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Abstract 

Additive manufacturing attains supply chain resilience by enabling localized production, reducing prototyping time 
through swift design iterations, and achieving on-demand manufacturing by crafting customized products when 
required. These advantages stem from its interconnected layer-by-layer fabrication process, redefining traditional 
manufacturing approaches. Like other industries, AM exhibits intricate parameter interdependencies, necessitating 
novel predictive models. In this study we used a dataset obtained from PLA-based Additive manufacturing process 
and used data-driven methodologies on the dataset including measurements of input and output parameters.  

The study aims to predict energy consumption, print duration, and object weight based on input variables - layer 
thickness, printing speed, and line infill pattern. We used advanced machine learning techniques including linear 
regression, decision trees and random forests to create a predictive model for data driven decision making. 

We segregated the collected data into two distinct sets: a training set which was used to train the machine learning 
model, and a test set to assess the model's performance on unseen data. This approach ensures the model's robustness 
and ability to generalize, allowing it to make accurate predictions for real-world additive manufacturing scenarios. 

Results highlight machine learning's efficacy in forecasting output parameters. The research emphasizes the potential 
of computational models for real-time process control. It enhances resource efficiency by minimizing material waste 
and energy consumption. Collectively, these outcomes empower companies to streamline processes, make informed 
choices, and ultimately deliver high-quality products efficiently and competitively echoing the trend of data-driven 
transformations in manufacturing.  
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1. Introduction
Additive manufacturing (AM) represents a innovative digital manufacturing method for creating three-dimensional 
objects, typically by layering materials based on computer-aided design (CAD) models. In contrast to traditional 
manufacturing techniques, AM offers several benefits, including the ability to produce intricate components with 
intricate shapes and structures, distinct microstructural characteristics, and properties, all while reducing time and 
expenses. Consequently, AM has garnered substantial attention in both academic research and global industrial 
applications in recent times (Wang et al. 2020). 

Machine learning is pivotal for additive manufacturing (AM) process control, offering numerous advantages. It 
optimizes printing parameters by analyzing data, ensuring efficient material usage and reduced waste. Machine 
learning aids in real-time defect detection, minimizing the production of faulty parts. Predictive models forecast part 
quality, allowing for early intervention if deviations occur. It enables predictive maintenance, ensuring AM machines 
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operate smoothly and reducing unplanned downtime. Furthermore, machine learning streamlines material 
management, customizes designs, enhances energy efficiency, and facilitates closed-loop process control, making it 
an indispensable tool for improving AM precision, efficiency, and overall quality. 

Persistent fluctuations in product quality remain a significant obstacle to the extensive adoption of additive 
manufacturing (AM) techniques in production settings. To overcome this challenge, the practice of monitoring AM 
processes and assessing AM materials and components has become more prevalent, marked by enhanced precision. 
Consequently, a fresh wave of data related to AM has emerged, offering a valuable asset for obtaining fresh 
perspectives on AM processes and informing decision-making (Razwi et al. 2019). 

Machine learning-based process control models are essential for additive manufacturing (AM) due to the inherent 
complexity of AM processes. These models optimize printing parameters, such as temperature and layer thickness, 
enabling the production of high-quality parts while minimizing waste. Quality assurance is a top priority in industries 
like aerospace and healthcare, and machine learning can detect defects in real-time, reducing the likelihood of faulty 
components and the associated scrap rates. Furthermore, AM processes often face variability in materials, 
environmental conditions, and machine characteristics. Machine learning adapts to this variability, maintaining 
process stability and consistency. 

Efficiency improvement is another crucial aspect of machine learning in AM. By optimizing parameters, machine 
learning reduces production times, energy consumption, and material waste, which is vital for cost-effectiveness and 
sustainability. Predictive maintenance ensures machine uptime by anticipating maintenance needs, reducing 
unplanned downtime and costly repairs. This proactive approach to maintenance is invaluable for continuous 
production. Moreover, machine learning supports customization and innovation, driving the design and manufacturing 
of customized products efficiently. It also provides data-driven decision-making capabilities, extracting valuable 
insights from the vast amounts of data generated during AM processes. In turn, this facilitates process optimization 
and quality control, granting companies a competitive advantage and enabling scalability across various AM machines 
and processes. Ultimately, machine learning-based process control models enhance the reliability, efficiency, and 
innovation potential of 3D printing. 

This study has been conducted for the additive manufacturing process of Fused Deposition Modeling (FDM), for the 
material Polylactic acid (PLA). From the literature we decided important parameters for process control and conducted 
trials on the sample piece for data collection. Based on the collected data we formulated machine learning models and 
tested them for prediction accuracy.  

1.1 Objectives 
This study has the following objectives: (i) to identify relevant process parameters in FDM process which can be 
considered for modeling, (ii) to identify suitable machine learning technique which can be used for developing 
predictive model, (iii) to decide the dimensional specifications for the sample test piece, (iv) to decide the values of 
process parameters to be set for the trials, (v) to conduct required number of trials and collect data, (vi) to develop a 
predictive model, based on machine learning algorithm, for effective process control in additive manufacturing, and 
(vii) to check the accuracy of the model. In the methodology section, the details are given in step-by-step manner.

2. Literature Review
In order to understand the current status of research in the subject area, we decided to carry out a literature review in 
the related domain. For this purpose, we searched for the literature on the following topics: additive manufacturing, 
process control, process parameters in FDM, machine learning techniques in additive manufacturing. We used these 
keywords as search strings in google scholar and other databases. From the search results, we excluded the results 
which were not published in peer reviewed reputed journals. Next, we reviewed the titles of the research papers to 
identify relevant papers for further study and reviewed the abstracts of the papers of interest. During our literature 
search we came across review papers discussing the applicability of machine learning algorithms for additive 
manufacturing process, and the papers presenting experimental results of application of machine learning algorithms. 
In the following paragraphs a brief review of the related papers is presented. 

Baumann et al. (2018) present a comprehensive review of the impact and utilization of machine learning (ML) in the 
field of Additive Manufacturing (AM). The authors systematically identify the existing body of literature through a 
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literature search and categorize it based on its practical applications within 3D printing. The research offers valuable 
insights into the current state of ML, deep learning, and related computational learning methods in the context of AM, 
including their potential implications for future developments such as cloud manufacturing and Industry 4.0 
integration. The applications of ML within AM are explored in depth, encompassing areas such as process control, 
process monitoring, and the enhancement of product quality. Additionally, the study identifies key research questions 
and provides a comprehensive overview of the advantages and limitations associated with the convergence of AM and 
ML. 
 
Baturynskaa et al. (2018) propose a conceptual framework for optimization of process parameters for powder bed 
fusion additive manufacturing (PBF AM)  by combination of machine learning and finite element method. The authors 
present a review of application of statistical analysis to define significance of polymer powder bed fusion (PPBF) 
process parameters, application of mathematical modeling for analysis of PBF AM processes, application of Machine 
Learning for prediction of PBF process parameters and proposed conceptual framework on combination of Machine 
Learning and mathematical modeling.  
 
To satisfy the rising consumer demand for top-notch personalized items, manufacturing firms must adopt innovative 
production methods like additive manufacturing. Yet, the widespread industrial and automated utilization of these 
technologies faces challenges due to inconsistent product quality and limited process stability. Sohnius et al. (2019) 
introduce an original method for forecasting product quality in Fused Deposition Modeling (FDM), relying on process 
parameters, real-time measurement data, and an apt machine learning algorithm. The objective is to lay the foundation 
for implementing process control and ensuring a steadfastly superior product quality. 
 
Meng et al. (2020) discuss the most recent uses of machine learning (ML) within the additive manufacturing (AM) 
domain. These applications, spanning parameter refinement and anomaly identification, are categorized according to 
distinct ML functions, encompassing regression, classification, and clustering. The effectiveness of diverse ML 
algorithms in these specific AM functions is assessed and contrasted. Concluding the review, several prospective 
avenues for future research are proposed.  
 
Additive manufacturing (AM) is a transformative technology, but its industrial adoption faces barriers like design 
challenges, limited materials, defects, and inconsistent quality. Machine learning (ML) has gained traction in AM for 
its data-driven capabilities. Wang et al. (2020) review ML applications in AM domains: ML enhances design by 
creating high-performance materials and topologies, optimizes processing parameters, analyzes powder spreading, 
and monitors defects during production. ML aids in pre-manufacturing planning and quality control. Concerns about 
data security in AM are addressed. This paper summarizes key findings and highlights ML's promising role in 
advancing AM research and development. 
 
Li et al. (2021) used machine learning models for geometrical defect detection in additive manufacturing process. Five 
ML methods (Bagging of Trees, Gradient Boosting, Random Forest, K-nearest Neighbors and Linear Supported 
Vector Machine) were compared under various conditions and bagging and Random Forest were found the two best 
models regarding predictability. 
 
In a comprehensive review, Qin et al. (2022) suggest that the adoption of additive manufacturing is hindered by 
complexities in manufacturing systems, rising demand for high-quality products, and challenges related to design, 
standardization, and quality control. To address these obstacles, machine learning (ML) technologies have emerged 
as crucial tools. This study employs a systematic literature review and clustering analysis to explore the state-of-the-
art research at the intersection of ML and AM. Key areas include Design for AM (DfAM), material analytics, in-situ 
monitoring, defect detection, property prediction, and sustainability. Recognizing both challenges and opportunities, 
this research highlights ML's pivotal role in advancing AM. 
 
There are several research gaps in the area of machine learning-based process control for additive manufacturing (AM) 
that offer opportunities for further investigation and advancement. Some of these research gaps include: (i) Variability: 
Many AM processes are susceptible to variations in material properties, environmental conditions, and machine 
characteristics. Research is needed to develop machine learning models that address variability, (ii) Limited Data: In 
some cases, obtaining sufficient labelled data for training machine learning models can be challenging. Research is 
needed to explore techniques for training models with limited data, (iii) Interpretable Models: Many machine learning 
algorithms, particularly deep learning models, are often considered "black boxes" with limited interpretability, (iv) 
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Transferability: Machine learning models developed for one AM process or material may not easily transfer to another, 
(v) Sustainability: Investigating how machine learning can be used to optimize AM processes for environmental 
sustainability, such as reducing energy consumption and material waste, is a critical research area.  
 
Based on the literature review, we selected process parameters and designed the experiment in such a way to address 
the variability and sustainability issue for the FDM process. The details of the process parameters and the experiment 
are given in the next section. 
 
3. Methods  
In this study, the research method used can be divided in two parts: (i) method associated with AM process, and (ii) 
method associated with development of machine learning algorithms. These methods are elaborated in the following 
paragraphs. 
 
3.1 AM Process  
We conducted the study on the Fused Deposition Modelling (FDM) process, which is one of the commonly used 3D 
printing technologies. Fused Deposition Modeling (FDM) 3D printing is an accessible and versatile additive 
manufacturing process that constructs objects layer by layer using melted thermoplastic filaments. This technology is 
favored for its cost-effectiveness and applicability in producing functional prototypes and end-use parts. What sets 
FDM apart is its simplicity and broad utility, making it a widely adopted method across industries and educational 
settings, particularly for rapid prototyping and customization of objects. We used Prusa FDM 3D printer, which is a 
highly regarded and popular DIY 3D printing machine. It is known for its high-quality prints, durability, and ease of 
use. The Prusa FDM is a direct drive printer, which means the extruder is directly attached to the hot end, resulting in 
smoother and more accurate prints. Additionally, it has a heated bed and a fan-cooled hot end, making it suitable for 
printing with a wide range of materials. The 3D printer used for printing the test samples is shown in Figure-1.  
 
To conduct the experiment we decided to use a standard I-shaped test piece made of PLA material. Polylactic Acid 
(PLA) is a commonly used material in Fused Deposition Modeling (FDM) 3D printing. It is a biodegradable 
thermoplastic derived from renewable resources such as cornstarch or sugarcane. PLA is known for its ease of use, 
low warping, and minimal odor during printing, making it a popular choice for both beginners and experienced users 
in the 3D printing community. The 3D Model of the test piece used is shown in Figure-2.  
 

 
 

 
Figure 1.  FDM 3D Printer 
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Figure 2.  PLA test piece 
 
Based on literature review we selected the following process parameters for conducting the experiment: (i) Layer 
Thickness (mm), (ii) Printing Speed (mm/s), (iii) Infill Percentage—as input parameters, and (iv) Energy Consumption 
(kWh), (v) Printing time (Hrs), (vi) Part weight (g)—as output parameters. Repeated trials were conducted for different 
values of input parameters and the output parameters were measured, which will be elaborated in section 4-Data 
Collection. 
 
3.2 Machine Learning Algorithms 
The machine learning algorithms are divided into two types, namely, supervised and unsupervised learning. In 
supervised learning, predictive models are developed based on both input and output data, while in unsupervised 
learning, data is grouped and interpreted based only on input data. Supervised learning models are further classified 
into classification and regression techniques, while unsupervised learning models are referred to as clustering 
techniques. The types of ML techniques are displayed in Figure-3.  
 
 

 
 

Figure 3.  Types of ML Techniques 
 
In the present study, both input and output parameters are continuous in nature, and it is required to develop a machine 
learning model to predict the output parameters from the given values of input parameters. Therefore, we chose to use 
regression techniques which helps us to build predictive models, based on supervised learning method. Particularly, 
we decided to use linear regression and random forest method to develop the predictive model.  
 
Linear Regression is a fundamental predictive modeling technique that establishes a linear relationship between input 
variables and a target variable. It aims to predict continuous numeric outcomes by fitting a straight line to the data 
points. This widely used algorithm is simple, interpretable, and well-suited for tasks like price prediction, trend 
analysis, and correlation assessment. Random Forest Regression is a machine learning algorithm that combines the 
predictive power of multiple decision trees. It excels at making accurate predictions by averaging the outcomes of 
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these decision trees, resulting in robust and reliable regression models. This ensemble technique is widely used for 
various applications, including prediction, forecasting, and data analysis.  
 
As part of the research method, after selecting the applicable algorithms, we divided the collected dataset into two 
parts—training dataset (80%) and test dataset (20%). Python code was developed in latest version of python 3.10.3 
and Jupyter notebook was used in open source Anaconda Navigator environment to run the code on a machine with 
Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz   2.11 GHz processor and 8 GB memory. The code was used first to 
train the model, and then to predict the results.  
 
4. Data Collection  
The data was collected at of the additive manufacturing facilities—Arunoday Enterprises, in Kolhapur city. For 
collection of data, initially the parameters were classified as constant parameters, input parameters and output 
parameters. The following three parameters were treated as constant parameters: (i) Material—PLA, (ii) Infill 
pattern—line, (iii) Nozzle temperature—220°C. Next, for the input parameters, the full range was considered based 
on the machine specifications and several levels were decided with appropriate interval as shown in Table 1.  
 

Table 1.   Input Parameters and levels 
 

Sr. No Parameter (Input) Range from Rannge to Increment No of Levels 
1 Layer Thickness (mm) 0.1 0.3 0.02 11 
2 Printing Speed (mm/s) 50 90 5 9 
3 Infill Percentage 60 100 5 9 

 
Total of 100 trials were conducted by varying the levels of input parameters randomly. For each trial readings were 
collected for the output parameters. The snapshot of the data table is shown in the Figure-4.  
 

 
 

Figure 4.  Snapshot of the data table 
 
5. Results and Discussion 
After the data was collected, it was divided into training and test dataset as explained earlier. Next, Python code was 
developed for the two selected algorithms, i.e. Linear Regression and Random Forest. The Pseudocodes of the two 
algorithms are provided in Annexure-1 and Annexure-2 respectively. The libraries used in the python codes are given 
in Table-2. 

Table 2.  Libraries used in Python Code 
 

Serial No Name of Library Description 

1 pandas (imported as pd) Used for data manipulation and analysis, 
especially with structured data. 

2 sklearn.model_selection Module for splitting datasets into training and 
testing sets, part of scikit-learn. 

3 sklearn.ensemble.RandomForestRegressor Module for implementing Random Forest 
Regressor models, part of scikit-learn. 
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4 sklearn.metrics Module for calculating evaluation metrics for 
regression models, part of scikit-learn. 

5 joblib Used for saving and loading machine learning 
models, like saving the Random Forest model. 

6 matplotlib.pyplot (imported as plt) Used for creating data visualizations, such as line 
plots to visualize model predictions. 

 
After developing the codes for the two algorithms, they were tested on sample standard dataset for accuracy, and upon 
verification, the data collected from the trials was processed through the codes. The results obtained are presented in 
the following sections. 
 
5.1 Numerical Results  
The numerical results consisted of predicted output parameters, and were obtained for both the algorithms. A sample 
snapshot of displayed outcomes through the running of codes is provided in Figure-5 and Figure-6.  For the Linear 
regression algorithm, the coefficients of the regression equation  were obtained, which are displayed in Figure-4. Here, 
y indicates the output variable and in the RHS of the regression equation, the four row vectors correspond to the the 
coefficients of the three input variables and the constant term in the regression equation respectively. Further, each 
term in the row vector corresponds to one of the output variables, and as there are three output variables the row vector 
contains three terms.  

 
Figure 4.  Coefficients of Linear Regression Equation 

 
Thus, the regression equation for the third output variable, i.e. part weight can be written as follows. 
 

Part weight = 0.008 * x1 + 0.001 * x2 + 1.077 * x3 + 11.55   (Eq. 1) 
 

Where, x1, x2 and x3 represent the input variables. 
 
Similar equations were derived for all the output variables and using the input values of the test dataset, the output 
values were predicted. A snapshot of the predicted values for the linear regression model is shown in Figure-5. 
 
 

 
 

Figure 5.  Snapshot of Sample Linear Regression prediction 
 

Linear Regression Equation: 
y = [-0.02448604 -0.01200359  0.00847143]*x1 + [-0.18528296 -0.19107423  0.00123896]*x2 + [-
0.00299008  0.02390096  1.07799327]*x3 + [ 0.12375   1.171375 11.55] 
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Subsequently, we used Random Forest Regression algorithm to predict output variable values for the test dataset 
through a two-step process. First, during the training phase, an ensemble of data trees was constructed, each trained 
on a different random subset of the training data. These trees were trained independently to predict the output 
variable based on the input features. 
 
 Second, during the prediction phase, new datapoints were taken from the test dataset and individual predictions 
were collected from all the individual decision trees. The final prediction was obtained by averaging these individual 
predictions, which resulted in a more accurate and robust estimate of the output variable for that data point. The 
ensemble approach adopted reduced overfitting and improved predictive accuracy by leveraging the diversity of the 
constituent trees. A snapshot of the predicted values for the Random Forest model is shown in Figure-6. 

 

 
 

Figure 6.  Snapshot of Sample Random Forest prediction 
 
5.2 Graphical Results 
The comparison of predicted vs actual values of the output variables are represented graphically in the following 
figures. Figures 7-9 respectively show the Predicted vs Actual values of Energy Consumed, The printing time and 
Part weight for Linear regression model. As observed from the graphs, the linear regression model makes conservative 
estimates of the predicted values, and is not able to accurately predict the extreme peaks in the dataset. However, if 
the data does not contain extreme values, linear regression fit is satisfactory.  
                                                        

 
 

Figure 7.  Energy Consumed Predicted vs Actual for Linear Regression 
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Figure 8.  Printing Time Predicted vs Actual for Linear Regression 
 

 
 

Figure 9.  Part Weight Predicted vs Actual for Linear Regression 
 

Figure 10-12 display the predicted vs actual values of output parameters, respectively Energy Consumed, The printing 
time and Part weight for Random Forest model. It is observed that the random forest model is able to predict with 
higher accuracy and also the predictions follow the extreme values in the dataset closely. This phenomenon is observed 
for all three output variables. 

 

 
Figure 10.  Energy Consumed Predicted vs Actual for Random Forest 
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Figure 11.  Printing Time Predicted vs Actual for Random Forest 
 

 
 

Figure 12.  Part Weight Predicted vs Actual for Random Forest 
 

5.3 Validation 
We used the standard statistical parameters—Mean Absolute Error, Mean Squared Error, and Coefficient of 
determination (R-squared)—for validation of the regression models. These values were calculated on the test dataset 
using the parameters obtained from the model and are shown in Table-3. It was observed that random forest model 
was able to make better predictions as compared to linear regression model.   
 

Table 3.  Model performance measures 
 

Model Mean Absolute 
Error (MAE) 

Mean Squared 
Error (MSE) R-squared (R²) 

Linear Regression 0.2525 0.1851 0.5547 

Random Forest 0.2086 0.1645 0.582 
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6. Conclusion  
In this study, we have shown the applicability of machine learning techniques for prediction of process parameters in 
the additive manufacturing process. We used two fundamental algorithms, for the purpose of developing prediction 
model, based on experimental data. A case of FDM process using PLA material was selected for the experimentation 
purpose. It was ensured that the full range of input parameters was used for experimental settings to obtain better 
results. We found that random forest algorithm produces more accurate predictions as compared to linear regression. 
The practitioners can use similar approach to build and test the model, and the validated model can be used for online 
predictions, of output variables based on live process data. The current study uses only two algorithms and the number 
of samples used for training and testing purpose are limited due to overall costs constraints of the experiment. 
However, we can achieve better predictions by increasing the sample size. Also, more complex algorithm like Support 
Vector Machine, X-G Boost and Deep learning-based methods can be deployed for building more accurate prediction 
models. Furthermore, hyper-parameter tuning and optimization can be done to improve the overall prediction 
accuracy.  Finally, a live decision support system can be developed which can take inputs from the process, and predict 
outputs dynamically.  
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Annexure 1: Pseudocode for Linear Regression Algorithm 

 
# Load the dataset from a file 
Load the dataset from "path_to_dataset.csv" 
 
# Separate the dataset into input features (X) and target variables (y) 
Extract "layer_thickness," "printing_speed," and "infill_percentage" as X 
Extract "energy_consumption," "time," and "weight" as y 
 
# Split the data into two parts: one for training and the other for testing 
Split the data into training and testing sets (80% for training, 20% for testing) 
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# Normalize the feature values to have a consistent scale 
Normalize the training and testing features 
 
# Create a model to predict target variables 
Create a linear regression model 
 
# Train the model using the training data 
Train the model using the training features and target variables 
 
# Use the trained model to predict target variables for the test data 
Predict target variable values using the testing features 
 
# Evaluate the model's performance 
Calculate the Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared (R2) 
 
# Print the evaluation metrics 
Display the MAE, MSE, and R2 values 
 
# Prepare new data for prediction 
Create a new dataset with different input feature values 
 
# Normalize the new data using the same scaler used for training 
Normalize the new data 
 
# Use the trained model to predict target variable values for the new data 
Predict target variable values for the new dataset 
 
# Print the predicted output values for the new data 
Display the predicted output values 
 
# Visualize the data (optional) 
Create plots to visualize energy consumption, time, and weight data 
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Annexure 2: Pseudocode for Random forest Algorithm. 

# Import necessary libraries 
Import the required libraries for data manipulation and machine learning. 

# Load the dataset 
Load a dataset from a specified file location. 

# Prepare data 
- Select specific columns from the dataset as input features (X) and target variables (y).
- Print the first few rows of the dataset to inspect its contents.

# Split the data 
Divide the dataset into a training set and a testing set, typically with an 80/20 split. 

# Create and train a Random Forest Regression model 
- Initialize a Random Forest model with specific parameters.
- Train the model using the training data.

# Make predictions 
Use the trained model to predict target variables on the test data. 

# Evaluate the model's performance 
Calculate various performance metrics such as Mean Absolute Error, Mean Squared Error, and R-squared. 

# Print the evaluation metrics 
Display the calculated performance metrics. 

# Save the trained model 
Save the trained model to a file for future use. 

# Generate new data for prediction 
Create a new dataset with different input values. 

# Predict using the trained model 
Apply the trained model to predict target variables for the new data. 

# Display predicted output parameters 
Print the predicted output parameters for the new data. 

# Visualize time data 
Create a plot comparing predicted and recorded time values. 

# Visualize weight data 
Create a plot comparing predicted and recorded weight values. 

# Visualize energy consumption data 
Create a plot comparing predicted and actual energy consumption values. 
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