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Abstract 

This study focuses on production scheduling problems in metal pipe manufacturing, where customer orders differ in 
terms of type, thickness, and quantity. Each order is considered a job with a processing time that varies based on the 
machines involved in the production process. To produce the next job, there is a setup time required that depends on 
the machine, which is assigned to, and the current job being processed on that machine which is referred to as a job- 
and machine-sequence-dependent setup time. Since it is not possible to obtain an optimal solution for a large 
scheduling problem by using the mathematical programming approach, a heuristic method is a preferable choice to 
handle this. Therefore, this paper aims to illustrate the application of heuristics that features dispatching rules to solve 
the aforementioned scheduling problem through a numerical example. These rules, which explicitly consider the job- 
and machine-dependent setup time include the shortest job completion time, shortest job completion time based on 
the longest processing time, and shortest job completion time based on the earliest due date, and shortest job 
completion based on the minimum slack. A comparison regarding the effectiveness of these rules is also conducted. 
The results show that the shortest job completion time based on the minimum slack yields the best performance 
concerning the makespan and the second-best performance in terms of total tardiness. In addition, the shortest job 
completion time based on the earliest due date produces the best performance for both total tardiness and the number 
of tardy jobs.  

Keywords 
Unrelated parallel machines, Job- and machine sequence-dependent setup time, Heuristic methods, and Dispatching 
rules. 
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1. Introduction  
In today’s manufacturing, effective scheduling of production processes has become increasingly critical to guarantee 
timely delivery and high-quality products. One of the most challenging scheduling problems that manufacturers face 
is the unrelated parallel machine scheduling problem, where each machine has a production rate and is capable of 
processing a subset of jobs. Unrelated parallel machines refer to a scheduling problem, where a set of independent 
jobs are assigned to a set of machines, each with its own processing time (Zhang et al, 2021; Bektur & Saraç, 2019). 
The machines are generally capable of processing jobs, but not all types of jobs, i.e. only a subset of jobs can be 
processed by each machine (Zheng et al. 2022; Cheng & Huang, 2017). In this problem, each job must be processed 
on a single machine, but the time required to finish the job is depended on both the job and the machine to which the 
job is assigned (Jaklinovi et al. 2021). This scheduling problem is further complicated by job- and machine-sequence-
dependent setup times, which are necessary to prepare machines for processing a specific job. In other words, the 
setup times depend on the preceding job on the machine (Joo & Kim, 2015). A scheduling problem of this kind is 
common in steel pipe manufacturing. A manufacturer usually receives customer orders that are different in terms of 
type, thickness, and quantity. Each order has a specified due date and can be processed on a set of machines with 
different production rates. The manufacturer takes these customer orders as individual jobs and is supposed to schedule 
them efficiently to meet customer demand. Normally, the optimal solution for scheduling problems is found using a 
mixed-integer linear programming (MILP) model. However, MILP is only practical for solving small problem 
instances. Hence, this paper proposes heuristic methods that feature dispatching rules to handle larger problem 
instances. These rules include the shortest job completion time (SCT), the shortest job completion time based on the 
longest processing time (SC-LPT), the shortest job completion time based on the earliest due date (SC-EDD), and the 
shortest completion time based on the minimum slack (SC-MinSlack). The SCT rule selects the job to process on the 
machine that would take the shortest completion time, whereas the SC-LPT rule selects the job that has the longest 
processing time, the SC-EDD rule chooses the job that has the earliest due date, the SC-MinSlack rule assigns the job 
that provides the minimum slack. Finally, these three rules also allocate the selected job to the machine with the 
shortest completion time. 
 
To evaluate the performance of the scheduling problem, three key measures, consisting of makespan, total tardiness, 
and the number of tardy jobs, are considered. The makespan is the time that it takes to complete all the jobs, the total 
tardiness is the sum of the lateness of each tardy job, and the number of tardy jobs is the total count of jobs that miss 
their deadline. Numerous research studies have investigated production scheduling problems on unrelated parallel 
machines. These problems can be categorized based on a range of criteria, such as unrelated parallel machines, job- 
and machine-dependent setup time, system performance measures, and solution techniques. Joo and Kim (2015) have 
studied production scheduling with the unrelated parallel machine to minimize the makespan; Zheng et al. (2022) 
focused on minimizing the completion time of all orders as well. Soleimani et al. (2020), and Cheng and Huang (2017) 
have studied an unrelated parallel machine for minimizing weighted tardiness. Fan et al. (2021) presented a 
mathematical model to minimize the mean weighted tardiness of the jobs. While Della Croce et al. (2021) studied 
parallel machines with the minimum number of tardy jobs. The minimization of the total weighted number of tardy 
jobs on single-machine scheduling has been studied by Chen et al. (2023). Lei and Yang (2022) have studied 
production scheduling to minimize both makespan and tardiness. Some studies have proposed approaches for 
production scheduling with sequence-dependent setup time. Zhao et al. (2022) have proposed the knowledge-
incorporated construction heuristic for production scheduling. To find the best schedules utilizing metaheuristic 
methods, Kommadath et al. (2023) have proposed a revolutionary no-wait time heuristic mechanism. A recent study 
by Liu et al. (2022) proposed a new approach that incorporates dual resources and ready times in addition to sequence-
dependent setup times. According to Ozsoydan and Sair (2021), the scheduling issue was handled by learning an 
iterated greedy search metaheuristic to reduce the makespan in a hybrid flexible flow shop problem with sequence-
dependent setup delays that arise in a manufacturing facility. From the literature review, there is a lack of studying for 
scheduling with the unrelated parallel machine with the comparison of heuristics approaches.  
 
2. Methods  
To illustrate the heuristics in this study, the following notations are adopted. 
 
Indices 
𝑖𝑖′, 𝑗𝑗 = indices of jobs, where 𝑁𝑁 denotes the set of jobs 𝑗𝑗 ∈ 𝑁𝑁 = {1, 2, 3, … ,𝑛𝑛}; 𝑁𝑁′ denote the set of remaining 

jobs 𝑁𝑁′ = {1, 2, 3, … ,𝑛𝑛}, where 𝑁𝑁0 denotes the set of jobs including a dummy job 0; 𝑖𝑖′ ∈ 𝑁𝑁0 =
{0, 1, 2, … ,𝑛𝑛} 
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𝑗𝑗∗ = index of selected jobs, where 𝑗𝑗∗ ∈ 𝑁𝑁 = {1, 2, 3, … ,𝑛𝑛}. 
𝑘𝑘 = index of machines, where 𝑀𝑀 represents the set of machines; 𝑘𝑘 ∈ 𝑀𝑀 = {1, 2, … ,𝑚𝑚}. Each machine can 

process a different set of jobs; therefore, each given job can only be processed by a subset of 𝑀𝑀, i.e., 𝑀𝑀𝑗𝑗. 
That is, 𝑀𝑀 = 𝑀𝑀1 ∪𝑀𝑀2 … ∪𝑀𝑀𝑛𝑛. 

𝑖𝑖𝑘𝑘′  = index of previous jobs 𝑖𝑖′ on machine 𝑘𝑘, 𝑖𝑖𝑘𝑘′ ∈ 𝑁𝑁0 = {0, 1, 2, 3, … ,𝑛𝑛} and 𝑘𝑘 ∈ 𝑀𝑀 = {1, 2, 3, … ,𝑚𝑚} 
 
Parameters 
𝑃𝑃𝑗𝑗,𝑘𝑘 = the processing time of job 𝑗𝑗 on machine 𝑘𝑘 (hour) 
𝑃𝑃𝑗𝑗∗ = the minimum processing time of the selected job 𝑗𝑗∗(hour) 
𝑆𝑆𝑖𝑖′,𝑗𝑗,𝑘𝑘 = the required setup time of machine 𝑘𝑘, when the machine is assigned to handle job 𝑗𝑗 and has a previous 

job 𝑖𝑖′(hour) 
𝑆𝑆𝑖𝑖′,𝑗𝑗∗,𝑘𝑘 = the required setup time of machine 𝑘𝑘, when the machine is set to process the selected job 𝑗𝑗∗ and has a 

previous job 𝑖𝑖′(hour) 
𝐷𝐷𝑗𝑗 = the due date of job 𝑗𝑗 (hour) 
𝐷𝐷𝑗𝑗∗ = the due date of the selected job 𝑗𝑗∗(hour) 
𝑅𝑅𝑗𝑗,𝑘𝑘 = Restriction condition of processing job 𝑗𝑗 on machine 𝑘𝑘, where its value is 1 meaning that the machine 𝑘𝑘 

can be used to produce the job 𝑗𝑗, 0 otherwise.  
𝑆𝑆𝑆𝑆𝑗𝑗,𝑘𝑘 = the amount of slack of job 𝑗𝑗 on machine 𝑘𝑘 (hour) 
𝑆𝑆𝑆𝑆𝑗𝑗∗ = the minimum slack of the selected job 𝑗𝑗∗ (hour) 
𝐶𝐶𝑗𝑗,𝑘𝑘 = the amount of completion time of job 𝑗𝑗 on machine 𝑘𝑘 (hour) 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚   = the completion time of all jobs 𝑗𝑗 (hour) 
𝑒𝑒𝑗𝑗+  = the amount of tardy time of job 𝑗𝑗 (hour) 
𝑇𝑇 = the total tardiness of all jobs 𝑗𝑗 (hour) 
𝑁𝑁 = the number of tardy jobs (job) 
 
SCT (shortest job completion time): the rule selects the next job 𝑗𝑗 ∈ 𝑁𝑁′ to be processed, and simultaneously selects 
machine 𝑘𝑘 ∈ 𝑀𝑀𝑗𝑗 to process job 𝑗𝑗 such that the time to complete 𝑗𝑗 is minimized. In addition, in most cases, the selected 
machine 𝑘𝑘 is processing the job 𝑖𝑖′ (the preceding job of job 𝑗𝑗) which affects the setup time of job 𝑗𝑗 on machine 𝑘𝑘, i.e., 
𝑆𝑆𝑖𝑖′,𝑗𝑗, 𝑘𝑘. That is, the selected job 𝑗𝑗 may not be the job that has the shortest processing time, but it is the job that has the 
shortest completion time from the setup time and processing time. In other words, we can write the description of the 
rule as: 

SCT: min
𝑗𝑗∈𝑁𝑁′, 𝑘𝑘∈𝑀𝑀𝑗𝑗

(𝑆𝑆𝑖𝑖′,𝑗𝑗, 𝑘𝑘 + 𝑃𝑃𝑗𝑗,𝑘𝑘). 

 
SC-LPT (shortest job completion time based on the longest processing time): the rule selects the next job 𝑗𝑗 ∈ 𝑁𝑁′ to be 
processed that has the longest processing time first, say job 𝑗𝑗∗, then the rule chooses machine 𝑘𝑘 ∈ 𝑀𝑀𝑗𝑗 to process job 𝑗𝑗∗, 
while taking the setup time 𝑆𝑆𝑖𝑖′,𝑗𝑗∗, 𝑘𝑘  into account. Finally, the job and the machine selection result in the shortest 
completion time of the job 𝑗𝑗∗. In other words, we can write the description of the rule as: 

SC-LPT: min
𝑘𝑘∈𝑀𝑀𝑗𝑗∗

(𝑆𝑆𝑖𝑖′,  𝑗𝑗∗, 𝑘𝑘 + 𝑃𝑃𝑗𝑗∗,𝑘𝑘)|[ 𝑃𝑃𝑗𝑗∗ = max
𝑗𝑗∈𝑁𝑁′, 𝑘𝑘∈𝑀𝑀𝑗𝑗

𝑃𝑃𝑗𝑗,𝑘𝑘]. 

 
SC-EDD (shortest job completion time based on the earliest due date): the rule picks the next job 𝑗𝑗 ∈ 𝑁𝑁′  to be 
processed that has the earliest due date, say job 𝑗𝑗∗, then the rule chooses machine 𝑘𝑘 ∈ 𝑀𝑀𝑗𝑗 to process job 𝑗𝑗∗, while 
taking the setup time 𝑆𝑆𝑖𝑖′,𝑗𝑗∗, 𝑘𝑘  into account. Ultimately, the job and the machine selection result in the shortest 
completion time of the job 𝑗𝑗∗. In other words, we can write the description of the rule as: 

SC-EDD: min
𝑘𝑘∈𝑀𝑀𝑗𝑗∗

(𝑆𝑆𝑖𝑖′,  𝑗𝑗∗, 𝑘𝑘 + 𝑃𝑃𝑗𝑗∗,𝑘𝑘)|[ 𝐷𝐷𝑗𝑗∗ = min
𝑗𝑗∈𝑁𝑁′, 𝑘𝑘∈𝑀𝑀𝑗𝑗

𝐷𝐷𝑗𝑗]. 

 
SC-MinSlack (shortest job completion based on the minimum slack): This rule selects the next job 𝑗𝑗 ∈ 𝑁𝑁′ to process 
job 𝑗𝑗 that has the shortest minimum slack time first, say 𝑗𝑗∗, then the rule chooses the machine 𝑘𝑘 ∈ 𝑀𝑀𝑗𝑗. To complete 
the selected job 𝑗𝑗∗, it requires the setup time 𝑆𝑆𝑖𝑖′,𝑗𝑗∗,𝑘𝑘 and processing time 𝑃𝑃𝑗𝑗∗,𝑘𝑘. Finally, the machine selection results 
in the shortest completion time for the selected job 𝑗𝑗∗. In other words, we can write the description of the rule as:  

SC-MinSlack: min
𝑘𝑘∈𝑀𝑀𝑗𝑗∗

�𝑆𝑆𝑖𝑖′,𝑗𝑗∗,𝑘𝑘 + 𝑃𝑃𝑗𝑗∗,𝑘𝑘�|[𝑆𝑆𝑆𝑆𝑗𝑗∗ = min
𝑗𝑗∈𝑁𝑁′,𝑘𝑘∈𝑀𝑀𝑗𝑗

(𝐷𝐷𝑗𝑗 − 𝑃𝑃𝑗𝑗,𝑘𝑘 − 𝑆𝑆𝑖𝑖′,𝑗𝑗,𝑘𝑘)]. 
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3. Numerical Example  
In this numerical experiment, 10 jobs may be processed on three unrelated parallel machines. The due date, 
processing time on each machine, and job- and machine-sequence-dependent setup time for every job are presented 
below: 
 

𝑃𝑃𝑗𝑗,𝑘𝑘 = �
66.90 11.80 26.80 6.45 30.74 11.23 4.51 5.09 9.70 3.18
100 100 33.49 8.07 38.43 14.03 100 100 12.13 3.97

66.90 11.80 26.80 6.45 30.74 11.23 4.51 5.09 100 100
� 

 
𝐷𝐷𝑗𝑗 = [79   30  60   25   57   38   11   7   42    4] 

 

𝑅𝑅𝑗𝑗,𝑘𝑘 = �
1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 0 0

� 

 

𝑆𝑆𝑖𝑖′,𝑗𝑗,1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 3 5 5 5 5 4 4 5 5
3 0 5 5 5 5 4 4 5 5
5 5 0 0.5 0.5 3 5 5 5 5
5 5 0.5 0 0.5 3 5 5 5 5
5 5 0.5 0.5 0 3 5 5 5 5
5 5 3 3 3 0 5 5 5 5
4 4 5 5 5 5 0 0.5 5 5
4 4 5 5 5 5 0.5 0 5 5
5 5 5 5 5 5 5 5 0 0.5
5 5 5 5 5 5 5 5 0.5 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝑆𝑆𝑖𝑖′,𝑗𝑗,2 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0.5 0.5 3 0 0 5 5
0 0 0.5 0 0.5 3 0 0 5 5
0 0 0.5 0.5 0 3 0 0 5 5
0 0 3 3 3 0 0 0 5 5
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 5 5 5 5 0 0 0 0.5
0 0 5 5 5 5 0 0 0.5 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝑆𝑆𝑖𝑖′,𝑗𝑗,3 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 3 6 6 6 6 4 4 0 0
3 0 6 6 6 6 4 4 0 0
6 6 0 4 4 3 6 6 0 0
6 6 4 0 0.5 4 6 6 0 0
6 6 4 0.5 0 4 6 6 0 0
6 6 3 4 4 0 6 6 0 0
4 4 6 6 6 6 0 0.5 0 0
4 4 6 6 6 6 0.5 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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4. Results and Discussion  
4.1 Shortest Job Completion Time (SCT)  
 

Table 1. The completion time of jobs and their tardiness from rule SCT 
 

Job Completion time Due date  Tardiness  

1 117.09 79 38.09 
2 25.91 30 0 
3 45.18 60 0 
4 8.07 25 0 
5 62.65 57 5.65 
6 25.1 38 0 
7 4.51 11 0 
8 10.1 7 3.1 
9 13.39 42 0 

10 3.18 4 0 
 

 
Figure 1. Jobs sequence on each machine from rule SCT 

 
As shown in Table 1, the results of applying rule SCT display a makespan of 117.09 hours, with three jobs finished 
late and a total of 46.84 hours of tardiness. From Figure 1, Machine 1 processes jobs 10, 9, 3, and 1, while Machine 2 
processes jobs 4 and 6, and Machine 3 processes jobs 7, 8, 2, and 5. Notably, jobs 1, 8, and 5 were completed beyond 
the due date. 
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4.2 Shortest Job Completion Time Based on the Longest Processing Time (SC-LPT)  
 

Table 2. The completion time of jobs and their tardiness from rule SC-LPT 
 

Job Completion time Due date  Tardiness  

1 66.9 79 0 
2 63.77 30 33.77 
3 33.49 60 0 
4 63.69 25 38.69 
5 30.74 57 0 
6 45.97 38 7.97 
7 75.41 11 64.41 
8 72.87 7 65.87 
9 50.63 42 8.63 

10 72.67 4 68.67 
 

 
Figure 2. Jobs sequence on each machine from rule SC-LPT 

 
Table 2 presents the results of applying rule SC-LPT, which indicate a makespan of 75.41 hours, with seven jobs 
being completed late, resulting in a total tardiness of 288.01 hours. Figure 2 displays the sequence of the job for each 
machine, indicating that Machine 1 is entrusted with processing jobs 1 and 7, Machine 2 handles jobs 3, 9, 4, and 10, 
and Machine 3 processes jobs 5, 6, 2, and 8. It is noteworthy that jobs 7, 4, 9, 10, 2, 6, and 8 exceeded their due dates. 
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4.3 Shortest Job Completion Time Based on the Earliest Due Date (SC-EDD)  
 

Table 3. The completion time of jobs and their tardiness from rule SC-EDD 
 

Job Completion time Due date  Tardiness  

1 106.59 79 27.59 
2 19.99 30 0 
3 61.59 60 1.59 
4 8.07 25 0 
5 46.85 57 0 
6 25.1 38 0 
7 10.1 11 0 
8 5.1 7 0 
9 34.69 42 0 

10 3.18 4 0 
 

 
Figure 3. Jobs sequence on each machine from rule SC-EDD 

 
Table 3 presents the results of applying rule SC-EDD, which indicate a makespan of 106.59 hours, with only two jobs 
being completed late, resulting in a total tardiness of 29.18 hours. Each machine’s job sequence is shown in Figure 3, 
which shows that Machine 1 is in charge of processing jobs 10, 2, 9, and 1. Machine 2 handles jobs 4, 6, and 3. Jobs 
8, 7, and 5 are processed by Machine 3. Notably, jobs 1 and 3 were completed after their due date. 
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4.4 Shortest Job Completion Time Based on the Minimum Slack (SC-MinSlack)  
 

Table 4. The completion time of jobs and their tardiness from rule SC-MinSlack 
 

Job Completion time Due date  Tardiness  

1 75.08 79 0 
2 25.91 30 0 
3 72.93 60 12.93 
4 8.07 25 0 
5 46.99 57 0 
6 43.13 38 5.13 
7 10.1 11 0 
8 5.1 7 0 
9 64.13 42 22.13 

10 3.18 4 0 
 

 
 

Figure 4. Jobs sequence on each machine from rule SC-MinSlack 
 
Table 4 presents the results of applying rule SC-MinSlack, which indicates a makespan of 75.08 hours, with three jobs 
being completed late, resulting in a total tardiness of 40.19 hours. Each machine's job sequence is shown in Figure 4, 
which shows that Machine 1 is in charge of processing jobs 10, and 1. Machine 2 handles jobs 4, 5, and 9. Jobs 8, 7, 
2, 6, and 3 are processed by Machine 3. Notably, jobs 9, 6, and 3 were completed after their due date. 
 
4.5 Summary of Results for the Four Heuristic Methods  
According to Table 5, among the four rules, SC-MinSlack provides the best makespan; SC-LPT offers the second-
best makespan. While SC-MinSlack gives the second-best both total tardiness and the number of tardy jobs, SC-LPT 
provides the worst total tardiness and number of tardy jobs. In addition, SC-EDD produces the smallest total tardiness 
and the least number of tardy jobs, while producing a much larger makespan than those of the SC-LPT and SC-
MinSlack. Unexpectedly, the SCT performs poorly in terms of the makespan, while producing relatively similar 
performance in terms of tardiness as SC-MinSlack. To summarize, the SC-MinSlack seems to perform well in all three 
measures of performance. 
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Table 5. Summary Results of the Four Heuristic Methods 

N Rules Makespan Total Tardiness Number of Tardy Jobs 

1 SCT 117.09 46.84 3 
2 SC-LPT 75.41 288.01 7 
3 SC-EDD 106.59 29.18 2 
4 SC-MinSlack 75.08 40.19 3 

5. Conclusion
In this paper, four heuristics are proposed to solve the unrelated parallel machine scheduling problem with the job- 
and machine-sequence-dependent setup time. Their effectiveness is evaluated according to three performance metrics, 
i.e., makespan, total tardiness, and the number of tardy jobs through a numerical example. The results indicate that
SC-Minslack is the most effective heuristic method for minimizing makespan, while SC-EDD provides the best
performance for both total tardiness and the number of tardy jobs. Although SC-LPT is the second-best heuristic
method for minimizing makespan, it produces the worst results for both total tardiness and the number of tardy jobs.
For future research, developing metaheuristic algorithms may be a promising avenue to obtain schedules that offer a
better trade-off among the three measures of performance.
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