Alternative Objective Function in Planning and Scheduling

Genesis Agbo, Jessica Florencia, Salome Pantsulaya, Tamunodiyepiriye Bestman, Zibo Lin and Odile Bellenguez¹

IMT Atlantique Bretagne-Pays de la Loire Ecole Mines-Telecom La Chantrerie 4 rue Alfred Kastler BP 20722 44307 Nantes Cedex 3, France genesisagbo@gmail.com, jessica.florencia50@gmail.com, salome.pantsulaya1@gmail.com, piriyejoseph@gmail.com, zibo.lin98@gmail.com, odile.bellenguez@imt-atlantique.fr

Abstract

For many years, the Operations Research (OR) discipline has been primarily concerned with economic aspects. The objective of traditional Planning and Scheduling has been mainly considered from a productive viewpoint like optimizing time and cost. However, human factors have gained increased attention since the 2000s, propelled by growing public concerns about sustainable development on the same grounds as economic and ecological ones. Applying conventional optimization models to Planning and Scheduling appears not to seem sufficiently effective, so alternative approaches must be employed to obtain insight into the most critical drivers of socially responsible operations to apply standard Operations Research (OR) models appropriately. The purpose of this study is to analyze and classify how the works dedicated to alternative objective functions by the Operations Research community to integrate human and environmental considerations into production and logistical systems have been captured. Moreover, several gaps in the literature are addressed, and some recommendations for appropriately integrating human and ecological factors in OR problems are given. There were several aspects that could not be analyzed and classified due to a lack of or insufficient research material in these areas. This work can be used as a basis for further research into non-productive objective functions that could bring about new perspectives in this field.

Kevwords

Optimization, Ecological, Ethical, Ergonomics, Human-Factors

1. Introduction

The notion of Objective Function in modeling Planning and Scheduling Problems has been studied for a very long time. This concept is very critical because it determines whether we can arrive at an optimal solution to a problem or not. Before we define what an Objective function is, it is important to look at a little bit of context. Scheduling deals with the gradual distribution of limited resources to jobs. It is a collection of methods for decision-making to maximize one or more objectives. These resources could be employees, materials, machines, routes, computer central processing units (CPU), and so forth.

Ronald Graham, Eugene Lawler, Jan Karel Lenstra, and Alexander Rinnooy Kan (Graham et al., 1977, 1-40) introduced a convenient notation for classical scheduling problems below, based on three different fileds, respectivle named $\alpha|\beta|\gamma$, where α denotes the machine environment, β : refers to the process, characteristics, and constraints of the problem and γ : refers to the objective function to minimise.

This paper will mainly focus on discussing alternative or non-productive objective functions (γ) in Planning and Scheduling scenarios across different industries.

The Objective of a Planning/Scheduling requirement refers to the goal or outcome of an activity towards which efforts and resources are directed. A way to maximize (or minimize) these goals and outcomes are described as the objective function. For many years, the objective of traditional planning and scheduling has been viewed strictly from a

¹ Odile Bellenguez is a Full Professor at IMT Atlantique /LS2N, while the other authors are currently enrolled in the MSc Program in Management of Production, Logistics and Procurement with a track in Management and Optimization of Supply Chains and Transport at IMT Atlantique.

Proceedings of the 8th North American International Conference on Industrial Engineering and Operations Management, Houston, Texas, USA, June 13-16, 2023

productive perspective (related to optimizing time and cost). Examples of productive objective functions include makespan, maximum lateness, total weighted completed time, weighted number of tardy jobs, and global costs just to mention a few. However, with the occurrence of many new ethical and ecological issues, there have been a lot of recent studies dedicated to alternative objective functions to address these challenges. These new criteria are normally difficult to capture and model using an exclusive linear function. Hence, they are approached using a combination of hard and soft constraints and multifaceted objective functions.

Several ethical and ecological issues led to investigations into the notion of "non-productive" objective functions. Some of these problems bother on human dignity, health and safety hazards, and environmental pollution. For example in the Oxfam America report for the continuation of their campaign to advocate for improved conditions for US poultry workers, some of these concerns were succinctly captured as follows: "While the poultry industry today enjoys record profits and pumps out billions of chickens, the reality of life inside the processing plant remains grim and dangerous. Workers earn low wages, suffer elevated rates of injury and illness, toil in difficult conditions, and have little voice in the workplace. Despite all that, though, workers say the thing that offends their dignity most is simple: lack of adequate bathroom breaks and the suffering that entails, especially for women". (OXFAM America, 2016, 3). This is just one of several high-profile cases relating to human working conditions.

There are also several cases of ecological disasters that have raised these concerns as well. For instance, the website https://www.cfr.org/timeline/ecological-disasters (Ghoshal & Rothaus), details how the members of Peru's indigenous Achuar population claimed that the nine billion barrels of oil wastewater that were dumped into the Amazonian watersheds have resulted in cancers, skin conditions, miscarriages, and unexplained maladies. The Achuar community sued Occidental Petroleum, a company with U.S. headquarters, for environmental and health damages brought on by the contamination in 2007. The plaintiffs asserted that the business disregarded industry norms and broke international, American, and Peruvian law. According to Occidental, there was no proof that there were negative health repercussions. 2015 saw the two parties come to an out-of-court settlement, the details of which have not been disclosed.

1.1 Objectives

The purpose of this study is to look extensively at several Operations Research Models dedicated to the non-productive objective and categorize them according to how they are demonstrated and captured and provide a specific idea of the way it answers, or not, to real issues, leading a general conclusion and evaluation of perspectives

1.2 Significance of the Study

This study is important because there has been a lot of emphasis on productivity without thinking of long-term sustainability. Sustainability has three major pillars which are profit, planet, and people (3Ps). While most previous research efforts have been focused on the economic aspect, there is also a need to emphasize the social and environmental areas to ensure sustainability. Concentrating on certain fields at the expense of other fields would eventually culminate in the decline of the enterprise or system.

2. Methods

In line with the objective of this paper, the methodology did not entail experimental research. The steps involved with this analysis and categorization of the non-productive Operations Research Models are as listed below:

2.1 Search and analysis of papers

We sourced for 81 different papers and then checked for the relevancy of each paper to the research. We were able to determine the relevancy by checking first if the write up was on non-productive objective function and if this function was mathematically modelled. We finally decided on 59 papers to be used for the project.

2.2 Preparation of research outline

Thereafter, the research outline was prepared and was reviewed with the project supervisor. After completion of approval was then followed by writeup development.

2.3 Write up, review and proof reading

The next step that followed was the analysis of the papers. Inductive reasoning was used to arrive at the classification of the various papers and then preparation of the write up based on the classification. This was then followed by regular review with all of the authors and the supervisor. The final step was iterative proof reading by all authors and the supervisor, where corrections and updates were made with each iteration.

3. Results and Discussion

3.1 Numerical Results

The Non-Productive Objective Functions seen from the vast majority of papers consulted for this study are broadly grouped under two major sections - Ecological and Ethical Non-Productive Objective Functions. These are further subdivided as shown in figure 1 below. Ecological Non-Productive Objective functions refer to any alternative function that deals with non-human factors while Ethical Non-Productive functions deal with human factors. A few decades ago, environmental issues were regarded as a one-way interaction between society and the natural environment (Aldeia & Alves, 2019). The misconception that natural resources and the earth's reserves are inexhaustible and do not require maintenance led to their overexploitation and destruction by humans. The relationship between society and the environment is no longer a theoretical concept but a pressing concern. Global social and economic development has been greatly impacted by environmental issues (Barreto & Kypreos, 2004).

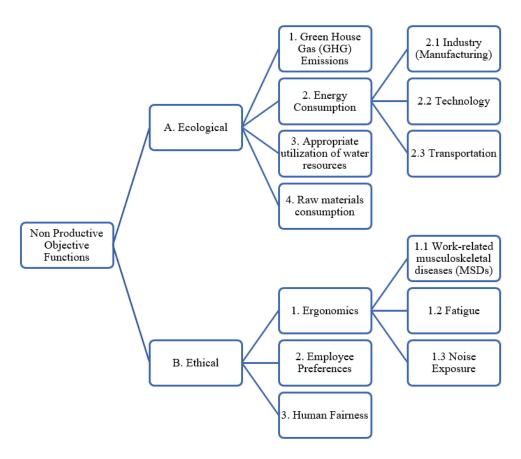


Figure 1. Classification of the Non-Productive Objective Functions

Below Table 1 and 2 gives a brief explanation of each classification and the captured mathematical models

Table 1. Ecological Non-Productive Objective Functions

CLASSIFICATION	EXPLANATION	PAPERS	OR OBJECTIVE FUNCTION CAPTURING APPROACH
1. GreenHouse Gas (GHG) emissions	With the increasing focus on climate change, numerous research papers have modeled GHG emissions and incorporated them into optimal scheduling or planning mathematical models.	(a) Elkamel, A et al. et al., 2008 (b) Laing, H et al., 2022 (c) Shao, S, et al. 2022 (d) Liao, W., & Wang, T. ,2018 (e) Boyan I. et al.,2022	Direct mathematical modelling considering emission quantity or cost as minimization objective
2. Energy consumption	other energy sources. Currently, as power the activities and processes consumption due to the rise of tech	s human activities develop are also increased signific mology and various activi generate these energies, i	at are also related to the consumption and use of seed in various sectors, the usage of energy to eantly. Knowing the growth of energy ties in the world and its effect on the t is necessary for considering energy
2.1 Industry (Manufacturing)	This massive energy consumption leads to a big concern for the companies and researchers, as currently there is much research that considers energy consumption for scheduling and planning the job assignment in manufacturing.	(a) Mansouri & Aktas (2016) (b) Wu et al. (2018) (c) Zeng et al. (2018) (d) Paper Duarte et al. (2020)	Directly considers energy as an objective function or considering the energy cost function as an objective function to be minimized.
2.2 Technology	Technology usage consumes a lot of energy and produces carbon emissions (Ghafari et al., 2022; Gao et al., 2021). Therefore, many researchers and parties are also started to be concerned and considered the energy usage of the technologies when planning or scheduling tasks or activities to the technologies.	(a) Gao et al. (2021) (b) Seman et al., 2022 (c) Dong et al. (2015)	Two technologies that are in widespread use nowadays and researchers considered planning with energy efficiency are satellite for communication or capturing images of the earth, and computing technology, including cloud computing. The papers modelled Technology by minimizing energy consumption
2.3 Transportation	Transportation is another biggest energy end-user besides the industrial sector (Bányai, 2018; Huang et al., 2017). Transportation sectors covers all modes of transportation, including private and commercial for transporting goods or human.	(a) Huang et al. (2017) (b) Bányai, 2018 (c) Sigler et al., 2021	Wide range of researches in transportation scheduling have concerns to the resource allocation and integrates energy-efficient approach for planning the transportation. In general, for the papers that considers energy-efficiency in the scheduling, the energy variables or parameters are modeled directly as the objective functions.
3. Appropriate utilization of water resources	Although global water supplies are ample, this nonrenewable resource is under increasing strain, and the industrial sector frequently disregards the	(a) Saeedi, M and Hosseinzadeh , M (2006)	Paper (a), Directly modelled the maximization of wastewater recycling and reuse and minimization freshwater use from their flow rates.

	treatment of already-used water. The wasteful use of water resources and industrial wastewater can cause enormous harm to ecosystems, therefore reducing water consumption and wastewater discharge is a major priority.	, ,	Wang, S., Cao, T., & Chen, B. (2007)	Paper (b), assessed water and energy consumption in the energy sector by analyzing the intensity of direct and indirect consumption of water resources in energy production using the input-output analysis approach
4. Raw materials consumption	Raw materials are the goods or inventories required by a firm to produce its products. Effective use and allocation of raw materials minimize raw material consumption, save money, and reduce environmental damage.	\ /	Billaut, 2018 Wang & Liu, (2014)	Paper (a) directly modelled the objective function by minimizing the cost and quantity of the lost product (two objectives). Paper (b) proposes a model for differentiating trim loss ratio and inventory distribution data based on schedule adjustments and inventory quantity limitations to improve the overall production efficiency in the paper industry. The objective function is to minimize trim loss

Table 2. Ethical Non-Productive Objective Functions

CLASSIFICATION	EXPLANATION	PAPERS	OR OBJECTIVE FUNCTION
			CAPTURING APPROACH
1. Ergonomics	Ergonomics is the scientific discipline concerned with the understanding of the interactions among human and other elements of a system, and the profession that applies theory, principles, data, and methods to design in order to optimize human well-being and overall system performance		
1.1 Work-related musculoskeletal diseases (MSDs)	Work-related musculoskeletal diseases (MSDs) are mostly connected with poor ergonomic work conditions, and these disorders constitute a major source of work-related illness.	(a) Yoon et al., (2016) (b) Mossa et al., (2016) (c) Digiesi et al., (2018) (d) Zhou & Wang, (2021)	For paper (a), the modelling approach is direct. The objective function is to minimize between-worker variance in the cumulative daily workload and constraints to make sure workers are not assigned to successive workstations that place heavy stress on the same body region. In papers (b) and (c) the modelling was done using a dual approach. A dual approach is explored by either finding production maximization solutions under ergonomic constraints or, vice-versa, minimizing the ergonomic risk solutions, under production constraints. Paper (d) modelled ergonomics indirectly in the constraints (the model has 3 constraints related with ergonomics).
1.2 Fatigue	Fatigue is described as a state of mental and physical exhaustion that impairs a person's capacity to accomplish tasks. Worker tiredness can have a significant influence on system performance in terms of quality (Eklund, (2014)).	(a) Pei et al., (2022) (b) Othman et al., (2012)	In paper (a), a direct approach was used to model the objective function of flexible job shop problem (FJSP). The goal is to reduce tiredness or the allowed maximum working hours-oriented function. Paper (b) uses the dual modelling approach in a job shop setting. Weariness was incorporated both into the objective function and constraints.
1.3. Noise Exposure	Noise exposure can be defined as any disturbing and high-intensity sound that can affect human health negatively. High noise	(a) Lu et al., (2018) (b) Lang & Lit, (2011)	In paper (a), the noise exposure was modelled directly as part of the objective function with the productive aspect of the make span.

	exposure not only affects physical health, such as causing dizziness and problem in hearing but also affects the mental health of humans that are exposed intensively to uninterrupted sound (Lu et al., (2018); Hajibabaei & Behnamian, (2022)).	(c) Lu et al., (2019) (d) Hajibabaei & Behnamian, (2022)	Paper (b) includes a noise exposure variable as part of the objective function in a job shop scheduling problem Paper (c) models three objective functions, with a productive objective, minimize makespan, and two non-productive objective of minimizing noise exposure and energy consumption for solving hybrid flowshop scheduling problem. In paper (d) noise exposure was not directly modelled in the objective function. The research does not include the noise variable directly, but included it with the speed increase of machine, as it is found that the lower the machine speed, the lower the noise resulted. Hence, the minimization of speed increase is equal also to minimizing the high disturbing and constant noise from the operations.
2. Employee Preferences	One of the common non-productive objectives considered in scheduling problems is the preferences of employees or staff. In this case, the scheduling problem is solved by including staff preferences related to their jobs (shifts, days off, working hours, job types). By incorporating the preferences, the scheduling result are optimizing not only the assignment but also the employee satisfaction, which leads also to the improvement of the worker performance that increases the work and service quality (Örmeci et al., (2014); Rerkjirattikal et al., (2020); Ruiztorres et al., (2015)).	(a) Perreault- Lafleur, 2022 (b) Ruiz-torres et al., (2015) (c) Mohan, (2008) (d) Wright & Mahar, (2013) (e) Hamid et al., (2018) (f) Rerkjirattikal et al., (2020) (g) Shuib & Kamarudin, (2019) (h) Örmeci et al., (2014) (i) Sabar et al., (2008)	Papers (a), (b), (c), (d), (e), and (f) have employee preferences directly modelled in the objective functions Papers (g), (h) and (i) modelled employee preferences indirectly in the constraints
3. Human Fairness	The definition of fairness has received extensive study in the fields of psychology and economics. However, as the term is greatly influenced by the context, a universal definition of fairness is unlikely, if not worthless. According to (Shi et al., 2014, 5), there are two types of fairness. These are resulting fairness and targeted fairness. Resulting fairness deals with resource usage, whereas targeted fairness focuses on resource allocation.	(a) Trilling et al., (2006) (b) Hamid et al., (2018) (c) Ozder et al., (2019) (d) Devesse et al., (2022) (e) Blöchliger, (2004)	The objective function in paper (a) was modelled directly to minimize the maximum total punishment for each nurse in a Nurse Scheduling Problem Paper (b) approached the same problem using a multi objective function approach with two of the objective functions focusing on maximizing fairness and the other minimizing the costs designated to the nurses Paper (c) modelled fairness directly using a single objective function with a multi objective structure. The objective seeks to minimize the costs of overtime and unbalanced appointments and to pursue fair

Proceedings of the 8th North American International Conference on Industrial Engineering and Operations Management, Houston, Texas, USA, June 13-16, 2023

appointments without disregarding seniority
levels and personnel skills
Paper (d) modelled fairness indirectly in the
number of worked hours and worked
weekends in The Physician Scheduling
Problem in Emergency Rooms using a
reformulated mixed-integer programming
model
Paper (e) Modelled indirectly in the
objective function by minimizing the
distribution of unpopular shifts among
employees using the concept of Cost of Time
Table Blocks (TTB).

3.2 Proposed Improvements

It would be quite interesting if much more research is made into the Human Factors in an attempt to model them mathematically. Some of these factors include:

- Human stress
- Mental Health of workers
- Dignity

4. Conclusion

The papers were successfully classified in accordance with the original intent. On the Ecological factors, we looked into GreenHouse Gas (GHG) emissions, Energy consumption, Water consumption, and Raw material consumption and from the Ethical angle we considered Ergonomics (Work-related musculoskeletal diseases (MSDs), fatigue, noise pollution), Employee preferences and Fairness. To better understand these classifications, we gathered papers on the utilization of these unique factors in achieving new solutions, or improvements on existing models from a different perspective in operational research. Based on the conclusions from each classification above, we can deduce that Non-Productive Objective functions can indeed to a great extent address ecological and ethical concerns in Planning and Scheduling. However, there could be difficulty encountered in obtaining an optimal solution that reflects reality since human factors are difficult to model. In addition, the optimization focus could lead to bias at the expense of other equally important objectives (high sensitivity, since where you optimize you go). Furthermore, the extent to which constraints can be identified could determine accuracy of the model. Nevertheless, having such approaches in mind could be an interesting side step while try to model decision-making beyond short-term productivity.

References

- Aldeia, J., & Alves, F. Against the environment. Problems in society/nature relations. *Frontiers in Sociology*, *4*, 29. 2019. https://www.frontiersin.org/article/10.3389/fsoc.2019.00029/full. 10.3389/fsoc.2019.00029
- Arbib, C., & Marinelli, F. An optimization model for trim loss minimization in an automotive glass plant. *European Journal of Operational Research*, 183(3), 1421-1432. 2007. https://www.researchgate.net/publication/222800433_An_optimization_model_for_trim_loss_minimization_in_ an automotive glass plant
- Bányai, T. Real-Time Decision Making in First Mile and Last Mile Logistics: How Smart Scheduling Affects Energy Efficiency of Hyperconnected Supply Chain Solutions. *Energies*, 11. 2018.10.3390/en11071833
- Barreto, L., & Kypreos, S., Emissions trading and technology deployment in an energy-systems "bottom-up" model with technology learning. *European Journal of Operational Research*, 158(1), 243-261. 2004. 10.1016/S0377-2217(03)00350-3
- Billaut, J.-C., *New scheduling problems with perishable raw materials constraints*. Archive ouverte HAL. Retrieved December 27, 2022, 2018. from https://hal.archives-ouvertes.fr/hal-01233559
- Bindoff N., In Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker T., et al., Eds. (Cambridge Univ. Press, Cambridge/New York, 2013), pp. 867–952. 2013
- Blöchliger, I. Modeling staff scheduling problems. A tutorial. *European Journal of Operational Research*, 158(3), 533-542. 2004. 10.1016/S0377-2217(03)00387-4

- Castiglione, C., Yazan, D. M., Alfieri, A., & Mes, M., A holistic technological eco-innovation methodology for industrial symbiosis development. Sustainable Production and Consumption, 28, 1538–1551. 2021.https://doi.org/10.1016/j.spc.2021.09.002
- Cheng, C. C. J., Yang, C., & Sheu, C., The link between eco-innovation and business performance: A Taiwanese industry context. Journal of Cleaner Production, 64, 81–90. 2014. https://doi.org/10.1016/j.jclepro.2013.09.050
- Devesse, V. A. P. A., Akartunalı, K., Arantes, M. d. S., & Claudio, T. F. M. Linear approximations to improve lower bounds of a physician scheduling problem in emergency rooms. *Journal of the Operational Research Society*, *Latest Article* (Latest Article), 1-17. 2022. 10.1080/01605682.2022.2125841
- Digiesi, S., Facchini, F., Mossa, G., & Mummolo, G. Minimizing and Balancing Ergonomic Risk of Workers of an Assembly Line by Job Rotation: a MINLP Model. *International Journal of Industrial Engineering and Management* (*IJIEM*), 9(3), 129-138. 2018. https://www.researchgate.net/publication/329553445_Minimizing_and_Balancing_Ergonomic_Risk_of_Worker s of an Assembly Line by Job Rotation a MINLP Model
- Dong, Z., Liu, N., & Rojas-Cessa, R. Greedy scheduling of tasks with time constraints for energy-efficient cloud-computing data centers. *Journal of Cloud Computing: Advances, Systems and Applications*, 4(5). 2015. 10.1186/s13677-015-0031-y
- Duarte, J. L. R., Fan, N., & Jin, T., Multi-process production scheduling with variable renewable integration and demand response. *European Journal of Operational Research*, 281, 186-200. 2020. https://doi.org/10.1016/j.ejor.2019.08.017
- Eklund, J., The Impacts of Ergonomic Aspects on the Quality. *Open Journal of Safety Science and Technology*, 4(1), 982-1001. 2014. http://dx.doi.org/10.1080/001401397187559
- Elkamel, A., Ba-Shammakh, M., Douglas, P., & Croiset, E., An optimization approach for integrating planning and co 2 emission reduction in the petroleum refining industry. Industrial & Engineering Chemistry Research, 47(3), 760–776, 2018. https://doi.org/10.1021/ie070426n
- Gao, C., Lin, J., Zeng, J., & Han, F., Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP. Applied Energy, 328, 120205.2022. https://doi.org/10.1016/j.apenergy.2022.120205
- Gao, X., Wang, J., Huang, X., Leng, Q., Shao, Z., & Yang, Y., Energy-Constrained Online Scheduling for Satellite-Terrestrial Integrated Networks. *IEEE Transactions on Mobile Computing*.2021.
- Ghafari, R., Kabutarkhani, F. H., & Mansouri, N., Task scheduling algorithms for energy optimization in cloud environment: a comprehensive review. *Cluster Computing*, 25, 1035-1095, 2022. 10.1007/s10586-021-03512-z
- Ghoshal, N., & Rothaus, S. (Not provided, Not provided Not provided). *Timeline: Major Environmental Disasters*. Council on Foreign Relations. Retrieved January 17, 2023, from https://www.cfr.org/timeline/ecological-disasters
- Graham, R., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R., Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. *Annals of discrete mathematics*, 5(Not provided), 287 326, 1977. 10.1016/S0167-5060(08)70356-X
- Haider, J., Lee, B., Choe, C., Abdul Qyyum, M., Shiung Lam, S., & Lim, H., SNG production with net zero outflow of CO2 in an integrated energy system: An energy and economic aspects. Energy Conversion and Management, 270, 116167. 2022. https://doi.org/10.1016/j.enconman.2022.116167
- Hajibabaei, M., & Behnamian, J., Reducing noise pollution by flexible job-shop scheduling with worker flexibility: Multi-subpopulation evolutionary algorithm. *Scientia Iranica*. 2022. 10.24200/SCI.2022.57813.5431
- Hamid, M., Barzinpour, F., Hamid, M., & Saeed, M., A multi-objective mathematical model for nurse scheduling problem with hybrid DEA and augmented ε-constraint method: a case study. *Journal of Industrial and Systems Engineering*, 11(Special), 98 108, 2018. https://www.researchgate.net/publication/328118851_A_multi-objective_mathematical_model_for_nurse_scheduling_problem_with_hybrid_DEA_and_augmented_e-constraint method a case study
- Hamid, M., Barzinpour, F., & Mirzamohammadi, S., A multi-objective mathematical model for nurse scheduling problem with hybrid DEA and augmented ε-constraint method: A case study. *Journal of Industrial and Systems Engineering*, 11, 98-108, 2018.
- Huang, Y., Yang, L., Tang, T., Gao, Z., & Cao, F., Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks. *Energy*, *138*, 1124-1147, 2017. http://dx.doi.org/10.1016/j.energy.2017.07.117
- Ibrahim, H., Aburukba, R. O., & El-Fakih, K., An Integer Linear Programming model and Adaptive Genetic Algorithm approach to minimize energy consumption of Cloud computing data centers. *Computers and Electrical Engineering*, 67, 551-565, 2018. https://doi.org/10.1016/j.compeleceng.2018.02.028

- Ivanov, B., Nikolova, D., Kirilova, E., & Vladova, R., A MILP approach of optimal design of a sustainable combined dairy and biodiesel supply chain using dairy waste scum generated from dairy production. Computers & Chemical Engineering, 166, 107976, 2022. https://doi.org/10.1016/j.compchemeng.2022.107976
- Khan, R., Pruncu, C. I., Naeem, K., Khan, A. S., Abas, M., Khalid, Q. S., & Aziz, A., A Mathematical Model for Reduction of Trim Loss inCutting Reels at a Make-to-Order Paper Mill. *Applied Sciences*, *10*(5274), 1-18, 2020. https://www.researchgate.net/publication/343311441_A_Mathematical_Model_for_Reduction_of_Trim_Loss_in Cutting Reels at a Make-to-Order Paper Mill
- Kondo, Y., & Nakamura, S., Waste input–output linear programming model with its application to eco-efficiency analysis. Economic Systems Research, 17(4), 393–408, 2005. https://doi.org/10.1080/09535310500283526
- Laing, H., O'Malley, C., Browne, A., Rutherford, T., Baines, T., Moore, A., Black, K., & Willis, M. J., Optimisation of energy usage and carbon emissions monitoring using MILP for an advanced anaerobic digester plant. Energy, 256, 124577, 2022. https://doi.org/10.1016/j.energy.2022.124577
- Lang, M., & Li, H., Research on Dual-resource Multi-objective Flexible Job Shop Scheduling under Uncertainty. 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). 10.1109/AIMSEC.2011.6010821
- Leontief, W. W., Quantitative input and output relations in the economic systems of the United States. The Review of Economics and Statistics, 18(3), 105. 1937. https://doi.org/10.2307/1927837
- Leontief, W.W., An alternative to aggregation in input-output analysis and national accounts. The Review of Economics and Statistics, 49(3), 412, 1967. https://doi.org/10.2307/1926651
- Liao, W., & Wang, T., Promoting green and sustainability: A multi-objective optimization method for the job-shop scheduling problem. Sustainability, 10(11), 4205, 2018. https://doi.org/10.3390/su10114205
- Lu, C., Gao, L., Li, X., Zheng, J., & Gong, W., A multi-objective approach to welding shop scheduling for makespan, noise pollution and energy consumption. *Journal of Cleaner Production*, 196(1), 773-787, 2018. https://doi.org/10.1016/j.jclepro.2018.06.137
- Lu, C., Gao, L., Pan, Q., Li, X., & Zheng, J., A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution. *Applied Soft Computing Journal*, 75, 728-749, 2019. https://doi.org/10.1016/j.asoc.2018.11.043
- Manabe, S., Role of greenhouse gas in climate change. *Tellus A: Dynamic Meteorology and Oceanography*, 71(1), 2019. 10.1080/16000870.2019.1620078
- Mansouri, S. A., & Aktas, E., Minimizing energy consumption and makespan in a two-machine flowshop scheduling problem. *Journal of the Operational Research Society*, 67(11), 1382-1394, 2016. 10.1057/jors.2016.4
- Marlow, P. S. P., Oxenburgh, M., & Oxenburgh, A., *Increasing Productivity and Profit Through Health and Safety: The Financial Returns from a Safe Working Environment.* Taylor & Francis Group, 2004. https://doi.org/10.1201/9780203427927
- Marpaung, C. O.P., An econometric analysis of energy input in the agricultural sector and its impact on co2 emissions: a case of Indonesia. *IOP Conference Series: Materials Science and Engineering*, 508(1), 1 6, 2019. 10.1088/1757-899X/508/1/012081
- Masoumehn Hassanchokami, Alejandro Vital-Soto, Jessica Olivares-Aguila, The Role of Environmental Factors in the Flexible Job-Shop Scheduling Problem: A Literature Review, Volume 55, Issue 10, Pages 175-180, 2022, https://doi.org/10.1016/j.ifacol.2022.09.386
- Mohan, S., Scheduling part-time personnel with availability restrictions and preferences to maximize employee satisfaction. *Mathematical and Computer Modelling*, 48(11-12), 1806-1813, 2018. https://doi.org/10.1016/j.mcm.2007.12.027
- Mokhtari, H., & Hasani, A., An energy-efficient multi-objective optimization for flexible job-shopscheduling problem. *Computers and Chemical Engineering*, 104, 339-352, 2017. http://dx.doi.org/10.1016/j.compchemeng.2017.05.004
- Mossa, G., Boenzi, F., Digiesi, S., Mummolo, G., & Romano, V. A., Productivity and ergonomic risk in human based production systems: A job-rotation scheduling model. *International Journal of Production Economics*, 171(4), 471-477. 2016. https://www.sciencedirect.com/science/article/pii/S092552731500225X
- Örmeci, E.L., Salman, F. S., & Yücel, E., Staff rostering in call centers providing employee transportation. *Omega*, 43, 41-53. 2014. https://doi.org/10.1016/j.omega.2013.06.003
- Othman, M., Gouw, G. J., & Bhuiyan, N., Workforce scheduling: A new model incorporating human factors. *Journal of Industrial Engineering and Management*, *JIEM*, 2012 Vol 5, No 2(Online ISSN: 2013-0953 Print ISSN: 2013-8423), 259-284. 2012. http://dx.doi.org/10.3926/jiem.451

- OXFAM America (Ed.), OXFAM REPORT. NO RELIEF: DENIAL OF BATHROOM BREAKS IN THE POULTRY INDUSTRY, None(None), 15, 2016 https://s3.amazonaws.com/oxfam-us/www/static/media/files/No Relief Embargo.pdf
- Ozder, E. H., Özcan, E., & Eren, T., Sustainable Personnel Scheduling Problem Optimization in a Natural Gas Combined-Cycle Power Plant. *Synergies in Combined Development of Processes and Models*, 7(10), 702, 2019. https://www.mdpi.com/2227-9717/7/10/702/htm
- Pallardy, R. (2022, August 23). *Deepwater Horizon oil spill* | *Summary, Effects, Cause, Clean Up, & Facts*. Britannica. Retrieved January 5, 2023, from https://www.britannica.com/event/Deepwater-Horizon-oil-spill
- Patricio, J., Angelis-Dimakis, A., Castillo-Castillo, A., Kalmykova, Y., & Rosado, L. (2017). Region prioritization for the development of carbon capture and utilization technologies. Journal of CO2 Utilization, 17, 50–59. https://doi.org/10.1016/j.jcou.2016.10.002
- Pei, F., Zhang, J., Mei, S., & Song, H., Critical Review on the Objective Function of Flexible Job Shop Scheduling. *Hindawi Mathematical Problems in Engineering*, *Volume 2022*(Article ID 8147581), 18, 2022. https://doi.org/10.1155/2022/8147581
- Perreault-Lafleur, C., A stochastic integer programming approach to reserve staff scheduling with preferences. *ArXiv*, 2022. https://doi.org/10.48550/arXiv.2210.04808
- Rao, N., *Operations Planning and Scheduling Important Points Summary Krajewski 12th Edition*. Management Theory Review. Retrieved November 23, 2022, from http://nraomtr.blogspot.com/2019/09/operations-planning-and-scheduling.html
- Rerkjirattikal, P., Huynh, V. N., Olapiriyakul, S., & Supnithi, T., A goal programming approach to nurse scheduling with individual preference satisfaction. *Mathematical Problems in Engineering*, 2020. https://doi.org/10.1155/2020/2379091
- Rinaldi, M., Fera, M., Bottani, E., & Grosse, E. H., Workforce scheduling incorporating worker skills and ergonomic constraints. *Computers & Industrial Engineering*, 168(108107), 1, 2022. https://www.sciencedirect.com/science/article/pii/S0360835222001772
- Ruiz-torres, A. J., Alomoto, N., Paletta, G., Economia, D., & Finanza, S., Scheduling to Maximize Worker Satisfaction and On Time Orders. *International Journal of Production Research*, *53*(9), 2836-2852, 2015.
- Sabar, M., Montreuil, B., & Frayret, J. M., Competency and preference based personnel scheduling in large assembly lines. *International Journal of Computer Integrated Manufacturing*, 21(4), 468-479, 2008. https://doi.org/10.1080/09511920701574842
- Saeedi, M., & Hosseinzadeh, M., Optimization of Water Consumption in Industrial Systems Using Linear and Nonlinear Programming. *Journal of Applied Sciences*, 6(11), 2386-2393.2010, 2006. 10.3923/jas.2006.2386.2393
- San Cristóbal, J. R., An environmental/input—output linear programming model to reach the targets for greenhouse gas emissions set by the kyoto protocol. Economic Systems Research, 22(3), 223–236, 2021. https://doi.org/10.1080/09535314.2010.495709
- Seman, L. O., Ribeiro, B. F., Rigo, C. A., Filho, E. M., Camponogara, E., Leonardi, R., & Bezerra, E. A., An Energy-Aware Task Scheduling for Quality-of-Service Assurance in Constellations of Nanosatellites. *Sensors*, 22(10), 1-18, 2022. 10.3390/s22103715
- Shao, S., Tan, Z., Liu, Z., & Shang, W., Balancing the GHG emissions and operational costs for a mixed fleet of electric buses and diesel buses. Applied Energy, 328, 120188, 2022. https://doi.org/10.1016/j.apenergy.2022.120188
- Shi, H., Venkatesha Prasad, R., Onur, E., & Niemegeers, I. G. M. M., Fairness in wireless networks: Issues, measures and challenges. *IEEE Communications Surveys & Tutorials*, 16(1), 5–24, 2014. 10.1109/SURV.2013.050113.00015
- Shuib, A., & Kamarudin, F. I., Solving shift scheduling problem with days-off preference for power station workers using binary integer goal programming model. *Annals of Operations Research*, 272(1-2), 355-372, 2019. https://doi.org/10.1007/s10479-018-2848-5
- Sigler, D., Wang, Q., Liu, Z., Garikapati, V., Kotz, A., Kelly, K. J., Lunacek, M., & Phillips, C, Route optimization for energy efficient airport shuttle operations A case study from Dallas Fort worth International Airport. *Journal of Air Transport Management*, 94. 2021. https://doi.org/10.1016/j.jairtraman.2021.102077
- Soriano, J., Jalao, E. R., & Martinez, I. A., Integrated employee scheduling with known employee demand, including breaks, overtime, and employee preferences. *Journal of Industrial Engineering and Management*, *13*(3), 451-463. 2020. https://doi.org/10.3926/jiem.3126
- Topaloglu, S., An Implicit Goal Programming Model for the Tour Scheduling Problem Considering the Employee Work Preferences. *Annals of Operations Research*, 124, 135-158. 2004.

- Trilling, L., Guinet, A., & Le Magny, D., Nurse Scheduling Using Integer Linear Programming and Constraint Programming. *IFAC Proceedings Volumes*, 39(3), 671 676. 2006. https://www.sciencedirect.com/science/article/pii/S1474667015360602
- Wang, F.-K., & Liu, F.-T., A New Decision Model for Reducing Trim Loss and Inventory in the Paper Industry. *Journal of Applied Mathematics*, 2014(987054), 1. 2014. https://www.hindawi.com/journals/jam/2014/987054/
- Wang, S., & Cao, T., Urban energy—water nexus based on modified input—output analysis. *Applied Energy*, *196*(0306-2619), 208-217. 2017. 10.1016/j.apenergy.2017.02.011
- Wilson, J. R., Fundamentals of ergonomics in theory and practice. *Science Direct, Volume 31*(Issue 6), Pages 557-567. 2000. https://doi.org/10.1016/S0003-6870(00)00034-X
- Wolbeck, L., Fairness Aspects in Personnel Scheduling. School of Business & Economics Discussion Paper Information Systems, 1 25. 2019. https://d-nb.info/1202043291/34
- Wright, P. D., & Mahar, S., Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction. *Omega*, 41(6), 1042-1052. 2013. https://doi.org/10.1016/j.omega.2012.08.004
- Wu, X., Shen, X., & Cui, Q., Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy. *Sustainability*, 10, 1-30. 2018. 10.3390/su10030841
- Yoon, S.-Y., Ko, J., & Jung, M.-C., A model for developing job rotation schedules that eliminate sequential high workloads and minimize between-worker variability in cumulative daily workloads: Application to automotive assembly lines. *Applied Ergonomics*, 55(1), 8-15, 2016. https://www.sciencedirect.com/science/article/pii/S0003687016300114
- Zeng, Z., Hong, M., Li, J., Man, Y., Liu, H., & Li, Z., Integrating process optimization with energy-efficiency scheduling to save energy for paper mills. *Applied Energy*, 225, 542-558. 2018. https://doi.org/10.1016/j.apenergy.2018.05.051
- Zhang, Y., Ren, C., Zhang, H., Xie, Z., & Wang, Y., Managing irrigation water resources with economic benefit and energy consumption: an interval linear multi-objective fractional optimization model under multiple uncertainties, *Agricultural Water Management*, 272(107844), 1 10. 10, 2021. 1016/j.agwat.2022.107844
- Zhou, J., & Wang, R., Scheduling optimization of aging employees considering physical load. *Journal of Physics: Conference Series*, 1884(012040), 1, 2021. https://iopscience.iop.org/article/10.1088/1742-6596/1884/1/012040/pdf

Acknowledgements

The authors would like to first of all acknowledge IMT Atlantique Bretagne-Pays de la Loire Ecole Mines-Telecom Nantes and in particular the Director and Co-Director of the Master's Program in Management and Optimization of Supply Chain and Transport, Professor Audrey Derrien and Dr. Naly Rakoto. For fostering an enabling environment that encourages cutting edge research along with practical and innovative thinking.

The authors would also like to specially thank their various sponsors who provided support and funding for their Master's program. Special thanks go to Mr. and Mrs. Pantsulaya, Mr. and Mrs. Lin, the French Indonesian Consortium for Engineering and Management (FICEM), and finally the Nigerian Petroleum Technology Development Fund (PTDF)

Biographies

Genesis A. Agbo is a Masters Student at IMT Atlantique Nantes France and also an experienced Procurement and Supply Chain Professional. Mr. Agbo holds a Bachelor of Engineering degree in Electrical and Computer Engineering from Federal University of Technology Minna Nigeria and is currently pursuing a Master of Science degree in Management and Optimization of Supply Chains and Transport at IMT Atlantique Nantes France. He has over 7 years work experience in the field of Procurement and Supply Chain and is currently carrying out his end of Masters studies internship in Management and Analysis of Procurement Risk at Collecte Localisation Satellites, a global environmental solutions company based in Toulouse France. He is also a scholar of the Nigerian Petroleum Technology Development Fund (PTDF) and an associate member of the Chartered Institute for Procurement and Supply UK.

Salome Pantsulaya is a Masters Student at IMT Atlantique, Nantes, France. She holds a Bachelor of Management and Finances degree from Lodz University in Poland and is currently pursuing a Master of Science degree in Management and Optimization of Supply Chains and Transport at IMT Atlantique. She has gained experience as a procurement intern in Philips Polska and is currently carrying out her master's internship in Quality Department at Safran Aircraft Engines, a company that designs, develops, produces and supports engines fo civil and military planes.

Zibo Lin is a Masters Student at IMT Atlantique Nantes France. Mr. Lin holds a double Bachelor of Engineering degree from Picardie Jules Verne University and is currently pursuing a Master of Science degree in Management and Optimization of Supply Chains and Transport at IMT Atlantique Nantes France. He has experience in supply chain sustainability in the automotive and FMCG sectors and is currently carrying out his end of master's internship in supply chain planning and optimization at Schneider Electric, a global energy management and automation solutions company based in Grenoble, France.

Jessica Florencia is a double-degree master's student at IMT Atlantique, Nantes, France and Universitas Indonesia, under the French Indonesian Consortium for Engineering and Management (FICEM). She is currently pursuing a Master of Science degree in Management and Optimization of Supply Chain and Transport at IMT Atlantique and a Master of Engineering in Industrial Engineering at Universitas Indonesia, Indonesia. She earned a Bachelor of Engineering (double degree) in Industrial Engineering from Swiss German University, Indonesia, and Fachhochschule Südwestfalen, Germany. She actively contributes to various research and has also published several papers related to simulation and knowledge management. She is currently a research intern in the fields of optimization and simulation for healthcare systems in a research laboratory in Lyon, France.

Tamunodiyepiriye M. Bestman is a Masters Student at IMT Atlantique Nantes France and also a former junior consultant in Bee Energy Consultancy Limited oil and gas upstream industry in Nigeria. Mr. Bestman holds a Bachelor of Engineering degree in Petroleum Engineering from Rivers State University a Port Harcourt and is currently pursuing a Master of Science degree in Management and Optimization of Supply Chains and Transport at IMT Atlantique Nantes France. He has over 2 years work experience in the field of Petroleum Engineer and is currently carrying out his end of Masters studies internship in Optimization of Mineral Ore transportation from the mine to the port at Eramet SA, an international mining company based in Paris France. He is also a scholar of the Nigerian Petroleum Technology Development Fund (PTDF) and a member of Society of Petroleum Engineers.

Odile Bellenguez is a full professor and researcher at IMT Atlantique, in the Department of Automation, Production and Computer Science. An engineer from Polytech'Tours in 2003, she has since held a PhD (2006) and a Habilitation to Supervise Research (2015) in Computer Science. From 2009 to 2019, she was responsible for the Operations Management and Logistics System option, a course that aims to train engineers in logistics and production management. Since 2018, Odile has also been co-responsible for the Data Sciences and Decision Division of the Laboratoire des Sciences du Numérique de Nantes (LS2N- UMR 6004), of which she is a member.

Her research work is particularly in the field of scheduling and personnel planning. The changes now made possible by the optimization algorithms designed, however, make it possible to report increasing social and environmental impacts, beyond scientific barriers. She therefore decided to broaden her training with a University Diploma in Philosophy, "Ethics and Society", in 2020 and set up different ethics-centered projects.