on Industrial Engineering and Operations 
Management, Houston, Texas, USA, June 13-16, 2023 

© IEOM Society International 

arc emanating from node e, and flow of reflected arcs entering node e. Constraints (3) ensure that the flow balance is 
maintained for the flow emanating from node 0, which must be equal to twice the amount of reflected arcs to ensure 
that each pattern is composed of two colliding paths. Constraints (4) guarantee that demand for items is met based on 
the selection of diameter type j. Constraints (5) ensure that each item is cut from only one diameter type. Lastly, 
constraints (6) represent binary and integrality restrictions for the decision variables.  
 
3.3. Graph Generation for Reflect Formulation 
The reflect formulation, developed by Delorme and Iori (2020), offers an improved approach to solving cutting stock 
problems compared to the traditional arc-flow formulation. As the stock length capacity increases, the arc-flow 
formulation becomes weaker, but the reflect formulation uses only half of the length capacity, reducing the number 
of nodes and arcs in the network and making it more powerful for solving large instances quickly. However, like the 
arc-flow formulation, it is still a pseudo-polynomial formulation and can become weak if the capacity of the stock 
length increases too much. Furthermore, if the network used in the formulation is not generated efficiently, it can 
contain many symmetries, which can hinder the solution time. To overcome this challenge, we employed a graph 
generation algorithm based on the concepts of Delorme and Iori (2020) to generate a network without these symmetries 
within a reasonable amount of time. Algorithm 1 provides the pseudocode for the graph generation algorithm used in 
the reflect formulation. 
 
Sorting items in non-increasing order of size during graph generation is a crucial step to eliminate redundant arcs and 
vertices, as well as to break possible symmetries. Efficient network generation is essential for obtaining solutions 
within a reasonable time. Implementing these formulations with inefficient networks can significantly increase 
solution time. Additionally, the reflect formulation requires reflecting arcs from the middle of the stock length 
capacity, which exists in the range between 0 and capacity/2. If an arc has a head within this range and a tail beyond 
capacity/2, it should be reflected from the middle of the capacity, changing its tail to capacity minus its original tail. 
For instance, if the arc is (i, j) and capacity is 11, then (i, 11-j) should replace it. If capacity is not an even integer, 
both the items' length and capacity should be expanded by multiplying them by two. Finally, after generating the 
network using Algorithm 1, the problem parameters are provided to the model to be solved by CPLEX. 
 

Algorithm 1. Graph Generation Algorithm for Reflect Formulation 
Step 1: Sort items in descending order 
Step 2: Initialize paths 
            Take items whose lengths  ≥ C/2 
            Generate reflected arcs as (0, C - lengthi) for those items 
            Remove these items from set of items 
            Initialize paths as (0, lengthi) set them generation 1 
            Keep tail points of paths and last added items 
            Take generation 1 as current 
            Do Step 3, Until no generation of path added 
Step 3: Generate Graph 
       For each tail point of current generation path: 
             For each item i: 
                   If lengthi  ≤ last added item to tail point: 
                         If tail point + lengthi ≤ C/2: 
                               Generate standard arc as (tail point, tail point + lengthi, s) 
                               Add this arc to the network 
                               Keep item length as last added item for this path 
                               Keep new tail point of path of next generation 
                         Else: 
                               Generate reflected arc as (tail point, C - tail point - lengthi, r) 
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                  Else: 
                        Go to next tail point of current generation 
                        If there is no new tail point, 
                              Remove duplicated arcs in the network 
                              Take this new generation as current and return step 3 
       If no generation added at last iteration, then stop. 
Step 4: Create loss arcs 
       Take all vertex in the network and sort them in ascending order 
       Create loss arcs by connecting them each other consecutively 
Step 5: Expand graph into multi-graph by adding diameter dimension 
        Take network created, set of arcs = (d,e,k) 
        For each arc in the set convert it (d,e,k,j) for all j in J (set of diameters) 

 
4. Computational Experiments 
To provide a realistic analysis of our solution approaches, we utilized real-world construction projects from different 
application areas, such as hospitals, apartments, business centers, and public buildings. For this purpose, we selected 
five different projects, each having distinct properties in terms of size and complexity. The main properties that 
differentiate these projects are the number of items, the number of diameter types, the minimum item length, and the 
number of different lengths. Table 3 illustrates the properties of these projects. We anticipate that problems with a 
higher number of items and diameter types are more challenging to solve. Similarly, the number of different lengths 
and the minimum item length of a project significantly affect the complexity of the problem, as they directly impact 
the size of the network. Specifically, an increase in the number of different lengths leads to a larger network size, 
resulting in longer solution times and lower solution quality. Similarly, a decrease in the minimum item length also 
leads to a larger network size, as it results in more vertices and arcs. For instance, two identical instances with the 
exception of their minimum item length of 50 cm and 100 cm, respectively, will have different network sizes due to 
the variation in minimum item length (Table 3).  
 

Table 3. Properties of projects 
 

Project 
Name 

Number of 
Items 

Number of Different 
Diameter sizes 

Minimum Item 
Length 

Number of Different 
Lengths 

Project-1 1835 6 20 cm 268 
Project-2 1940 12 40 cm 254 
Project-3 1540 7 62 cm 126 
Project-4 11313 8 60 cm 457 
Project-5 2900 5 43 cm 218 

 
To conduct experiments, we developed an implementation in C++ and used CPLEX 12.8.0 Concert Technology with 
Intel (R) Core (TM) i7-4790 CPU @3.10 GHz and 16GB RAM. The experiments were performed with a time limit 
of five hours. We aimed to investigate the impact of converting diameter sizes on the efficiency of our solution 
approaches. To this end, we solved five real construction projects without considering diameter conversion and then 
solved the same instances after converting the diameters. Without diameter conversion, each item requires cutting 
from its original diameter, creating one-dimensional cutting stock problems. We also solved Project-4 by rounding 
their length sizes to reduce the problem's complexity, which is presented in the reflect-rounded column of Table 4. 
When the problem cannot be solved in a reasonable amount of time, length sizes can be rounded by one decimal. This 
allows us to reduce the network size and problem complexity. The computational results indicate that considering 
diameter conversion when preparing a cutting plan of rebars provides significant advantages. For instance, our 
approach can save up to 6% on rebar usage in Project-3. Table 4 provides further details on our computational results 
(Table 4). 
 

Table 4. 1.5-D CSP % gain comparison to 1-D CSP 
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 % Gap 
Gain Compared to 1-D CSP (%) 

Project Name Reflect Reflect-Rounded 
Project-1 0.1 - 5.6 
Project-2 0.1 - 5.9 
Project-3 0.1 - 6.0 
Project-4 5.5 0.5 4.3 
Project-5 0.1 - 0.9 

 
5.Conclusion 
The construction industry has many improvement opportunities by leveraging Operations Research methodologies. 
One of the most significant cost components in construction is reinforcement steel bars. Although the 1-D CSP has 
been extensively studied in literature and can provide efficient cutting patterns for rebars, incorporating diameter 
convertibility into the decision-making process can lead to even better patterns and reduced trim loss. In this paper, 
we introduce a new problem in the construction industry that considers both diameter selection and cutting pattern 
generation. Our computational experiments, which utilize real data from construction projects, show that project 
properties such as item count and minimum length have a significant impact on solution quality. Additionally, we 
propose a solution approach that involves rounding up length sizes to reduce network size and increase the 
effectiveness of the reflect formulation in attacking the 1.5-D CSP. Our results demonstrate that incorporating diameter 
convertibility can lead to cost savings of up to 6% for the 1.5-D CSP.  
 
References  
Belov, G. and Scheithauer, G., A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-

dimensional two-stage cutting. European Journal of Operational Research, 171(1), 85-106, 2006. 
Benjaoran, V., Sooksil, N. and Metham, M., Effect of demand variations on steel bars cutting loss, International 

Journal of Construction Management, 19(2), 137-148, 2019. 
Delorme, M., Iori, M. and Martello, S., Bin packing and cutting stock problems: Mathematical models and exact 

algorithms, European Journal of Operational Research, 255(1), 1-20, 2016. 
Delorme, M. and Iori, M., Enhanced pseudo-polynomial formulations for bin packing and cutting stock 

problems, INFORMS Journal on Computing, 32(1), 101-119, 2020. 
Gasimov, R. N., Sipahioglu, A. and Saraç, T., A multi-objective programming approach to 1.5-dimensional assortment 

problem, European Journal of Operational Research, 179(1), 64-79, 2007. 
Haessler, R. W., A procedure for solving the 1.5-dimensional coil slitting problem, AIIE Transactions, 10(1), 70-75, 

1978. 
Han, Y. T. and Chang, S. Y., A subset sum approach to coil selection for slitting, International Journal of Industrial 

Engineering, 22(3), 2015. 
Iori, M., De Lima, V. L., Martello, S., Miyazawa, F. K. and Monaci, M., Exact solution techniques for two-

dimensional cutting and packing. European Journal of Operational Research, 289(2), 399-415, 2021. 
Nadoushani, Z. S. M., Hammad, A. W., Xiao, J. and Akbarnezhad, A., Minimizing cutting wastes of reinforcing steel 

bars through optimizing lap splicing within reinforced concrete elements, Construction and Building 
Materials, 185, 600-608, 2018. 

Shaping the future of construction a breakthrough in mindset and technology, In World Economic Forum. Available: 
https://www3.weforum.org/docs/WEF_Shaping_the_Future_of_Construction_full_report__.pdf, May, 2016. 

Song, X., Chu, C. B., Nie, Y. Y. and Bennell, J. A., An iterative sequential heuristic procedure to a real-life 1.5-
dimensional cutting stock problem, European Journal of Operational Research, 175(3), 1870-1889, 2006. 

Valério de Carvalho, J. M., Exact solution of bin‐packing problems using column generation and branch‐and‐
bound, Annals of Operations Research, 86(0), 629-659, 1999. 

Vance, P. H., Barnhart, C., Johnson, E. L. and Nemhauser, G. L., Solving binary cutting stock problems by column 
generation and branch-and-bound. Computational Optimization and Applications, 3, 111-130, 1994. 

Vance, P. H., Branch-and-price algorithms for the one-dimensional cutting stock problem. Computational 
Optimization and Applications, 9, 211-228, 1998. 

Wäscher, G., Haußner, H. and Schumann, H., An improved typology of cutting and packing problems. European 
Journal of Operational Research, 183(3), 1109-1130, 2007. 

443



Proceedings of the 8th North American International Conference on Industrial Engineering and Operations 
Management, Houston, Texas, USA, June 13-16, 2023 

© IEOM Society International 

Wei, L., Luo, Z., Baldacci, R. and Lim, A., A new branch-and-price-and-cut algorithm for one-dimensional bin-
packing problems. INFORMS Journal on Computing, 32(2), 428-443, 2020. 

Zheng, C. and Lu, M., Optimized reinforcement detailing design for sustainable construction: Slab case 
study, Procedia Engineering, 145, 1478-1485, 2016. 

Biographies  
Deniz Altinpulluk currently pursues his Ph.D. studies at the Industrial Engineering Department of Wayne State 
University. He received his BS and MS degrees from the Industrial Engineering Department of Middle East Technical 
University in Turkey. His research focuses on robust optimization models for prognostics-driven operations & 
maintenance and real-time predictions of remaining useful life distributions for components subjected to dynamic 
degradation processes. In addition, he leverages machine learning and federated learning methodologies into energy 
and manufacturing systems areas.  

Haldun Sural is an emeritus professor in the IE Department of Middle East Technical University (METU), where he 
earned his Bachelor's, Master's, and PhD degrees. He has held teaching and research positions at various institutions, 
including METU, INSEAD (France), and UW and WLU in Canada. Dr. Sural's research portfolio includes a diverse 
range of applied works, such as the design of supply/production/distribution networks, restructuring a large 
humanitarian aid organization, and waste management system design. He has also contributed to the academic 
community as a member of the editorial board of the Turkish Journal of Industrial Engineering and as past president 
of the OR Society of Turkey. Dr. Sural's research interests span methodology, modeling, and applications in OR, as 
well as the history of OR in Turkey. 

Nur Banu Altinpulluk is a current Ph.D. candidate in the Industrial and Systems Engineering Department at Wayne 
State University.  She earned both her master's and bachelor's degrees from Middle East Technical University in 
Turkey. Her research lies in advancing the integration of machine & reinforcement learning and stochastic 
optimization in the energy systems domain. In addition, she actively participated in working on projects in the areas 
of condition monitoring, prognosis, federated learning, and distributed computing. 

444


	1. Introduction
	2. Literature Review
	3. Problem Formulation
	3.1. Diameter Conversion
	3.2. Reflect Formulation
	3.3. Graph Generation for Reflect Formulation
	4. Computational Experiments
	5.Conclusion The construction industry has many improvement opportunities by leveraging Operations Research methodologies. One of the most significant cost components in construction is reinforcement steel bars. Although the 1-D CSP has been extensive...
	References
	Biographies



