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Abstract 

We have developed a vehicle routing problem (VRP) optimization tool aimed at improving the efficiency of e-waste 
collection and logistics systems. Given the geospatial dispersion of electronic waste (e-waste), an effective reverse 
logistics system is crucial for successful recycling efforts. Our tool combines guided local search and k-opt algorithms 
to optimize travel routes for fleets of heterogeneous vehicles. To ensure accurate calculations, the tool utilizes the 
Open Street Map API, which provides actual road network data for calculating travel distances and time. Furthermore, 
we have incorporated a comprehensive emission model that accurately quantifies vehicular emissions. By doing so, 
we can generate optimized solutions with an average optimality gap of 2.2% compared to known best solutions of 
benchmark VRPs within a time limit of 30 seconds. It also generates an interactive map showing color-coded vehicle 
routes and collecting nodes’ information. The effectiveness of the tool has been tested with real data from our industry 
partner. Out developed VRP optimization tool comes with a graphical user interface that can provide optimized routes 
and quantify—environmental emissions, actual travel distance, and cost within a reasonable amount of time. It has 
been released as an open-source software. The tool can potentially be utilized for minimizing carbon dioxide emissions 
from commercial vehicles to mitigate greenhouse gas impacts. 
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1. Introduction
The global consumer electronics market is expected to expand by a compound annual growth rate (CAGR) of 8% 
through 2027 from its estimated value of over $1 trillion in 2020 (Wadhwani and Saha, 2021). As a result, an increase 
in electronic waste (e-waste) generation is expected in the coming years (Forti et al., 2020; Rahman et al., 2023). In 
2019, 53.6 million metric tons of e-waste, defined by the Global E-waste Statistics Partnership (GESP) as “products 
with a battery or plug”, was generated worldwide (Forti et al., 2020). Collecting and recycling e-waste is an attractive 
alternative to landfilling because it provides (1) environmental relief from the chemical hazards associated with 
untreated e-waste and (2) economic incentives associated with valuable raw material recovery (Forti et al., 2020; 
Nguyen et al., 2022). 

A challenge to developing an e-waste recycling infrastructure is the establishment of a cost-effective collection and 
logistics system (Xu et al., 2021).  There are three primary scenarios for collection and management (Forti et al., 2020) 

884



Proceedings of the 8th North American International Conference on Industrial Engineering and Operations 
Management, Houston, Texas, USA, June 13-16, 2023 

© IEOM Society International 

including (1) formal collection established by national legislation, (2) collection by commercial e-waste dealers and 
companies, and (3) collection by informal door-to-door buyers. Organized municipal or commercial e-waste collection 
at designated collection points is primarily seen in developed countries (Kumar et al., 2017), while informal collection 
mostly exists in developing countries. For example, in China, door-to-door collectors dominate the e-waste collection 
circuit due to the high collection costs of the formal systems (Xu et al., 2021, Salhofer et al., 2016). Therefore, 
minimizing collection costs is critical to the economic viability of e-waste recycling. The utilization of a decision 
support tool can be crucial for e-waste companies in achieving their business objectives by aiding in logistics planning. 
Recently, there has been a growing interest among researchers in decision support systems based on machine learning 
(Rahman et al., 2020; Rahman, Ghasemi, et al., 2021) and computer simulation (Lu et al., 2021; Rahman et al., 2022; 
Rahman & Zhou, 2018) due to their effectiveness and efficiency. 
 
1.1 Objectives 
This study aims to develop a logistics planning tool that can optimize the e-waste collection process for companies by 
improving travel distance, travel time, and vehicular emissions. To accomplish this, we will integrate the open street 
map (OSM) API into our tool, providing us with accurate travel route distances and road speeds, resulting in a more 
realistic solution. The tool will provide users with valuable information by calculating transportation costs, including 
fuel, driver salary, vehicle capital, and operational costs. This unique feature will be beneficial for companies seeking 
to reduce their logistics expenses. Furthermore, our tool will provide quick and reliable results, even for large-scale 
problems. We aim to maintain an average optimality gap of no more than 5% for the well-known benchmark problems, 
which should instill confidence in logistics planners who use our tool. Moreover, our objective is to release the tool's 
source code as open-source software, allowing other recycling companies to adapt it to their specific requirements. 
 
2. Literature Review 
E-waste collection is commonly modeled as some variant of the Vehicle Routing Problem (VRP), which deals with 
minimizing the total transit cost generated by a fleet of vehicles servicing the demand for a given commodity (Ralphs 
et al., 2003, Mar-Ortiz et al., 2011). Mixed-integer linear programming (MILP) is frequently used to solve small-scale 
VRPs. However, due to the relatively large size of vehicle routing problems and long computing time, heuristic and 
meta-heuristic approaches are often implemented to estimate optimized solutions (Akhtar et al., 2017). 
 
While various heuristic approaches exist for solving the general Vehicle Routing Problems (VRPs), only a few studies 
have considered vehicle emissions as a primary or secondary objective. In 2010, Figliozzi introduced a model for the 
Emissions Vehicle Routing Problem (EVRP) (Figliozzi, 2010). Although the study considered static vehicle weights, 
it did not account for the added weight of collected goods along a route. This factor could significantly affect fuel 
consumption and emissions, leading to less accurate results. Additionally, the author did not report optimality gaps 
with existing benchmark studies, making it difficult to evaluate its performance. 
 
Bektaş and Laporte proposed the "Pollution-Routing Problem" (PRP) and presented a model that calculated the 
emission rate from the fuel use rate through energy consumption (Bektaş and Laporte, 2011). However, the 
applicability of this approach is limited due to several factors. Firstly, the paper formulated the PRP as a MILP and 
used a CPLEX solver to solve the problem for a maximum of 20 nodes or customers. In real-world scenarios, there 
may be hundreds of customers, making this approach less practical. Additionally, the 15 and 20-node problems studied 
in the paper took more than three-hour to produce results. This is not practical for day-to-day planning, where waiting 
for three hours or longer to obtain an optimal solution is not feasible. Moreover, the model considered identical 
(homogeneous) vehicles in the fleet and equal demand for all customers. These assumptions are unrealistic, as vehicles 
in a fleet may vary in size, carrying capacity, and emission rates. Also, the demand for customers varies, which would 
affect the optimal routing of vehicles. 
 
Kramer et al. (2015) utilized a metaheuristic optimal recursive algorithm to optimize speed and departure times for 
the PRP (Kramer et al., 2015). They minimized fuel consumption by finding optimal speeds for each arc between two 
customers and considered environmental cost proportional to fuel consumption. However, the study assumed a single 
optimal speed for a given travel arc, while travel speed can be variable depending on speed limitations and congestion 
effects. Additionally, they did not use real road networks to determine route distance. 
 
Nowakowski et al. used a genetic algorithm heuristic to optimize travel distance (Nowakowski et al., 2017). They 
suggested that finding the best route in terms of distances traveled will decrease vehicle emissions as a secondary 
effect. This assumption is flawed because there are factors beyond travel distance that impact emissions. In another 
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work,  Malekkhouyan et al. used a Grasshopper Optimization Algorithm (GOA) to obtain the optimal collection routes 
(Malekkhouyan et al., 2021). Although the authors considered emissions in the objective function, their approach did 
not account for road speed variations or dynamic loads along the routes, which can significantly affect fuel 
consumption and emissions. 
 
Overall, the above-mentioned previous works have several limitations that limit their practical applicability. In our 
methodology, described in Section 3, we attempt to overcome these limitations. Section 4.1 presents a comparison of 
our tool's results with the best-known solutions to existing benchmark problems, while Section 4.2 presents the results 
of a case study. Based on our industry partner's feedback, Section 4.3 discusses tool development, while Section 4.4 
examines the limitations of our approach. Finally, Section 5 concludes the paper. 
 
3. Methods 
3.1 Vehicle Routing Optimization 
Figure 1 shows the overall methodology to develop the vehicle route planning tool. This tool has two primary 
components – data preparation application and vehicle route optimizer. The address adder application takes input from 
an Excel file containing data on the list of collection nodes with addresses. Next, the application collects necessary 
data including longitudes and latitudes of the collection nodes, distance and travel time among the nodes, and road 
speed data connecting two nodes using OpenStreetMap (OSM) (Luxen and Vetter) and Google Maps API (Wang and 
Xu, 2011). Since a user can obtain data from the OSM for free, the application first tries to collect all necessary data 
from the OSM. If the application fails to find an address in the OSM, it will collect the missing data using Google 
Maps API. The collected data are processed to generate an origin-destination (OD) matrix and exported as a csv file. 
 
The second component of the tool, the vehicle route optimizer takes input as the exported OD matrix file and an Excel 
file containing information on the vehicle fleet including capacity, vehicle mass, engine – efficiency, size, revolutions 
per minute (rpm), and vehicle frontal area. Section 3.2 describes the methodology for estimating fuel consumption 
and CO2 emissions. We developed a Python library called PyEmission (Rahman and Nguyen, 2021) and utilized it to 
estimate vehicular emissions. The user can optimize travel distance, travel time, or CO2 emissions. There are two 
distinct steps to optimizing the objective functions. In the first step, we used the guided local search (GLS)  
metaheuristic algorithm (Voudouris et al., 2010) to find the initial solution. We utilized the OR-tools (Perron, 2011) 
implementation of the GLS algorithm in our application. In the second step, we considered each of the sub-tours as 
traveling salesman problems (TSPs) and optimized them using the 2-opt algorithm (Helsgaun, 2006). The generated 
results are then exported as an interactive map using the Python Folium library (Journois et al., 2022). Besides, the 
tool creates a comma-separated values (CSV) file which contains the summary of the results. 
 
3.2 Fuel Consumption and CO2 Emission 
There are several models to estimate vehicular emissions and fuel consumption. Examples of popular models include 
the running speed fuel consumption model (Bowyer et al., 1985), the instantaneous fuel consumption model (Bowyer 
et al., 1985, Kent et al., 1982), the four-mode elemental fuel consumption model (Akçelik, 1983), CMEM 
(Comprehensive Modal Emission Model) (Barth and Boriboonsomsin, 2007, Barth et al., 2005), MEET 
(Methodologies for Estimating air pollutant Emissions from Transport) (Hickman et al., 1999), COPERT (Computer 
Programme to estimate Emissions from Road Transport) (Ntziachristos et al., 2009), and EMFAC (Emission Factors) 
(CARB, 2007). Demir et al. (Demir et al., 2011) performed a comparative analysis and found that CMEM and the 
COPERT models generated more accurate results for medium to heavy-duty diesel trucks. In this study, we utilized 
the CMEM model to estimate fuel consumption and the corresponding CO2 emission. This model has successfully 
been utilized in several recent studies ( Rahman, Zhou, et al., 2021; Turkensteen, 2017; Rahman, Galvez, et al., 2021). 
There are primarily three modules in this model – engine power, engine speed, and fuel rate. 
The requirement for engine power 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 can be calculated using equation (1). 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑣𝑣 �𝑀𝑀𝑀𝑀 +  M𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 1

2𝜌𝜌𝑎𝑎𝐶𝐶𝑑𝑑𝐴𝐴𝑓𝑓𝑣𝑣
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𝜂𝜂𝑝𝑝𝑝𝑝
+ 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) (1) 

Fuel rate 𝐹𝐹𝐹𝐹 can be calculated using equation (2). Here engine speed 𝑁𝑁 is interpolated between engine idle 𝑟𝑟𝑟𝑟𝑟𝑟 and 
governing 𝑟𝑟𝑟𝑟𝑟𝑟 using the speed of the vehicle. 

𝐹𝐹𝐹𝐹 =
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There is a direct correlation between fuel consumption and CO2 emissions (EPA, 2008). Carbon dioxide emission 
rate 𝐸𝐸𝑎𝑎𝑐𝑐2 (in 𝑔𝑔/𝑔𝑔) can be calculated using equation (3). 

𝐸𝐸𝑎𝑎𝑐𝑐2 = 𝐹𝐹𝐹𝐹 ∗  𝑓𝑓𝑎𝑎𝑐𝑐2 (3) 
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Figure 1. Overall framework for the vehicle route planning tool 
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The descriptions of the parameters and their commonly used values are provided in Table 1. 
 

Table 1. Description of the parameters 
 

Parameter Description Unit Value Used 
𝑀𝑀  Mass of the vehicle with load 𝑘𝑘𝑔𝑔  User input 
𝑔𝑔  gravitational acceleration 𝑟𝑟/𝑔𝑔2  9.81 
𝑔𝑔  road grade or slope 𝑟𝑟𝑀𝑀𝑟𝑟𝑔𝑔𝑀𝑀𝑔𝑔  0 
𝑀𝑀𝑟𝑟𝑟𝑟  rolling resistance coefficient - 0.07 
𝜌𝜌𝑎𝑎  ambient air density 𝑘𝑘𝑔𝑔/𝑟𝑟3  1.18 
𝑀𝑀  acceleration of the vehicle 𝑟𝑟/𝑔𝑔2  0 
𝐶𝐶𝑑𝑑  aerodynamic drag coefficient - 0.8 
𝐴𝐴𝑓𝑓  vehicle frontal area 𝑟𝑟2  User input 
𝑣𝑣  velocity of the vehicle 𝑟𝑟/𝑔𝑔  Model 
𝜂𝜂𝑝𝑝𝑝𝑝  vehicle drivetrain efficiency - 0.8 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎  power for running accessories 𝑊𝑊  0 
𝜙𝜙  fuel-to-air mass ratio - 1/14.5 
𝑘𝑘  engine friction factor - 0.2 
𝑘𝑘  engine displacement 𝐿𝐿  User input 
𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  engine efficiency - User input 
𝜓𝜓  fuel calorific value 𝐾𝐾𝐾𝐾/𝑔𝑔  45.5 
𝜌𝜌  fuel density 𝑔𝑔/𝑟𝑟𝑚𝑚  0.846 

 
3.3 Transportation Cost 
For the calculation of transportation cost, we utilized equation (4) where 𝐶𝐶𝑑𝑑𝑟𝑟𝑒𝑒𝑑𝑑𝑒𝑒𝑟𝑟  is the wage rate of the drivers 
($/hour), 𝑇𝑇𝑒𝑒 is the travel time of vehicle 𝑔𝑔 (hours), 𝐶𝐶𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓 is the price of fuel ($/gallon), 𝐹𝐹𝑒𝑒 is the amount of fuel burnt 
for vehicle 𝑔𝑔 (gallons), and 𝑘𝑘𝑒𝑒 is the cost of vehicle 𝑔𝑔 ($/day). The cost of vehicle is calculated considering different 
types of capital and operating costs including down payment, salvage value, insurances, taxes, and interests. Table 2 
shows a sample data table of three vehicles where the user can input the required vehicle information using an excel 
file. 

 
Table 2. Example vehicle fleet data used for the case study 

 
 

Parameters vehicle_1 vehicle_2 vehicle_3 
Capacity (pallets) 20 50 35 
Vehicle Weight (lbs) 15000 20000 16000 
Engine Size (Liter) 8 10 9 
Engine Efficiency 40% 40% 40% 
Idle Engine RPM 600 600 600 
Max Engine RPM 2200 2200 2200 
Frontal Area (square meter) 5.5 5.5 5.5 
Down Payment (USD) 4000 4000 4000 
Average Life (years) 15 15 15 
Salvage Value (USD) 5000 8000 6000 
Monthly Other Costs 700 900 600 

 
Once the total cost is known, the e-waste collection cost 𝐶𝐶𝑎𝑎𝑐𝑐𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒 ($/tonne) can be calculated using equation (5) 
where 𝑟𝑟𝑒𝑒 is the mass (tonne) of e-waste collected by vehicle 𝑔𝑔. 
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𝐶𝐶𝑎𝑎𝑐𝑐𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒 =  
𝐶𝐶𝑝𝑝𝑐𝑐𝑝𝑝𝑎𝑎𝑓𝑓
∑ 𝑟𝑟𝑒𝑒
𝑒𝑒
𝑒𝑒=1

 (5) 
 

3.4 Development of the Graphical User Interface 
We developed an easy-to-use GUI for the route planning tool. This is a stand-alone application, platform agnostic, 
and requires no installation process – plug and play type. We used the PyQt library (Harwani, 2018), a Python binding 
of the cross-platform GUI toolkit Qt, for the development of the GUI. Figure 2 shows a snapshot of the GUI for the 
route optimizer application. The user will provide necessary information like the average weight of the collection 
pallets, objective function to minimize, OD matrix, vehicle fleet data, and a list of collection points to pick up and 
their corresponding load values in pallets. Figure 3 and Figure 4 show the snapshots of the sample excel files with 
information on vehicle fleet data and e-waste collection point addresses, respectively. The tool allows users to 
minimize CO2 emissions, travel time, or travel distance separately. 
 

 
 

Figure 2: Snapshot of the route optimizer GUI 
 

 
 

 
Figure 3. Snapshot of the Excel file with vehicle fleet data 
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 Figure 4. Snapshot of the Excel file with a list of collection addresses 
 
3.5 Case Study 
To test the usefulness of our tool, we partnered with an electronic recycling company based in New York, USA to get 
their input and feedback. For data privacy, we describe the company as XYZ Recycler and use pseudo data for 
illustration purposes. A list of vehicles with different capacities and engine configurations was used (Table 2).  There 
are 30 locations to collect e-wastes utilizing the available vehicles. The locations have different loads to be collected 
ranging from 1 to 7 pallets on average, and the pallets weigh 500 lbs. 
 
4. Results and Discussion 
4.1 Benchmark Problem Validation 
For the validation purpose, we compared the results from our developed tool with the benchmark problems discussed 
by Christiansen et al. (Christiansen and Lysgaard, 2007). The problems are available in the VRP repository (VRP-
REP, 2014). The dataset includes the number of customers with corresponding demands and the number of available 
vehicles with corresponding capacities. A customer is represented as a two-dimensional coordinate. The number of 
customers varies from 16 to 101 with varying total demand from 407 to 932. The number of vehicles varies from 5 to 
10 with varying capacity from 35 to 400 for all the problems. Though our tool can get the actual distance from the 
real road network, we used Euclidian distances to compare solution quality with the best-known solutions for these 
benchmark problems. 
 
Table 3 summarizes the performance of our route planning tool for the benchmark problems. We set the maximum 
runtime as 30 seconds. The optimizer application was run on a personal computer with an Intel Core i7 CPU (3.00 
GHz), 32.0 GB RAM, and a 64-bit Windows operating system. The optimality gap of the solutions generated from 
our tool ranges from 0.19% to 7.79% with an average of 2.20%. By increasing the route optimizer runtime, the solution 
quality can be further improved for large-size problems like F-n72-k4 and F-n135-k7. From our literature review, it 
takes more than three hours for a commercial solver like CPLEX to obtain the global optimum solution for pollution 
routing problems with only 20 customers using exact algorithm in a standard desktop (Bektaş and Laporte, 2011). In 
contrast, our tool generated high-quality solutions within 30 seconds. This is promising for practical uses in industries 
for day-to-day logistics planning. 
 

Table 3. Comparison of results with benchmark problems 
 

Problem Customers Vehicles Capacity Best known Our solution Gap 
A-n32-k5 31 5              100  784 797.45 1.72% 
A-n33-k5 32 5              100  661 662.26 0.19% 
A-n33-k6 32 6              100  742 744.26 0.30% 
A-n34-k5 33 5              100  778 796.23 2.34% 
A-n36-k5 35 5              100  799 810.37 1.42% 
A-n37-k5 36 5              100  669 674.23 0.78% 
A-n37-k6 36 6              100  949 974.7 2.71% 
A-n38-k5 37 5              100  730 734.44 0.61% 
A-n80-k10 79 10              100  1763 1,813.55 2.87% 
F-n45-k4 44 4           2,010  724 731.31 1.01% 
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F-n72-k4 71 4        30,000  237 248.12 4.69% 
F-n135-k7 134 7           2,210  1162 1,252.5 7.79% 

 
4.2 Case Study Results 
We set 30 seconds as the maximum runtime for the tool to find the solutions of the case study described in section 
3.5. Figure 5 shows the routes of each of the vehicles, and the optimal sequence of the nodes to visit. Some related 
summary statistics include CO2 emissions, fuel consumption, miles per gallon (MPG) value, capacity utilization, travel 
time, and travel distance. Here, emissions are set as the objective function to minimize. Out of a total of 98 pallets, 
vehicle 2 collects 50 pallets utilizing 100% of its capacity, and vehicle 3 collects 34 pallets utilizing 97% of its 
capacity. The remaining 14 pallets are collected by vehicle 1 utilizing 70% of its capacity. Overall, the three vehicles 
travel 561 miles in 14.5 hours burning 65.3 gallons of fuel and emitting 1,401 lbs of CO2 to the environment. The 
average transportation cost is USD 44.1 per tonne. It should be noted that it is more common to denote transportation 
cost as ‘USD/tonne/mile’. This metric can sometimes be misleading in our case. For example, for an optimized route, 
the total distance traveled by the collection vehicles is smaller than for an unoptimized route. Hence, the metric 
‘USD/tonne/mile’ could be larger for an optimized route compared to the unoptimized route. Therefore, we chose the 
metric ‘USD/tonne’ over ‘USD/tonne/mile’. 
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Figure 5. Vehicle routes for optimizing CO2 emissions. 
 

In addition to minimizing emissions, we ran the tool by minimizing (1) travel time, and (2) travel distance. Table 4 
displays the key results for all three objective functions. As per the table, no major difference among the performance 
metrics is observed regardless of the selected objective function. This is because of (1) a short planning horizon and 
(2) correlations among different objective functions. For example, if there is no major difference in speed limit among 
various routes, when the travel distance is minimized, travel time and emissions would be also minimized. Only when 
there is a difference between highway and town traffic, longer highway distance might yield shorter travel time than 
town traffic. Also, because of constant stop-and-go in town traffic conditions, there might be more emissions than 
highway travel. Regarding the short planning horizon, the results are for a day. Cumulatively, if we compare the results 
for yearly planning, the difference might be significant. For example, the daily difference in CO2 emissions is 117 lbs 
between minimizing travel distance and emission. The yearly difference in CO2 emissions becomes 30,420 lbs for the 
three collection vehicles assuming 5 working days in a week and 52 weeks in a year. For larger recycling companies 
with more collection vehicles, this emission difference would be even more substantial. 
 

Table 4. Comparison of results for different objective functions 
 

Performance metrics 
Objective Functions 
Emission Travel time Travel distance 

Travel distance (miles) 561 551 544 
Travel time (hours) 14.5 13.3 13.7 
Fuel consumption (gallons) 64.49 68.4 69.96 
CO2 emission (lbs) 1384 1468 1501 
Collection cost (USD) 44.1 41.6 41.7 

 
Figure 6 shows a sample interactive plot of the vehicle routes in the GIS environment with travel directions generated 
by our tool. If the user clicks on any of the marker icons, it will show further details of that location including address, 
account number, and account name. The travel routes of each of the vehicles are color-coded. The user can also show 
or hide the travel routes on the map by selecting or deselecting vehicles located on the top right corner widget. 
 

 
 

Figure 6. Interactive map showing optimized routes for different vehicles. 
 
VRP can be formulated as a mixed-integer linear programming (MILP) problem and solved using commercial and 
non-commercial solvers. The primary advantage of this solution approach is that it guarantees the global optimum 
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solution. For a small-size problem, the computational time of the solvers to get the results is reasonable. But for a 
medium to large problem size, for example, 20 to hundreds of collection nodes, the solvers are not practical since it 
could take several weeks to months to get the results. It is very common for logistics companies to do their day-to-
day logistics planning for a problem size consisting of hundreds of collection/delivery nodes. From a practical 
standpoint, industries need a good solution within minutes for their daily logistics planning. Our tool uses real road 
network data using OSM and Google API to capture the actual travel distance and time and then optimizes the travel 
route for vehicles with different capacities and configurations within minutes. The tool does not guarantee the global 
optimal solution but is very competitive for practical applications. The tool is released as an open-source software 
under the General Public License and is available at this GitHub repository: 
https://github.com/IdahoLabResearch/CMAT. 
 
4.3 Feedback from Industry Partner 
During the development of this tool, we engaged with our industry partner to better understand the common practices 
and general requirements of the e-waste collection logistics process. Based on their feedback, we included different 
features in our tool like direct data input from Excel files, adding business account numbers and account names in 
addition to the addresses in the interactive map, color coding of different routes, adding clockwise or anti-clockwise 
directions to the individual routes, exporting summary results to external CSV files and so on. The logistics team 
tested our tool for their day-to-day uses. Although they agreed that the tool was easy to use and helpful, their daily 
operation does not require the same level of complexity. However, they were able to apply the tool for their 
quarterly/annual collection events where hundreds of addresses need to be covered and dozens of vehicles and trailers 
are utilized.  
 
4.4 Limitations and Future Works 
There are some limitations of our study. Firstly, our current route planning tool does not take real-time traffic data 
into account when calculating travel time and environmental emissions. The vehicular speed might get severely 
impacted due to traffic congestion and consequently, our tool can potentially underestimate the emissions and travel 
time. As part of future development, live traffic data can be integrated into the tool. Secondly, our tool currently lacks 
the capability to send routing directions directly to drivers' electronic devices such as tablets or phones. This feature 
would enhance convenience and usability for users. Another limitation worth mentioning is that the tool employs US 
units, including pounds, gallons, and miles, which might prove inconvenient for users outside of the United States. To 
make our tool more accessible globally, we aim to integrate equivalent SI units into the system. 
 
5. Conclusion 
The use of electrical and electronic devices is growing day by day and hence increasing the need for recycling. In this 
study, we developed a vehicle routing tool to help e-waste recycling companies establish a cost-effective collection 
and logistics system. The key features of the tool can be summarized below: 
• The tool uses real road network data for calculating travel distance and travel time as opposed to other works 

where a straight line or Euclidian distance has been used. This feature makes the tool suitable for practical logistics 
applications. 

• While most of the previous works utilized a constant factor for the calculation of emissions, we integrated a 
comprehensive emission model into the tool. The emission model considers vehicle mass, collected e-waste 
weight, road speed, and a wide range of vehicle attributes for accurately estimating emissions. 

• The tool can generate results within minutes even for large-scale problems and the quality of the solutions is 
satisfactory. The average optimality gap we found for the well-known benchmark problems is only 2.2%, making 
the tool reliable. 

• We tested the tool with real-world data from our partnering e-waste recycling company and included different 
features based on their feedback. 

• The tool can calculate transportation costs by considering fuel costs, driver salary, vehicle capital, and operational 
costs. This is useful information for the users.  

• One of the key features of this tool is the development of the graphical user interface. Logistics people can use 
the capability of the tool without any need for mathematical or programming knowledge. Previous works lack 
this feature. 

The transportation sector is responsible for the largest share of greenhouse gas emissions. Our developed route 
planning tool can potentially be utilized for minimizing carbon dioxide emissions from commercial vehicles and hence 
mitigating greenhouse gas impacts. Though the tool has been developed primarily focusing on the e-waste recycling 
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industry, we have released the source code as open source so that it can easily be adapted for other recycling industries 
as well. 
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