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Abstract 

In this work, we advance the solution approach to the single stage capacitated warehouse location problem (SSCWLP) 
problem. We took six formulations given by Sharma and Berry (2007) for SSCWLP with various constraints 
combinations and added a new promising constraint (∑capj * yj  ≥  1). The computations done after additional 
constraint results in statistically better results reduction in number of nodes searched as well as in CPU time taken to 
solve the problem. We created random 50 samples of problems of size 15x15x15, 30x30x30 and 50x50x50 size 
problems and solved using GAMS software to show the computational advantage even in such large magnitude 
problem. We performed paired t-test on all the six pairs of results to observe statistical significance of improvement 
with the new constraint. Results with new constraint were observed statistically significant and better at two-tailed t-
test with 95% confidence interval.     

Keywords 
Warehouse location problem, Single stage capacitated warehouse location problem, plant location problem, supply 
chain design and capacitated plant location problem.  

1. Introduction
Warehouse Location problem involves identifying the specific locations, which can serve as temporary storage and 
redistribution point to optimize the total cost of maintenance and transportation in meeting the varying demands of 
markets, than serving directly from supply points. All the major companies (like Nestle, Unilever, etc.) catering to 
multiregional, multiproduct and multi-plant management use the warehouse distribution model (also referred to as 
hub and spoke) model to address the vast global market demand. It also helps in deconsolidating the large shipment 
to less container loads (LCL) through other smaller transportation modes and serving the purpose of consolidation by 
aggregating smaller shipments from various plants to large as required by large demand point.  

A single stage capacitated warehouse location problem (SSCWLP) is a class of linear programming problems that 
involves selection of cluster centers or redistribution points that gives the most economical shipping routes for transfer 
of a uniform commodity from a number of sources to a number of destinations. The set of potential warehouse 
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locations are known and fixed cost associated with them is also known. The objective is to choose the sufficient no of 
warehouses such that sum total of the fixed location cost and the transportation cost of shipping goods from plants to 
warehouse and warehouses to market is minimized while satisfying the demand at each point. It also decides upon the 
quantity of goods transported from various supply points to the warehouse point and further from warehouse to the 
demand centers.   
 
Warehouse location problems are NP hard problem. If the size of the problem increases i.e. no of plants, warehouses 
and market location increases, the computational complexity increases exponentially requiring large amount of time 
and memory space. Researchers have used various approximate algorithms to address such issues.  In this paper, the 
authors add a new constraint in the successful model of SSCWLP given by Sharma and Berry (2007) to achieve 
significantly better computational time and total cost.  The simulation is used to compare the results obtained from 
this formulation with established standard solutions. A larger generalization of the standard transshipment model 
consisting of 50 supply points, 50 warehouse locations and 50 demand points is also taken to show the computational 
superiority of the new formulation.  The results obtained are highly encouraging in optimizing the transshipment 
problem of such large scale. The solution method can serve as an effective tool to the global managers looking for 
international transshipment points and also the regional plant manager handling production allocation problems.  
 
Next section 2 gives the standard formulations and procedures for solving SSCWLP problem and its variants as given 
by Sharma and Berry (2007). Section 3 modifies these formulations with addition of a new constraint and discusses 
the role of constraint addition to the standard solutions. Finally, computational results and comparison with the 
standard solutions of SSCWLP is done in section 4 and conclusions in section 5 establishing the utility of the new 
formulation. Reader is also referred to Sharma (2019, 2019, 2020, 2020, 2021 and 2022) for latest details.  

2. Sharma and Berry (2007)  formulations of SSCWLP 
The warehouse location problem is given due importance from very past and lot of research work has already been 
done in this area (Baurnol and Wolf, 1958; Khumawal, 1972). Also the literature on capacitated warehouse location 
problem is rich with most of the earlier researchers attempting to solve by Branch and Bound algorithm (Akinc, & 
Khumawala, 1977; Kaufman, Eede, & Hansen 1979) and Lagrangian relaxation approach (Christofides & Beasley, 
1983;  Beasle. 1993).  However thee problem complexity increases with the increase in number of supply, intermediary 
and demand points and researchers resort to some heuristic or solve the relaxed integer problem to have an 
approximate solution.  
 
Sharma and Berry (2007) developed a variety of constraints that link real and binary integer variables for identifying 
warehouse locations and thus developed many formulations of single stage capacitated warehouse location problem 
(SSCWLP). Their formulation is as under: 
 

2.1 Constants definition 

D𝑘𝑘       →   demand for the commodity at market ‘k’ 

𝑑𝑑𝑘𝑘      →   D𝑘𝑘 ∕ ∑ D𝑘𝑘   (demand at market ‘k’ as a fraction of total market demand) 

Si          →   supply available at plant ‘i’ 

si          →   Si   ∕ ∑ D𝑘𝑘 (supply available at plant ‘i’ as a fraction of the total market demand) 

Fj         →   fixed cost of locating a warehouse at ‘j’ 

cpwij   →   cost of transporting   ∑ D𝑘𝑘   quantity of goods from plant ‘i’ to warehouse ‘j’ 

cwmjk  →   cost of transporting   ∑ D𝑘𝑘  quantity of goods from warehouse ‘j’ to market ‘k’. 

CAPj     →   capacity of a warehouse ‘j’ 

capj       →   CAPj  ∕ ∑ D𝑘𝑘 (capacity of a warehouse at ‘j’ as a fraction of the total market demand)  

 

2.2 Variable definition 

 XPWij      →   quantity of commodity transported from plant ‘i’, to warehouse ‘j . 
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xpwij        →   XPWij ∕ ∑ D𝑘𝑘  (quantity transported as a fraction of total market demand) 

XWMjk    →   quantity of commodity transported from warehouse ‘j’ to market ‘k’.  

xwmjk       →   XWMjk ∕ ∑ D𝑘𝑘  (quantity transported as a fraction of total market demand) 

yj                →    1 if warehouse is located at ‘j’, 0 otherwise. 

Now here are all set of equations that formulate the SSCWLP problem. 

 
2.3 Formulations of SSCWLP 
Objective function:  

𝑚𝑚𝑚𝑚𝑚𝑚∑𝑚𝑚∑𝑗𝑗 (𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖  ∗ 𝑥𝑥𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)  + ∑𝑗𝑗 ∑𝑘𝑘 (𝑐𝑐𝑐𝑐𝑚𝑚 𝑖𝑖𝑗𝑗 ∗ 𝑥𝑥𝑐𝑐𝑚𝑚𝑖𝑖𝑗𝑗)  + ∑𝑚𝑚(𝑓𝑓𝑖𝑖  ∗  𝑦𝑦𝑖𝑖) ,                           (1a) 

Subject to: 

∑𝑚𝑚∑j 𝑥𝑥𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗     = 1,                                                                                                       (2a) 

∑j ∑k 𝑥𝑥𝑐𝑐𝑚𝑚𝑗𝑗𝑘𝑘=1,                                                                                                          (2b) 

∑𝑚𝑚 𝑥𝑥𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗          =   ∑k 𝑥𝑥𝑐𝑐𝑚𝑚𝑗𝑗𝑘𝑘                                                                                      (2c) 

∑j𝑥𝑥𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗            ≤   si,            ∀i                                                                                     (3) 

 ∑j xwmjk        ≥    𝑑𝑑𝑘𝑘,         ∀k                                                                                     (4) 

∑i 𝑥𝑥𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗          ≤   𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗,       ∀j                                                                                       (5) 

𝑥𝑥𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗               ≥    0,                 ∀i, j                                                                              (6a)                                                                                      

𝑥𝑥𝑐𝑐𝑚𝑚𝑗𝑗𝑘𝑘             ≥    0,                 ∀j , k                                                                            (6b)  

∑i 𝑥𝑥𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗         ≤   𝑦𝑦𝑗𝑗,                  ∀j                                                                                 (7) 

∑j 𝑥𝑥𝑐𝑐𝑚𝑚𝑗𝑗𝑘𝑘        ≤   𝑑𝑑𝑘𝑘*𝑦𝑦𝑗𝑗,           ∀j ,k                                                                             (8) 

𝑥𝑥𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗              ≤   𝑠𝑠𝑚𝑚*𝑦𝑦𝑗𝑗,             ∀i , j                                                                            (9) 

𝑦𝑦𝑗𝑗      є   {0 , 1 },                         ∀j                                                                                (10)  

 
In the above formulation equation 1 is the objective function of minimizing the total cost of transportation of goods 
from supply points to the warehouses and from warehouses to demand points as well as cost of establishing the 
warehouse at particular location. Equation 2a and 2b give the total demand satisfaction condition. Equation 2c is flow 
balance equation for transshipment point.  Equation 3 and 5 are supply and warehouse capacity constraint. Equation 
4 gives meeting the total demand condition. Equation 6a and 6b give nonnegative condition on transported quantities. 
Equation 7 links the binary variable associated with establishing the warehouse and is a weak constraint.  Equations 
8 and 9 also link the binary variable of locating warehouse with transported quantities and are strong constraints as 
they put tighter bound on the solution.  Constrain 10 is a binary variable constraint for establishing a warehouse at a 
particular location.  
Finally, Sharma and Berry (2007) considered the alternate ways of linking the fixed cost of the location to positive 
out flow of goods in SSCWLP. These are categorized as the strong constraints (7 & 8). Let us denote F1 as the 
weak formulation and F3 and F5 as their strong formulations. 
 
F1. Weak Formulation: Minimize (1a) subject to constraints (2a)–(6b), (7), (10) 
F3. Strong Formulation: Minimize (1a) subject to constraints (2a)–(6b), (8), (10) 
F5. Strong Formulation: Minimize (1a) subject to constraints. (2a)– (6b), (9), (10) 
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The definition of strong and weak formulations can be stated as suppose that there are two formulations A and B 
for the same problem. By excluding the integrality constraints (which restricted variables to take only integer 
value), we obtain the linear optimization relaxation. Let the feasible region of relaxed formulations be PA and PB. 
When the region PB contains PA, i.e., PA⊂ PB, formulation A is stronger than formulation B (analogously, B is 
weaker than A). As PA is narrower than PB, the lower bound obtained by the relaxation A is more close to the 
optimum of the integer problem. It can be shown by an example in which we can say that 𝑑𝑑𝑘𝑘*𝑦𝑦𝑚𝑚–𝑥𝑥𝑚𝑚𝑘𝑘 ≥  0 ,  ∀ i ,k 
is stronger than using only constraint  ∑k 𝑥𝑥 𝑚𝑚𝑘𝑘≤   yi ,   ∀ i.  To verify this we assume that PA is the feasible region 
using the former constraint and PB is the feasible region of latter. It has been observed that the latter constraint 
were obtained by adding the former, hence PA⊂ PB.  
 
It can be observed that strong formulation though gives better bound, it require many more constraint or variable 
than weaker formulation and hence the time taken to solve the problem is longer for strong formulation as compare 
to weak formulation. Therefore, there is a tradeoff between shorter time taken by the weak formulation and better 
bound given by the strong formulation. However, when the size of the problem increases stronger formulation is 
considered more desirable than weaker formulation. 
 
Sharma & Berry (20007) relaxed the integer constraints to obtain the relaxations of all the above three formulations. 
They conducted an empirical investigation to find which formulation gives better bounds than the ‘strong’ relaxation 
of SSCWLP.  The strong formulations always gave better result in terms of total cost whereas the weak formulation 
was better in terms of computational effort. 
 
We used Branch and Bound Algorithm to solve the existing formulations and later proposed additional formulations. 
The basic concept behind Branch and Bound method is to solve linear programming problem by adding newer 
constraints to the relaxed problem that gives progressively improved lower bounds in case of minimization (upper 
bound in case of maximization type problem). First, the problem is solved as a simple linear program (without integer 
requirements of the y’s) and gives a value Z0 (lower bound). That is y ε {0,1} (integer) is replaced by 0 <= y <= 1; 
(real). If all y’s (which are initially 0, i.e., the facilities are closed,) are found to be an integer, the problem is solved if 
not then it is first fixed at zero, and the linear program is solved. However, if say some y1 = 0.7; then we create two 
child nodes with y1 = 1 and y1 = 0; & resolve the LP relaxation and hence in subsequent steps get two objective 
functions for y1 producing Z1 and Z2 respectively. Whichever is lower gives the bounding criterion.  Min. (z1, z2) is 
the new lower bound. As more constraints get added, then objective function value goes up. In this way, a tree is being 
constructed with nodes represented by Z’s and the corresponding values of fixed y’s. In this way, branching continues 
and improved lower bound is noted. We need to keep track of only terminal nodes, and if a node is infeasible, then no 
branches can emanate from it. The process gets terminated when a node with all y’s integer is reached, and value is 
less than the value of any other terminal node.  
 
The major difficulty with branch and bound is computation. For a large number of linear programs, the 
computational time for each linear program is high and the method could become expensive. Adding more strong 
constraints allows the Branch and Bound takes lesser time as lesser no of nodes are processed. We attempt to 
provide a formulation that addresses both the issues of computational effort and the lower bound.  
 
3. A New Formulation (Proposing a constraint in SSCWLP Models) 
A new promising constraint (  ∑𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗 * 𝑦𝑦𝑗𝑗  ≥  1  ) is added to the different formulations used by Sharma and Berry 
(2007)  and tested empirically establish the strength of this new promising constraint in terms of lesser numbers of 
node searched and less computing time taken in solving the problem through Branch and Bound algorithm . 
                                                        ∑𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗 * 𝑦𝑦𝑗𝑗  ≥ 1      (11) 

Therefore, the final mathematical formulations of our research interest are as following F1 to F12:  

Formulation 1(F1):                     min (1a) s. t. (2a)–(6b), (7), (10). 

Formulation 2(F2):                     min (1a) s. t. (2a)–(6b), (7), (10), (11). 

Formulation 3(F3):                    min (1a) s. t. (2a)–(6b), (8), (10). 

Formulation 4(F4):                     min (1a) s. t. (2a)–(6b), (8), (10), (11). 
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Formulation 5(F5):                     min (1a) s. t. (2a)–(6b), (9), (10). 

Formulation 6(F6):                     min (1a) s. t. (2a)–(6b), (9), (10), (11). 

Formulation 7(F7):     min (1a) s. t. (2a)–(6b), (7), (8). 

Formulation 8(F8):     min (1a) s. t. (2a)–(6b), (7), (8), (11). 

Formulation 9(F9):     min (1a) s. t. (2a)–(6b), (7), (9). 

Formulation 10(F10):   min (1a) s. t. (2a)–(6b), (7), (19), (11). 

Formulation 11(F11):   min (1a) s. t. (2a)–(6b), (8), (19). 

Formulation 12(F12):   min (1a) s. t. (2a)–(6b), (8), (19), (11). 

 

4. Computational Results and Discussion 
Random samples have been generated for the small as well as large sized problems. The solution technique used 
to solve the formulations was Branch and Bound Algorithm. We modelled all the above 12 sets of formulation on 
the GAMS. Further, we created 50 different random instances of all the formulations in sets of 15X15X15, 
30X30X30, and 50X50X50 of each and solved through Branch and Bound Algorithm on GAMS. We show below 
only 10 computations of each to reduce space. After obtaining the results, we performed one tailed t-test  for 
number of nodes searched and CPU time taken between the formulations, with and without our proposed constraint 
(∑𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗 * 𝑦𝑦𝑗𝑗  ≥  1 ) on MS Excel and then statistically established the strength of this new constraint after finding 
out if there is a significant difference in number of node searched and CPU time taken (Table 1-Table 18). 
 
4.1 Computational results for problem size 15x15x15 
 

Table 1. Computational results with weak formulation F1 and new constraint added weak formulation F2) for 
problem size 15x15x15 

 
F2 (with ∑capj.yj≥1) F1 (without  ∑capj.yj≥1) 

 
Objective 

value  

Gap Node 

Checked 

Time 

Elapsed 

Objective 

value  

Gap Node 

Checked 

Time 

Elapsed 

Mean 4670263.2 0 83.42 6.18794 4670263.2 0 284.12 6.5141 

 

Table 2. Computational results with strong formulation F3 and new constraint added strong formulation F4 for 
problem size 15x15x15 

 
F4 (with ∑capj.yj≥1) F 3 (without ∑capj.yj≥1)  

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 4670263.2 0 93.54 6.0925 4670263.2 0 281.9 6.92722 

 
Table 3. Computational results with strong formulation F5 and new constraint added strong formulation F6 for 

problem size 15x15x15 
 

F6 (with ∑capj.yj≥1) F 5 (without ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 4670263.2 0 86.42857143 4.14532 4670263.2 0 297.72 4.51528 
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Table 4. Computational results with strong formulation F7 and new constraint added strong formulation F8) for 

problem size 15x15x15 
 

F8 (with ∑capj.yj≥1) F 7 (without ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 4670263.2 0 86.96 5.56732 4670263.2 0 309 5.93626 

 
Table 5. Computational results with strong formulation F9 and new constraint added strong formulation F10 for 

problem size 15x15x15 
 

F10(with ∑capj.yj≥1) F 9 (without ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 4670263.2 0 84.24 6.15964 4670263.2 0 285.92 6.62068 

 
Table 6. Computational results with strong formulation F10 and new constraint added strong  formulation F12 for 

problem size 15x15x15 
 

F12 (with ∑capj.yj≥1) F 11 (without ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 4670263.2 0 86.96 5.56732 4670263.2 0 309 5.93626 

 
4.2 Computational results for problem size 30x30x30 

 
Table 7. Computational results with weak formulation F1 and new constraint added weak formulation F2 for 

problem size 30x30x30 
 

F2 (with ∑capj.yj≥1) F1 (without  ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 8940681.32 0 30368.2 41.92094 8940681.32 0 48159.16 73.3865 

 
Table 8. Computational results with strong formulation F3 and new constraint added weak formulation F4 for 

problem size 30x30x30 
 

F4 (with ∑capj.yj≥1) F 3 (without ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 8940681.32 0 33311.66 60.90464 8940681.32 0 49665.24 121.64182 

 
Table 9. Computational results with strong formulation F5 and new constraint added weak formulation F6 for 

problem size 30x30x30 
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F6 (with ∑capj.yj≥1) F 5 (without ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 8940681.32 0 28176.32 35.58556 8940681.32 0 42154.16 74.96668 

 
Table 10. Computational results with strong formulation F7 and new constraint added weak formulation F8 for 

problem size 30x30x30 
 

F8 (with ∑capj.yj≥1) F 7 (without ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 8940681.32 0 28561.88 47.86346 8940681.32 0 54380.76 106.01606 

 
Table 11. Computational results with strong formulation F9 and new constraint added weak formulation F10 for 

problem size 30x30x30 
 

F10(with ∑capj.yj≥1) F 9 (without ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 8940681.32 0 29079.52 37.97924 8940681.32 0 47762.9 73.58074 

 
Table 12. Computational results with strong formulation F11 and new constraint added weak formulation F12 for 

problem size 30x30x30 
 

F12 (with ∑capj.yj≥1) F 11 (without ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 8940681.32 0 28807.46 48.5684 8940681.32 0 51746.42 100.6726 

 
4.3 Computational results for problem size 50x50x50 
 

Table 13. Computational results with weak formulation F1 and new constraint added weak formulation F2 for 
problem size 50x50x50 

F2 (with ∑capj.yj≥1) F1 (without  ∑capj.yj≥1)  
Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 14975588.8 0 1012148.52 8187.07112 14975588.8 0 1472048.32 11943.415 

 
Table 14. Computational results with strong formulation F3 and new constraint added strong formulation F4 for 

problem size 50x50x50 
F4 (with ∑capj.yj≥1) F 3 (without ∑capj.yj≥1)  

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 14975588.8 0 1011545.32 8144.76738 14975588.8 0 1471873.74 11915.33052 

 
Table 15. Computational results with strong formulation F5 and new constraint added strong formulation F6 for 
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problem size 50x50x50 
F6 (with ∑capj.yj≥1) F 5 (without ∑capj.yj≥1)  

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 14975588.8 0 974216.68 7590.67218 14975588.8 0 1426529.9 11325.53404 

 
Table 16. Computational results with strong formulation F7 and new constraint added strong formulation F8 for 

problem size 50x50x50 
F8 (with ∑capj.yj≥1) F 7 (without ∑capj.yj≥1)  

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 14975588.8 0 1013783.8 8152.17188 14975588.8 0 1475913.02 11903.00742 

 
Table 17. Computational results with strong formulation F9 and new constraint added strong formulation F10 for 

problem size 50x50x50 
F10(with ∑capj.yj≥1) F 9 (without ∑capj.yj≥1)  

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 14975588.8 0 1017062.62 8282.67344 14975588.8 0 1480544.72 12016.30368 

 
Table 18. Computational results with strong formulation F11 and new constraint added strong formulation F12 

for problem size 50x50x50 
F12 (with ∑capj.yj≥1) F 11 (without ∑capj.yj≥1)  

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Objective 
value  

Gap Node 
Checked 

Time 
Elapsed 

Mean 14975588.8 0 1070655.26 8617.09 14975588.8 0 1572972.94 12667.27586 
 
 
4.4 T-Test Comparison of Results 
We performed paired t-test on the computational results mentioned above. The paired t-test is conducted on no. of 
nodes searched as well as on CPU time taken. This helped us to reach on some conclusive results (Table 19-20).  
 
Hypothesis testing for no. of nodes searched: 
 
Null Hypothesis: There is no significant difference in the no. of nodes searched. 
Alternate Hypothesis: There a significant difference in the no. of nodes searched. 
 
Hypothesis testing For CPU time taken: 
 
Null Hypothesis: There is no significant difference in the CPU time taken 
Alternate Hypothesis: There a significant difference in the CPU time taken. 

 
Table 19. T-test Analysis for no. of nodes searched 

 
t-test performed on no. Of nodes searched at 95% confidence interval, n=50, DOF =49 

S.N. Formulations  Problem 
Size 

t Calculated  T Critical for 2-tail T Critical for 1-tail 

1 F2  vs  F1 15X15 -7.692993132 2.009575237 1.676550893 
30X30 -3.024122412 2.009575237 1.676550893 
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50X50 -2.569415813 2.009575237 1.676550893 
2 F4  vs  F3 15X15 -6.444099851 2.009575237 1.676550893 

30X30 -3.618425389 2.009575237 1.676550893 
50X50 -2.563978168 2.009575237 1.676550893 

3 F6  vs  F5 15X15 -7.236870957 2.009575237 1.676550893 
30X30 -2.542055165 2.009575237 1.676550893 
50X50 -2.530554174 2.009575237 1.676550893 

4 F8  vs  F7 15X15 -7.696802494 2.009575237 1.676550893 
30X30 -3.131948886 2.009575237 1.676550893 
50X50 -2.565370218 2.009575237 1.676550893 

5 F10  vs  F9 15X15 -7.445227613 2.009575237 1.676550893 
30X30 -3.160285985 2.009575237 1.676550893 
50X50 -2.569018998 2.009575237 1.676550893 

6 F12 vs F11 15X15 -6.712797479 2.009575237 1.676550893 
30X30 -3.416984904 2.009575237 1.676550893 
50X50 -2.758405711 2.009575237 1.676550893 

 
Table 20. T-test Analysis for CPU time taken 

 
t-test performed on CPU time taken at 95% confidence interval, n=50, DOF =49 

S.N. Formulations  Problem 
Size 

t Calculated  T Critical for 2-tail T Critical for 1-tail 

1 F2 vs F1 15X15 -3.56664601 2.009575237 1.676550893 
30X30 -3.85284471 2.009575237 1.676550893 
50X50    -3.4134918 2.009575237 1.676550893 

2 F4 vs F3 15X15 -5.93428404 2.009575237 1.676550893 
30X30 -3.5388374 2.009575237 1.676550893 
50X50   -3.35554872 2.009575237 1.676550893 

3 F6 vs F5 15X15 -7.87920636 2.009575237 1.676550893 
30X30 -2.72357594 2.009575237 1.676550893 
50X50   -3.34375483 2.009575237 1.676550893 

4 F8 vs F7 15X15 -3.31788949 2.009575237 1.676550893 
30X30 -3.86586115 2.009575237 1.676550893 
50X50   -3.30261383 2.009575237 1.676550893 

5 F10 vs F9 15X15 -2.79497084 2.009575237 1.676550893 
30X30 -3.72011927 2.009575237 1.676550893 
50X50   -3.31631458 2.009575237 1.676550893 

6 F12 vs F11 15X15 -6.23370872 2.009575237 1.676550893 
30X30 -3.89993784 2.009575237 1.676550893 
50X50   -3.40879172 2.009575237 1.676550893 

 
4.4.1 Comparison F2 vs F1 
It can be clearly observed from t values coming out of two tailed t-test in both the tables that the difference between 
both the formulations in no. of  nodes searched and CPU time taken is statistically significant in small as well as in 
large size problems .so we can reject the null hypothesis .also from one tailed t-test in both the tables it is worth to see 
that F2(with ∑capj.yj≥1) is better as compare to F1(without ∑capj.yj≥1)in terms of no of nodes searched and CPU time 
taken. 
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4.4.2 Comparison F4 vs F3 
It can be clearly seen from t values coming out of two tailed t-test in both the tables, that the difference between both 
the formulations in no. of  nodes searched and CPU time taken is statistically significant in small as well as in large 
size problems, so we can reject the null hypothesis .Also from one tailed t-test in both the tables it is worth to see that 
F4(with ∑capj.yj≥1) is better as compare to F3(without ∑capj.yj≥1) in terms of no of nodes searched and CPU time 
taken. 

4.43 Comparison F6 vs F5 
It can be clearly seen from t values coming out of two tailed t-test in both the tables, that the difference between both 
the formulations in no. of  nodes searched and CPU time taken is statistically significant in small as well as in large 
size problems , so we can reject the null hypothesis. Also from one tailed t-test in both the tables it is worth to see that 
F6(with ∑capj.yj≥1) is better as compare to F5(without ∑capj.yj≥1) in terms of no of nodes searched and CPU time 
taken. 

4.4.4 Comparison F8 vs F7 
It can be clearly seen from t values coming out of two tailed t-test in both the tables, that the difference between both 
the formulations in no. of  nodes searched and CPU time taken is statistically significant in small as well as in large 
size problems, so we can reject the null hypothesis. Also from one tailed t-test in both the tables it is worth to see that 
F8(with ∑capj.yj≥1) is better as compare to F7(without ∑capj.yj≥1) in terms of no of nodes searched and CPU time 
taken. 

4.4.5 Comparison F10 vs F9 
It can be clearly seen from t values coming out of two tailed t-test in both the tables, that the difference between both 
the formulations in no. of  nodes searched and CPU time taken is statistically significant in small as well as in large 
size problems, so we can reject the null hypothesis. Also from one tailed t-test in both the tables it is worth to see that 
F10(with ∑capj.yj≥1) is better as compare to F9(without ∑capj.yj≥1) in terms of no of nodes searched and CPU time 
taken. 

4.4.6 Comparison F12 vs F11 
It can be clearly seen from t values coming out of two tailed t-test in both the tables, that the difference between both 
the formulations in no. of  nodes searched and CPU time taken is statistically significant in small as well as in large 
size problems, so we can reject the null hypothesis .also from one tailed t-test in both the tables it is worth to see that 
F12(with ∑capj.yj≥1) is better as compare to F11(without ∑capj.yj≥1) in terms of no of nodes searched and CPU time 
taken. 

5. Conclusion
In this work, we add one new promising constraint in the various formulations proposed in the style of Sharma and 
Sharma in the quest of finding the strength and computational benefit of the new constraint added. All formulations 
were solved on GAMS with Branch and Bound algorithm. After performing the statistical analysis it can clearly be 
established that the formulations having the new added constraint (∑capj.yj≥1) take less no of node searched also can 
be executed in lesser computational time as compare to their counterpart formulations, not having this constraint. This 
was statistically evident in both small as well as large size of problems taken. 

However, we couldn’t go beyond 50X50X50 size problem because of the termination of program run on the GAMS 
due to low processing capacity of the system but the strength of this constraint can further be checked on problems 
having size of 100X100X100 and beyond. In whole of the analysis, we considered single commodity problem but this 
work can be extended to multi commodity problems as well. 
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