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Abstract 

The rapid growth of solar energy installations worldwide calls for innovative solutions to optimize the operations and 
maintenance (O&M) activities in solar energy farms, with the ultimate goal of enhancing the economic outlook of 
solar power. Recently, there has been a growing interest in exploring the merit of emerging technologies such as 
unmanned aerial vehicles (UAVs) and artificial intelligence (AI) in driving smart O&M decisions for solar 
photovoltaic (PV) systems. Towards this goal, this paper presents a UAV-enabled, AI-powered framework to 
automate solar energy asset monitoring and fault detection. First, an experimental testbed has been set up at the Energy 
Lab at Rutgers University – New Brunswick, wherein a UAV is flown over an operational PV system to collect real-
time, high-resolution aerial images of the solar panels under various operational and weather conditions. Then, a deep-
learning (DL)-based framework is proposed to extract relevant features from the processed UAV images, which are 
then combined with exogenous weather parameters, in order to make a decision on the health status of the solar panel 
under inspection. Our extensive experiments on two prevalent fault modes, namely snow accumulation and shading, 
suggest that our proposed approach can effectively identify the occurrence of such defects in solar panels, with up to 
95.6% accuracy, while maintaining a sensible balance between false and missed alarms. Our framework serves as a 
testament to the merit of combining UAV-enabled data acquisition with emerging AI technologies in order to automate 
and optimize O&M activities and asset management in solar farms.    
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1. Introduction
The growing demand for clean energy has led to an increased adoption of solar photovoltaic (PV) systems worldwide. 
By the end of 2022, the global installed cumulative capacity of solar PV systems has reached 1,185 GW, of which 
240 GW have been commissioned in 2022 alone—an increase of 37% relative to 2021 (International Energy Agency, 
2023). With such rapid expansion in scale and sophistication, there is an imminent need for effective solutions and 
technologies that can lower the operations and maintenance (O&M) costs in solar energy farms, and ultimately 
enhance the economic outlook of solar power.     

To achieve this vision, there has been a growing interest in exploring the merit of emerging technologies such as 
robotics, automation, and Internet of Things (IoT) devices in optimizing O&M operations. Equipped with advanced 
imaging capabilities, Unmanned Aerial Vehicles (UAVs), colloquially known as drones, can provide a cost-effective 
solution to the inspection and monitoring of solar PV installations. Drones offer unparalleled advantages for 
conducting aerial inspections, allowing for remote, rapid, and detailed assessments of solar PV systems. By leveraging 
UAVs, solar asset operators can reduce inspection time, improve their fault diagnostic analyses, and significantly 
reduce the required resources and costs associated with manual inspections. A recent BloombergNEF report suggests 
that UAVs can cut down solar project inspection costs to as low as $302/MW/year, compared to $1,590/MW/year for 
traditional or manual inspection (Bullard, 2018).  

In parallel, artificial intelligence (AI) and machine learning (ML) have recently demonstrated remarkable potential in 
several environmental applications, including but not limited to the renewable energy sector (Rolnick et al., 2022). 
According to a recent report, AI/ML technologies are expected to contribute towards lowering global greenhouse gas 
emissions by as much as 4% by 2030, which is roughly equivalent to 2.4 Gigatons of CO2 emissions (Herweijer et al., 
2020). Examples of emerging applications where AI/ML can have an outsized impact in the renewable energy sector 
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include fault diagnostics and prognostics (Zhao et al., 2014, Rao et al., 2019), smart and predictive maintenance 
(Papadopoulos et al., 2021 and 2022), production control and optimization (Papadopoulos, 2023), weather and energy 
forecasting (Ezzat, 2019, Ye et al., 2023), electric load prediction (Sajjad et al., 2020), among others.  
 
Despite the promise, significant innovations are still needed to further optimize and tailor the application of those 
disruptive technologies, namely UAVs and AI/ML, to streamline the automated inspection and defect analysis of solar 
energy assets. To this end, the goal of this work is to develop, test, and demonstrate a UAV-enabled, AI-powered 
framework for effective fault detection in solar PV systems.  
 
1.1 Objectives  
To achieve the abovementioned goal, the objectives of this work are three-fold, spanning experimental, modeling, and 
testing tasks: (O1) Experimental: To set up an experimental testbed wherein a UAV is flown over an operational solar 
PV system to assemble a diverse database of high-resolution aerial images under various weather conditions and fault 
modes; (O2) Model Development: To propose a multi-modal, deep-learning-based approach which combines the 
UAV-collected images, with exogenous weather parameters, in order to effectively make a decision about the health 
status of the inspected solar assets; (O3) Testing and Validation: To extensively evaluate and benchmark the 
performance of the proposed framework in identifying a number of prevalent fault modes in PV systems using real-
world data collected from the experimental testbed against a variety of data-driven fault detection benchmarks.  
 
2. Literature Review  
There is a growing literature on the application of UAV-based inspection for solar asset monitoring and fault detection. 
Few recent comprehensive review efforts have provided different perspectives on the recent advances and challenges 
in this topic, including for PV systems (De Olivera et al., 2022, Yahya et a., 2022), as well as for concentrated solar 
thermal systems (Milidonis et al., 2023).  
 
Our survey of the related recent efforts suggests that the literature can be broadly categorized into two main clusters, 
primarily based on the fault detection methods employed to analyze the UAV-collected images. The first cluster relies 
on segmentation-based approaches using computer vision algorithms, image filtering methods, and statistical analyses 
of key image features in order to identify and further localize the defect patterns in solar modules (Aghaei et al., 2015, 
Addabbo et al., 2017, Li et al., 2017, Tsanakas et al., 2017, Liao and Lu, 2021).  
 
The second cluster bears on the recent advances in image-based machine learning (ML) to directly learn the underlying 
patterns within the UAV-collected images (or processed versions thereof). The models therein typically rely on deep-
learning (DL)-based architectures that can effectively extract features from the aerial images, which are then used to 
classify those images into various fault modes and/or health statuses (Li et al., 2018, Li et al., 2019, Pierdicca et al., 
2020, Su et al., 2021, Venkatesh et al., 2022).   
 
Combined, those studies demonstrate the potential of UAVs and AI methods for effective solar asset monitoring and 
fault detection. Solar PV systems are subject to numerous fault modes, several of which are potentially “identifiable” 
using aerial imagery such as cracks, snail trails, yellowing, hot spots, shading effects, and soiling, including dust, 
snow, grimes, bird droppings, among others (Djordjevic et al., 2014). This work in particular focuses on snow 
accumulation and shading effects, with the potential to be expanded to further fault modes. Those two fault modes are 
prevalent in solar PV systems. In specific, shading is often caused by nearby structures, local clouds, as well as nearby 
trees and plants, especially when located in agricultural lands in the context of the so-called agrivoltaics (Chaudhary 
and Chaturvedi, 2018). On the other hand, snow coverage and accumulation on solar modules commonly takes place 
in PV systems especially when installed in cold climates where the weather conditions allow for frequent snowfall 
(Øgaard et al., 2021). Both faults are known to largely impact the efficiency of solar panels, and hence, efforts 
contributing towards their early detection can be crucial in taking timely correction measures, slowing the degradation 
of solar energy assets, minimizing the associated power losses, and ultimately, lowering the overall O&M costs. 
 
3. Methods  
We introduce the proposed UAV-enabled, AI-powered framework for solar asset fault detection in the schematic 
diagram of Figure 1. The framework comprises the following key steps: (S1) Experimental setup and data collection; 
(S2) Data processing and augmentation; (S3) Machine learning and fault detection. The details of each step are outlined 
in Sections 3.1 through 3.3, respectively.     
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Figure 1: Overall workflow of our UAV-enabled, AI-powered fault detection framework for solar asset monitoring 
and diagnostics, starting from (S1) Experimental Setup & Data Collection; (S2) Data Processing & Augmentation; 

and (3) Machine Learning & Fault Detection.  

 
3.1. Experimental Setup and Data Collection  
The experimental testbed for this study is setup in the outdoor terrace of the Energy Laboratory located in Richard 
Weeks Hall of Engineering at Rutgers, The State University of NJ. The exact location of the Energy Lab is shown in 
Figure 2a. An off-grid 2.4 kW PV system, comprising eight operational solar panels have been fully operational at the 
laboratory since Summer 2021 and are used to power a number of indoor loads. Figure 2b shows an aerial view of the 
PV system under study. A research-grade Campbell Scientific meteorological station is located next to the solar system 
and includes the following sensors and components: (i) A wind monitor for measuring wind speed and direction, (ii) 
a digital thermopile pyranometer for measuring global horizontal irradiance (GHI), (iii) sensors to measure air 
temperature, relative humidity, and precipitation, and (iv) a CR6-Wi-Fi measurement and control datalogger, which 
is connected via Wi-Fi to a local PC which visualizes and stores the data in real-time.  
 
In addition, an AUTEL Evo II Drone Explorer has been assembled with the required hardware and software 
components (See Figure 2c). The drone is equipped with a 48-megapixel Gimbal camera with 8K, 6K, DUAL Thermal 
payload options, and a 40-minute flight time, with obstacle avoidance features. Flight path planning and operation 
guidelines have then been carefully planned to ensure the data collection process by the research team is standardized 
and that the images were of the needed quality for downstream ML model training and development.    
 

 
Figure 2: (a) Location of the Energy Lab at Rutgers University, New Brunswick; (b) Aerial view of the PV system 

under study; (c) The UAV assembled and used in this study (AUTEL Evo II Drone Explorer) 

 
Data collection is performed using the UAV throughout the duration of the research project spanning from Fall 2022 
to Spring 2023. In all experiments, the UAV is flown at about 3 meters high from the home base (shown in Figure 
1b). To ensure a diverse dataset, the multiple flight conductions have been performed under different weather 
conditions, different months, and times of the day. The drone’s camera has been configured to capture images in RGB 
mode. Once captured, the RGB images would be stored in JPEG format, together with other metadata (e.g., time of 
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the day, GPS coordinates, color space) on a Secure Digital (SD) card, which is safely removed from the drone after 
the flight, and manually connected to the nearby lab server located indoors.  
 
A total of 93 images have been collected across all UAV flights conducted. The raw images have an image size of 
4000x3000 pixels2 and are manually labelled into three health classes (or conditions). Letting 𝑦𝑦𝑖𝑖 denote the true class 
of the ith image, then the three classes are listed as follows:  

• NO_FAULT, indicating a healthy, fault-free solar panel, i.e., 𝑦𝑦𝑖𝑖 = 0; 
• SNOW, indicating snow presence on the inspected solar panel), i.e., 𝑦𝑦𝑖𝑖 = 1;   
• SHADING, indicating a partial shading on the inspected solar panel, i.e., 𝑦𝑦𝑖𝑖 = 2.  

In addition to the image data, the following weather parameters have been collected for each image: air temperature 
wind speed, and precipitation. Our exploratory analysis showed that those weather parameters have a decent predictive 
power in distinguishing the fault modes analyzed herein. Future research will look into the integration of additional 
weather and operational parameters.  
 
3.2. Data Processing and Augmentation 
The raw images are automatically segmented and cropped by removing the background and focusing entirely on the 
solar panel frame under inspection. Three sample cropped images corresponding to the three classes studied are shown 
in Figure 3. Note that the collected images for partial shading and snow accumulation may have different patterns than 
the samples shown in Figure 3. For example, the snow coverage in some panels may be mild (e.g., few snow spots on 
the panels) or severe (large patches or clusters of snow), or a combination thereof.  
 

 
Figure 3: Samples of the Processed Images for (a) Healthy class (NO_FAULT); (b) Partial shading class 

(SHADING); and (c) Snow accumulation class (SNOW). 

 
To perform image-based ML training (especially for deep-learning-based models), large and diverse datasets are 
needed. Thus, a data augmentation procedure has been implemented to over-sample the original raw image dataset, 
which we denote herein as 𝒟𝒟𝑟𝑟𝑟𝑟𝑟𝑟 , by applying various flipping and rotational transformations. In specific, four 
transformations are applied: rotations of 90∘and 270∘, as well as horizontal and vertical flips. Those transformations 
have increased the raw image dataset 𝒟𝒟𝑟𝑟𝑟𝑟𝑟𝑟 by a factor of five, creating the augmented dataset, 𝐷𝐷𝑟𝑟𝑎𝑎𝑎𝑎, which has a total 
of 465 images. Table 1 shows the number of samples per each fault mode, for both the raw and processed datasets, 
𝒟𝒟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐷𝐷𝑟𝑟𝑎𝑎𝑎𝑎, respectively. After augmentation, all images are then resized into square images of 128x128 pixels2, 
which will be used for downstream ML model training and development, explained in detail in Section 3.2.   
 

Table 1: Number of Images per class for the raw and augmented datasets, 𝓓𝓓𝒓𝒓𝒓𝒓𝒓𝒓 and 𝓓𝓓𝒓𝒓𝒂𝒂𝒂𝒂, respectively.  

Fault Class Raw Dataset, 
𝓓𝓓𝒓𝒓𝒓𝒓𝒓𝒓 

Augmented Dataset, 
𝓓𝓓𝒓𝒓𝒂𝒂𝒂𝒂 Fraction 

NO_FAULT 33 165 35.5% 
SNOW 40 200 43.0% 

SHADING 20 100 21.5% 
Total 93 465 100% 

 
 
3.2. Machine Learning and Fault Detection: A MultiNet Deep Learning Model 
A MultiNet deep learning (DL) model is proposed for UAV-enabled fault detection in solar PV systems. The model 
architecture, shown in Figure 4, allows multi-modal learning by taking as input two streams of input data: (i) the 
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augmented image data acquired using the Autel Evo II drone and processed using our data segmentation and 
augmentation procedure outlined in Section 3.1, and (ii) the exogenous weather data (namely, air temperature, 
precipitation, and wind speed). The output of the MultiNet model is a decision (i.e., a classification) about assigning 
each inspected solar panel into one of the three classes described in Table 1, namely: NO_FAULT, SNOW, and 
SHADING. Hereinafter, we denote the predicted class of the MultiNet model for the ith sample as 𝑦𝑦�𝑖𝑖.  
 
As shown in Figure 4, the MultiNet model comprises a Convolutional Neural Network (CNN) for image-based feature 
extraction. CNNs are DL architectures that are tailored to effectively extract visual patterns directly from images 
and/or image-like inputs. Specifically, we implemented two feature blocks, each containing one CNN layer and one 
Max Pooling Layer. The CNN layer performs a convolution operation on previous layer outputs and extracts image 
features, and the Max Pooling Layer reduces the dimensionality of the data to maintain translational invariance. The 
output of the feature blocks is then fed to fully connected layers that learn the functional relation between the target 
class label and the key features of the UAV images. To incorporate the exogenous variables, we concatenate the image 
features from the final layer with the weather parameter values. Finally, we apply an activation on the final full-
connected layer that combines image features and exogenous variables to obtain the final class predictions. This 
integration of image and weather data enables the model to leverage both visual information from the aerial images 
and external weather factors for more effective fault detection. 
 

 
Figure 4: Proposed MultiNet architecture comprising of a CNN for image-based feature extraction, which is then 

integrated with exogenous weather parameters to output a final prediction for the solar panel under inspection 

 
The proposed MultiNet model is implemented using PyTorch in Python. In specific, the MultiNet model is trained by 
minimizing the cross-entropy loss using the Adam optimizer, which combines the benefits of adaptive learning rates 
and momentum for improved training performance and convergence. A grid search was used to optimize the model 
hyperparameters including the learning rate, batch size, and number of epochs. The final parameters used in our model 
are: Batch size = 4, number of epochs = 500, and a learning rate of 0.001. This combination of hyperparameter values 
resulted in the best convergence performance.   
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4. Results and Discussion 
 
4.1. Testing Procedure, Comparison Benchmarks, and Evaluation Metrics 
For model evaluation and testing, the augmented dataset (along with the exogenous variables) has been divided into 
five randomized experiments, denoted hereinafter as ℱ1, … ,ℱ5. In each of the five experiments, 80% of the augmented 
dataset (~370 images) has been selected for training, with the remaining 20% being reserved for testing (~95 images). 
As seen in Table 1, classes are not equally represented. To avoid the negative impacts of class imbalance, the training 
sets for each experiment are stratified to down-sample over-represented classes and up-sample under-represented ones, 
thus avoiding severely dis-proportional class representations, while maintaining the 80/20 train-test split.   
 
Two variants of our approach are implemented: MultiNet (T), which only includes temperature as the sole exogenous 
factor, and MultiNet (T, WS, P) which includes all three variables, namely, temperature, wind speed, and precipitation. 
In addition, we compare the performance of the MultiNet models against two data-driven benchmarks: (i) CNN: This 
is an image-based CNN model that only utilizes the processed image data as inputs, without the exogenous parameters; 
and (ii) Temp-Th: This is a simple, threshold-based procedure which classifies the images depending on whether the 
value of the air temperature for the testing sample exceeds the 95% percentile of the historical temperature values.  
 
The four models (Temp-Th, CNN, and two variants of MultiNet) are compared using four different evaluation metrics: 
accuracy, precision, recall, and F-score. If we denote by 𝒚𝒚𝒊𝒊 and 𝒚𝒚�𝒊𝒊 the true and predicted class labels for the ith image, 

respectively, then accuracy is defined as 
∑ 𝕀𝕀(𝒚𝒚𝒊𝒊=𝒚𝒚�𝒊𝒊)
𝒏𝒏𝒕𝒕𝒕𝒕
𝒊𝒊=𝟏𝟏

𝒏𝒏𝒕𝒕𝒕𝒕
, where 𝒏𝒏𝒕𝒕𝒕𝒕 is the number of testing samples, while 𝕀𝕀(∙) is the 

indicator function. Precision is defined as 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻

, where 𝑻𝑻𝑻𝑻 and 𝑭𝑭𝑻𝑻 denote true and false positives, respectively. 

Recall, on the other hand, is defined as 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑭𝑭

, where 𝑭𝑭𝑭𝑭 denotes false negatives. The F1-score is the harmonic mean 

of the precision and recall, and is defined as 𝟐𝟐×𝑻𝑻𝒓𝒓𝑷𝑷𝑷𝑷𝒊𝒊𝒕𝒕𝒊𝒊𝑷𝑷𝒏𝒏×𝑹𝑹𝑷𝑷𝑷𝑷𝒓𝒓𝑹𝑹𝑹𝑹
𝑻𝑻𝒓𝒓𝑷𝑷𝑷𝑷𝒊𝒊𝒕𝒕𝒊𝒊𝑷𝑷𝒏𝒏+𝑹𝑹𝑷𝑷𝑷𝑷𝒓𝒓𝑹𝑹𝑹𝑹

.  
 
4.2. Numerical Results and Discussion:  
The evaluation metrics described in Section 4.1. are evaluated for each individual experiment, 𝓕𝓕𝟏𝟏, … ,𝓕𝓕𝟓𝟓, and then 
the average and standard deviation across the five experiments are calculated and reported in Table 2.  
 

Table 2: Evaluation metrics for the four models considered herein, namely: Temp-Th, CNN, MultiNet (T), and 
MultiNet (T, WS, P). The numbers in parentheses denote the standard deviation across the five randomized 

experiments, 𝓕𝓕𝟏𝟏, … ,𝓕𝓕𝟓𝟓. Bold-faced values denote best performance.  

Eval. Metric Temp-Th (95th percentile) CNN (Image-based) MultiNet (T) MultiNet (T, WS, P) 

Accuracy 51.1%  
(3.83) 

84.2% 
(5.14) 

95.6% 
(1.91) 

95.6% 
(1.11) 

Precision 42.7% 
(3.03) 

79.1% 
(4.45) 

94.8% 
(3.30) 

94.9% 
(2.11) 

Recall 42.6% 
(2.85) 

82.2% 
(5.50) 

94.4% 
(2.91) 

94.7% 
(2.08) 

F1-score 35.5% 
(2.94) 

78.8% 
(5.77) 

94.4% 
(2.84) 

94.5% 
(1.55) 

 
Looking at the results in Table 2, we can make a few key observations. First, it obvious that deep-learning-based 
approaches (namely CNN and the MultiNet variants) are much more effective than simple rule-based benchmarks. In 
specific, the CNN model achieves ~65% accuracy improvement over Temp-Th. Adding exogenous variables through 
the MultiNet models improves the performance by up to ~22% over CNN, and up to ~87% over Temp-Th. It also 
appears that both the univariate and multivariate versions of MultiNet perform similarly, with a slight advantage for 
the MultiNet (T, WS, P) relative to its univariate counterpart MultiNet (T). This advantage is demonstrated by the 
reduced standard deviation across all evaluation metrics, indicating a more robust/reliable classification performance, 
as well as in the slight boost in sensitivity (~0.3% increase) and F-score (~0.1% increase).  
 
Those results convey two main findings. The first finding is concerning the merit of DL approaches relative to simple 
rule-based methods that are commonly used in practice for fault diagnostics and prognostics. The second finding is 
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the additional benefit brought by the multi-modal learning of image data and exogenous weather factors within the 
DL models. While temperature is indeed a significant predictor of snow-related defects, fully leveraging its 
explanatory power is contingent on a well-designed ML framework (as in MultiNet), in contrast to simple rule-based 
benchmarks like Temp-Th. Furthermore, the inclusion of additional environmental factors, such as precipitation and 
wind speed, suggests that considering multiple environmental factors in conjunction with temperature can provide a 
marginal (but noticeable) increase in the accuracy and robustness of defect detection.  
 

 
Figure 5: Confusion matrices for the four models considered herein, namely: Temp-Th, CNN, MultiNet (T), and 

MultiNet (T, WS, P). 

 
The confusion matrices shown in Figure 5 are obtained by aggregating the results from all five experiments, and can 
further provide deeper insights about the fault diagnostic performance of the four competing models. In addition to 
confirming the findings conveyed from the analysis in Table 2, the confusion matrices in Figure 5 suggest that, for 
DL models, shading identification appears to be the easiest fault mode to detect across the three considered classes, 
with accuracies per class reaching up to 99.6% for MultiNet (T, WS, P). Despite that, it appears that the DL models 
struggle more in terms of false positives than in false negatives – that is, the models are more likely to mis-classify 
healthy samples as defective than vice-versa (up to 13 false positives for the shading class, and 5 false positives for 
the snow class). We believe that those false positives can be further reduced had our models been trained on a more 
diverse training dataset. For example, snow on solar panels can exist in many forms such as powdery snow, wet snow, 
or patches. Shading patterns –attributed to different cloud cover effects and/or other shadowing objects—can also be 
largely diverse and complex. Despite those challenges, we still conclude that our approach renders an overall 
satisfactory performance, as evidenced by both the aggregated results in Table 2, as well as the confusion matrices in 
Figure 5. On average, our approach achieves up to 95.6% and 94.6% in accuracy and F1-score, respectively. This is a 
testament to the merit of the proposed AI framework in effective fault diagnostics and solar asset monitoring.   
 
5. Conclusion and Future Research 
In this work, we have proposed a UAV-enabled, AI-powered framework to automate asset monitoring and fault 
detection in solar PV systems. An experimental testbed has been set up at the Energy Lab at Rutgers University in NJ, 
which enabled the collection of real-time, high-resolution images of the solar PV system under various fault modes, 
as well as data about the exogenous weather parameters that may exhibit decent predictive power in explaining the 
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fault occurrences in solar PV systems. Tested on a large number of testing samples, our proposed deep-learning-based 
approach, has been shown to effectively pinpoint prevalent fault modes in solar modules, while maintaining a sensible 
balance between false and missed alarms. Our proposed framework serves as an exemplar of the successful integration 
of emerging technologies such as UAVs and AI in offering a promising avenue for optimizing O&M activities in solar 
energy farms, thereby contributing to the wider adoption of solar power as a clean energy source.  

This work opens the door for several interesting questions and potential extensions. As a case in point, it would be 
worth it to consider both visual and thermal imaging modes for the UAV. Thermal images can provide richer 
information, especially in regard to localizing snow- and overheating-related defects. In terms of methodology, we 
would like to explore (and potentially hybridize) various image-based ML approaches, including those based on graph-
theoretic methods (Ezzat et al., 2021) or more advanced DL architectures (Xie et al, 2017). Finally, extending the 
proposed approach to include a larger number of fault modes such as cracks, dust, snail trails, hot spots, among others, 
is currently under investigation by the research team.  
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