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Abstract 

The subject of our senior design project is optimized product packaging. Companies may generally have trouble 
packing goods of various types, sizes, and volumes. The amount of waste produced by using cardboard and the precise 
arrangement and dimensions of the boxes to be used in order packaging are the two most significant issues related to 
the packaging issue. Random packaging, the use of parcels, and the absence of a set packaging sequence or rule result 
in wasteful cardboard usage, transportation space consumption, and financial loss because each parcel utilized has a 
cost. The boundaries and restrictions of the challenge were established after an analysis of potential packaging 
problems faced by the company. Before modeling, there has been literature research. Since we can use restricted 
amount of different sized boxes the main purpose of the model is to minimize the total volume with providing the 
information about which order should be placed on which box and in which order. Since the real data set is so large, 
the heuristic box packing algorithm is developed and its output data is used to decide the packaging orders into boxes. 

Keywords 
Volume optimization, Logistics industry, Order packaging, Box packing algorithm, Two stage model. 

1. Introduction
Xxx Logistics is a mixed logistics company that earns the most of its revenue in warehousing and road transportation. 
It provides freight transportation for warehouses and online purchases from top Turkish businesses. During our trip to 
their facility, they informed us about not having an e-commerce order packing system. 

Each brand's sections of the warehouse are separated. Each item is assigned a code and placed on the shelves in that 
order. When the order is received, the officer collects the items and sends them to be wrapped. The items in the order 
are sorted to fit into one of the 10 boxes that the packing officer deems suitable. As a result, more cardboard is needed, 
and the package occupies more room in the conveyed vehicle because this does not demonstrate the ideal sequence 
and outcome. 

In this project, we prepared the orders as rectangular prisms and we determined that according to the rule of having 
the minimum total volume. We applied the model we did for it, for small sized problems beside the big ones. You can 
see the detailed explanation of them in the following chapters. In this report, the volume of the boxes problem of Xxx 
Logistic will be discussed and solved. 

The problem is analyzed in detail, input data, iterative improvement, greedy resizing, box resizing, order transfer and 
optimization techniques are planned and a heuristics model based on the optimized box packing algorithm is developed 
and coded in Java. Detailed explanation and comparison about the results are made in the following chapters.  

2. Literature review
Most of the work that was accomplished during this term was focused on improving the model that was constructed 
during the previous term and reducing the complexity that were observed. Because of this, the articles “A New 
Mathematical Model for a 3D Container Packing Problem”, (Ocloo et al. 2020)  and “A Global Optimization Method 
for Packing Problems”, (Hu et al. 2002) which we have investigated in depth throughout the first term and presented 
in our first report played an extremely important role in the creation of our first step linear model in the chapter 3.4.1. 
To create the constraints (1-13) and the constraints (17-19), we have benefitted from these articles. During this time, 
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we worked on improving our model, which was formed based on the papers that we read and researched, with the 
goal of simplifying the process and developing new approaches. In the span of this period, some of the steps that we 
took as part of our strategy included simplifying the model into just two stages, constructing a nonlinear model, and, 
as a concluding step, designing our very own algorithm. The study includes extensive discussion of each of these 
aspects in full detail. 

3. Methods
3.1 Problem Definition
The company we are working with requested that we design a complicated system for this job. This complex method
is a developed way to solve the company's current issue.
By using the minimum desi which means the volumetric weight carried by a cargo with its package, and taking into
account transportation conditions like the type of vehicle, size, and how it will be placed in accordance with the nature
of the products in the order prepared specifically for each customer, shipping parcels and packaging are planned in a
way that minimizes waste.

First, at the very beginning of our project, we created a linear model and proceeded through this model. Later, we 
converted this model we created into a two-stage model. We solved the first stage and did not encounter any problems. 
We solved the first stage of our model to be linear. For the second stage, we made the model nonlinear and solved it 
to be nonlinear. 

This model and solution we created has been a model and solution developed to solve an existing problem within the 
company that Xxx communicated to us. Our aim in creating this model was to solve the packaging problem that Xxx 
conveyed to us. This solution has emerged in order to choose and use the types and sizes of the boxes used to place 
the ordered products in the most optimal way. Our algorithm that we created to solve this problem is a heuristic 
algorithm. 

3.2 Problem Formulation 
There are several assumptions that generate the first and second steps of the model. We considered the items in each 
order and the order as a rectangular prism, and each item will be placed so that its edges are parallel to one of the 
order's x, y, or z axes. In accordance with the order dimensions obtained at the completion of the first step, the orders 
assumed to be this rectangular prism will be placed in one of the boxes in a manner that minimizes the total volume. 

Figure 1. Steps of the Problem Formulation 

It is assumed that all the objects in each order and all of the orders are rectangular prisms. Each order includes a list 
of the items' sizes and quantities. Only six orientations can be used to arrange the objects so that their edges are parallel 
to the x, y, and z axes. The first step of the problem  involved minimizing the volume of each order separately under 
the assumption that each order was made up of rectangular prisms, taking into consideration the quantity and sizes of 
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all the items in each order. Our goal in the second step is to size a specific number of boxes in order to reduce the total 
volume, and we select one of these boxes for each order in order to fit the order inside of it. This is done using the 
order sizes that were received from the first stage. 

Instead of defining variables for the six possible rotations, we sorted the edges of each order and gave them the names 
large, medium, and small in order to reduce the complexity of our second step model. This is because, based on our 
assumption, we have declared that there are only six possible rotations in which each edge is parallel to the edges of 
boxes, in order to be able to place the order into a box, there are only six such rotations. The box's medium edge should 
be smaller than the box's medium edge, and the order's large edge should be smaller than the box's large edge. The 
box's small edge should be smaller than the small edge.  

Finally, as linear and mixed integer nonlinear models were unable to provide the efficiency we desired, we built an 
heuristic algorithm in order to speed up the solution and address more complex problems. 

Our algorithm is a greedy, local search-based algorithm that iteratively improves the packing of orders into boxes by 
discovering various combinations of box sizes and switching orders between boxes. This process is known as 
iteratively improving the packing of orders into boxes. By taking use of this strategy, the algorithm can locate near-
optimal solutions for large-scale problems, even in situations where conventional optimization models might be 
constrained by time 

3.3 Choice of modeling approach and its justification 
The three-dimensional box packing model is a problem in mathematical optimization. The model aims to reduce the 
total volume needed to pack a collection of rectangular products. 
 
The model in the first step is commonly expressed as a mixed-integer linear program (MILP), a type of optimization 
problem where the objective function and constraints are linear and some of the variables are constrained to integer 
values. The integer variables in the first step of the problem correspond to the orientations of items which are assumed 
to be rectangular prisms in six different rotations in which their edges are parallel to the x,y and z axes and placement 
of these items according to each other. 
 
A variety of solution methods, such as branch and bound, cutting planes, column generation, heuristics, and 
metaheuristics, can be used to solve the MILP. The method chosen is determined by the size and complexity of the 
issue at hand, the required level of solution quality, and the available computational resources. We chose to use the 
Gurobi package of Java to solve the first step of our problem. In the second step of our problem we used a model 
which is expressed as a mixed-integer nonlinear program in which there exist nonlinear constraints or nonlinear 
objective functions and integer variables. The integer variables in our second step model correspond to the chosen box 
type for each of the orders separately. To solve this model we have tried Gams Studio, Neos online solvers and Excel 
Solver. However, due to the complexity of this model, these solvers were able to solve only smaller sizes of problems 
than we needed. So, we have designed an algorithm to solve the second step of our problem. We chose a heuristic,  

local search-based approach for our algorithm due to its numerous advantages over conventional optimization models: 

• Scalability: Heuristic algorithms are more scalable than exact algorithms, allowing them to manage larger problem 
sizes that pose computational challenges for exact methods. 

• Efficiency: Native search techniques enable efficient exploration of the search space, making them suitable for real-
world applications with limited computational resources. 

• Flexibility: The proposed algorithm can be adapted to a variety of industrial environments, optimizing resource 
utilization and contributing to more efficient and sustainable supply chain practices. 

• Computational efficiency: Heuristic algorithms typically demand less computation than exact methods, resulting in 
faster solutions. 

However, heuristics are not without their drawbacks: 
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• Optimality: Heuristic algorithms do not guarantee the discovery of the optimal global solution. Instead, they 
frequently generate near-optimal solutions that may be close to optimal. 

• Sensitivity: The performance of heuristics is affected by the selection of heuristic parameters and initial conditions, 
which can impact the quality of the final solution. 

The algorithm uses a combination of greedy search, local search, and iterative improvement to pack orders into boxes 
and find a near-optimal solution. Although it cannot always find the global optimum, it can explore the search space 
efficiently and often produce good packaging solutions. 

A heuristic algorithm is a methodical way to make decisions that don't only rely on exact arithmetic calculations but 
also on experience and intuition. This strategy makes it possible to address issues more quickly and can deliver highly 
accurate solutions, especially for complex issues where other approaches might be challenging. 

3.4 Model Representation 
We initially created a two-step solution to the problem. These two phases are represented by two distinct models. The 
high computational complexity of a single-stage model that we generated in the first term was the primary reason for 
its two-stage design, as stated in the initial report. Listed below are the two models and their respective explanations.  
 
3.4.1 First Step: 
Linear Model 
M: Very large number 
MS: Maximum edge length 

N : Number of items in order   

Indices 
1. i: Index of Item {1,...,N} {N = Number of items} 
2. k: Index of Item {1,...,N} {N = Number of items} 
3. u: Index for Size {1,...,MS} {MS = Maximum edge length} 
Parameters 
1. pi: Length of item i  
2. qi: Width of item i  
3. ri: Height of item i  
Decision Variables 
1. xi: x coordinates of Left-Bottom-Behind of item i 
2. yi: y coordinates of Left-Bottom-Behind of item i 
3. zi: z coordinates of Left-Bottom-Behind of item i 
4. aik={1, if item i is on the left side of item k  
       0, otherwise 
5. bik={1, if item i is on the right side of item k  
       0, otherwise 
6. cik={1, if item i is on the behind of item k  
       0, otherwise 
7. dik={1, if item i is on the front side of item k  
       0, otherwise 
8. eik={1, if item i is under the item k  
       0, otherwise 
9. fik={1, if item i is on the item k  
       0, otherwise 
10. lxi={1, if length of item i is parallel to x-axis  
       0, otherwise 
11. lyi={1, if length of item i is parallel to y-axis  
       0, otherwise 
12. lzi={1, if length of item i is parallel to z-axis  
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       0, otherwise 
13. wxi={1, if width of item i is parallel to x-axis   
       0, otherwise 
14. wyi={1, if width of item i is parallel to y-axis   
       0, otherwise 
15. wzi={1, if width of item i is parallel to z-axis  
       0, otherwise 
16. hxi={1, if height of item i is parallel to x-axis  
       0, otherwise 
17. hyi={1, if height of item i is parallel to y-axis  
       0, otherwise 
18. hzi={1, if height of item i is parallel to z-axis  
0, otherwise 
19. B1u: Continuous (length is equal to its own value and width is equal to index u)    
20. S1u: Continuous (continuous variable summation of B1u* u, and its index u is equal to the height) 
21. HMaxu={1, if height is equals to u  
0, otherwise 
22. WMaxu={1, if width is equals to u  
0, otherwise    
23. LMaxu={1, if length is equals to u  
0, otherwise       

Mathematical Model 

OBJ=minimum ∑MSu=1 S1u u 

Subject to 

xi  + pilxi + qiwxi + rihxi   ≤ xk + (1-aik)M   ,  ∀ i,k ∈ N   [1] 

xk + pklxi + qklxk +rkhxk  ≤ xi  + (1-bik)M  ,  ∀ i,k ∈ N   [2]   

yi + pilyi + qiwyi + rihyi  ≤ yk + (1-cik)M  ,  ∀ i,k ∈ N   [3]   

yk + pklyk + qkwyk + rkhyk ≤ yi + (1-dik)M  ,  ∀ i,k ∈ N   [4]   

zi + pilzi + qiwzi + rihzi ≤ zk + (1-eik)M  ,  ∀ i,k ∈ N   [5]   

zk + pklzk + qkwzk + rkhzk ≤ zi + (1-fik)M  ,  ∀ i,k ∈ N   [6]   

aik + bik  + cik + dik + eik + fik  ≥ 1  ,  ∀ i,k ∈ N   [7]   

all items in an order should be at least in left tor right or back or front or below or above of any other item) 

lxi + wxi + hxi = 1  ,  ∀ i ∈ N   [8]   

(at least one edge should be parallel to x axis) 

lyi + wyi + hyi = 1  ,  ∀ i ∈ N   [9]   

lzi + wzi + hzi = 1  ,  ∀ i ∈ N   [10]   
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lxi + lyi + lzi = 1  ,  ∀ i ∈ N   [11]   

(length should be parallel to one of the axis) 

wxi + wyi + wzi = 1  ,  ∀ i ∈ N   [12]   

hxi + hyi + hzi = 1  ,  ∀ i ∈ N   [13]   

∑MSu=1 Wmaxu = 1   [14]  

(if width of the order is u then, Wmaxu is 1) 

∑MSu=1 Hmaxu = 1   [15] 

∑MSu=1 Lmaxu = 1   [16]  

xi  + pilxi + qiwxi + rihxi  ≤ ∑MSu=1 Lmaxuu  ,  ∀ i ∈ N   [17]  

yi + pilyi + qiwyi + rihyi  ≤ ∑MSu=1 Wmaxuu  ,  ∀ i ∈ N   [18]  

zi + pilzi + qiwzi + rihzi ≤ ∑MSu=1 Hmaxuu  ,  ∀ i ∈ N   [19]  

 ∑MSu=1     B1u  ≥ ∑MSu=1 Lmaxuu   [20] 

B1u ≤ MWmaxu   , ∀ u ∈ MS   [21]  

∑MSu=1 S1u ≥ ∑MSu=1     B1u u   [22] 

 S1u ≤ MHmaxu  ,  ∀ u ∈ MS   [23]  

Su  ≥ 0 , B1u  ≥ 0  ,  ∀ u ∈ MS   [24] 

xi , yi  , zi  ≥ 0  ,  ∀ i ∈ N   [25]  

Detailed Explanation of First Step: 

Our first model's objective is to determine the dimensions of the rectangular prism with the minimum volume that 
each order can fit into individually. Each order consists of a certain amount of items, all of which we consider to be 
rectangular prisms, and we arrange them in such a way as to fit into the minimum rectangular prism that the order will 
fit into. Finally, we consider the rectangular prism with the minimum volume that will turn out, as the order itself. In 
this way, the dimensions of the order are formed as a rectangular prism, minimizing the volume. 

The order dimensions that end up being in the shape of a rectangular prism are used as inputs for the order dimensions 
that will be used in the second stage. You can see in section 5.3.2 for further information regarding the second stage. 

Constraints (1-6) indicate the positions of different items compared with each other. The end point of an item which 
is closer to the origin(left back bottom corner) has smaller coordinates than the starting point of the other item in order 
to eliminate the overlapping problem. (left, right, back, front, below, above)  

Constraint (7) indicates that all items must be placed at least one of the positions which are right, left, behind, front, 
below or above any other item respectively. 

Constraints (8-10) implies that for each axis, there is one edge of item i which is parallel to that axis. 
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Constraints (11-13) implies that for each edge of item i, there is one axis which is parallel to that edge. 

Constraints (14-16) “u” index of corresponding decision variable is equal to the corresponding edge if that variable 
is equal to 1. 

Constraints (17-19) ensure that the end point of each item is less than total length, width and height.  

Constraint (20-21) indicates that the value of the decision variable  B1u  which has an index u that is equal to the 
width is equal to the length. 

Constraint (22-23) indicates that the decision variable  S1u which has an index u which is equal to the height is equal 
to the summation of  B1u times u, which is equal to the length times width. (x-y surface). 

Constraints (24-25) Non-negativity constraints for continuous variables 

3.4.2 Second Step: 
 
Non linear model: 
 
M: very large number 
N: number of orders 
Nb: number of box types 
 
Indices 
4. i: Index of Order 
5. j: Index of Box 
Parameters 
4. li: Largest edge of order i 
5. mi: Medium edge of order i 
6. si: Smallest edge of order i 
Decision Variables 
24. Lj: Largest edge of box j 
25. Mj: Medium edge of box j 
26. Sj: Smallest edge of box j 
27. oij={1, if order i is in box j  
       0, otherwise 

Mathematical Model 

OBJ=minimum(∑Ni=1 * ∑Nbj=1 * oij * Lj * Mj * Sj) 

Subject to 

Lj ≥ li – M(1-oij)                                   ∀ i ∈ [1,N] , ∀ j ∈ [1,Nb]  [1] 

Mj ≥ mi – M(1-oij)                                ∀ i ∈ [1,N] , ∀ j ∈ [1,Nb]  [2] 

Sj ≥ si – M(1-oij)                                   ∀ i ∈ [1,N] , ∀ j ∈ [1,Nb]  [3] 

 ∑Nbj=1 oij = 1                                          ∀ i ∈ [1,N]  [4] 

1307



Proceedings of the 6th European Conference on Industrial Engineering and Operations Management 
Lisbon, Portugal, July 18-20, 2023 

© IEOM Society International 
 

Detailed Explanation of Second Step: 
The need in this model is fitting the results of the first step, which are order sizes, in a restricted amount of different 
sized boxes. That is why this non-linear model is written to determine 10 different box sizes. In the first step, we 
determined rectangular prisms and this non-linear model helps us to put those rectangular prisms in 10 different sized 
boxes and the important part in this is to determine the box sizes in a way that the total volume will be the minimum. 
 
In the model, orders and boxes are always rectangular prisms and orders are placed inside the box with each side 
parallel to the edge of the box. With this way, the need of defining binary variables for rotations happened and it 
increased the complexity. That is why we named each order’s edges as large, medium and small and ordered them, 
instead naming them as length, height and width. According to our first assumption, each side of the order is thought 
out to be parallel to one of the x,y and z axes of the box. To fit this order into the box, it is required that the large side, 
medium side and the short side of the order should be less than or equal to the large side, medium side and short side 
of the box consecutively. You can see this in the parameters. Constraint 1-2-3 represents the rule for an order to fit in 
a box in which the large edge of the order must be smaller or equal than the large edge of the box. The same rule is 
applied for the medium and the small edge too. The first three constraints show that. The fourth constraint shows that 
one order can be chosen for only one box. Which means that there is only one j for each i that is why the sum of the 
j’s must be equal to 1.  

As a result of this model, we have determined a certain number of different box sizes in order to take up the minimum 
volume of total orders. However, non-linear model did not work on Neos and Excel Solver for big sizes because the 
complexity of them are high. That is why we proposed an algorithm for this problem. We used the non-linear model 
in Neos and Excel to solve small sized problems and also we used the same small sized problems in the algorithm to 
see the difference between them and to find the optimality gap. It also provided us with the performance of the 
algorithm. You can see the detailed explanation of the algorithm in the algorithm part and see the results of it in the 
following chapter.  

3.4.3 Heuristic Algorithm 
Our heuristic solution algorithm for the BPP involves the following components: 

● Inputs: A list of orders, each with three dimensions (largest edge, medium edge, and shortest edge), and a list of 
potential box dimensions. 

● Outputs: An optimized packing solution, represented by a list of boxes with their respective dimensions and packed 
orders. 

Our algorithm is implemented using the Java programming language and consists of four main classes: Main, 
Environment, Box, and Order. The following sections provide a detailed description of each class, focusing on their 
functionality and interactions in the context of the algorithm. 

The algorithm is based on a greedy, local search approach that iteratively improves the packing solution by resizing 
and redistributing orders between box pairs. It makes use of four primary classes (Main, Environment, Box, and Order) 
to represent and manipulate the packing solution. 

● Main Class: The entry point of the program. It reads data from three text files (large.txt, medium.txt, and short.txt) 
and initializes three lists (largelist, mediumlist, and smalllist) with the respective values from the files. It then creates 
an initial environment, finds the best packing solution using the bestSol method, updates the dimensions of the boxes 
in the environment, and finally computes and displays various statistics (number of orders in each box, dimensions of 
each box, sum of over-allocated space, and total volume). 

● Environment Class: Represents the packing environment, containing a list of boxes and their associated orders. This 
class contains methods for calculating total volume, updating the packing solution, and applying the local search-
based improvement procedure. 

● Box Class: Represents a single box with its dimensions, volume, and a list of orders. This class contains methods for 
setting box dimensions, updating the volume, and adjusting the box size to optimize the packing solution. 
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● Order Class: Represents a single order with its dimensions. This class has a constructor that initializes the order with 
the given dimensions. 

Main Class Functionalities: 
The Main class serves as the entry point of the program. It reads data from three text files (large.txt, medium.txt, and 
short.txt) and initializes three lists (largelist, mediumlist, and smalllist) containing the respective values from the files. 
It then generates the range of the size values with reducing and sorting the lists of each of the three size categories 
(large, medium, and small). 
 
The core functionality of the program involves creating an initial environment, finding the best packing solution using 
the bestSol method, which is working until the isImprovable attribute of environment become false, updating the 
dimensions of each two box pairs within the environment, and finally, after computing and displaying various statistics 
such as the number of orders in each box, dimensions of each box, and total volume it chooses best improvements 
among them and updates the environment accordingly and re-run the itself with the updated environment. 

Environment Class Functionalities: 

The Environment class represents the packing environment, which contains the list of boxes and their associated 
orders. The following methods are implemented within this class: 

● Environment(ArrayList<Box> list): Constructor that initializes the environment with the given list of boxes and 
calculates the total volume of packed orders. 

● changeImprovable(): Changes the is Improvable attribute to false. 

● updateVol(): Updates the total volume of the packed orders in the environment. 

● changeBox(Box b1, Box b2): Transfers orders from one box (b2) to another (b1) if the orders in box b2 can be fit 
into box b1. 

● improve(int b1, int b2): Attempts to improve the packing solution by resizing and redistributing orders between 
the box pairs b1 and b2. It iteratively explores different box size combinations and selects the one that minimizes 
the combined volume occupied by the orders in both boxes. 

Box Class Functionalities: 

The Box class represents a single box with its dimensions, volume, and a list of orders. The following methods are 
implemented within this class: 

● Box(double l, double m, double s): Constructor that initializes the box with the given dimensions and 
calculates its volume. 
● setEdges(double l, double m, double s): Sets the dimensions of the box and updates its volume. 
● updateVol(): Updates the volume of the box based on its dimensions. 
● decreaseSizeBox(): Adjusts the box dimensions according to the remaining orders with decreasing the sizes 
if it’s more than needed. 
 
Order Class Functionalities: 
The Order class represents a single order with its dimensions. The following methods are implemented within this 
class: 
● Order(double l, double m, double s): Constructor that initializes the order with the given dimensions. 

Our algorithm is designed to optimize the packing of orders into boxes and uses multiple methods to achieve its 
purpose. Let's examine the step-by-step explanation of the algorithm's methodologies. 
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The algorithm begins by populating the environment with an inventory of boxes and their respective positions. It also 
specifies the possible box resizing dimensions. These dimensions are separated for corresponding edges, which are 
largest edge, medium edge, shortest edge. 

The algorithm then enters a phase of iterative improvement. The algorithm attempts to resize and redistribute orders 
between box pairs to find potential improvements to the present packing solution. For each box pair, the algorithm 
attempts to resize the smaller box and transfer orders from the larger box to the smaller box, evaluating the packaging 
volume that results. This idea is came from creating an improving direction with increasing the size of smaller box to 
transfer the orders from larger box. Thus, each increase in the edge sizes of smaller box increases the total volume as 
much as the number of orders that were chosen to place in that box times the amount of increase in the volume of that 
box type. However, since we have increased the volume of smaller box, more amount of orders become able to transfer 
to that box from the larger box. So, because of transferring the orders to a smaller box, total volume decreases as much 
as number of orders which were transferred times the difference between the volume of larger box and the updated 
volume of smaller box. So that, if the increase in the volume of the smaller box times the number of orders that are 
placed in that box is less than the the number of orders which are transferred from larger box to smaller box times 
difference between the volume of the larger box and smaller box, then the total volume is decreased. 

In the algorithm, the expansion of the smaller box is performed greedily. The algorithm cycles through every 
conceivable combination of larger dimensions up to the size of the largest box. The algorithm selects the optimal 
combination based on the updated volume in both categories. 

After resizing the smaller box, the algorithm transfers orders between boxes according to their dimensions. If each 
order from the larger box can fit into the smaller resized box, the order is transferred and the larger box is emptied. 
This operation is carried out by the changeBox() method from the Environment class. 

After transferring the orders, the algorithm uses the decreaseSizeBox() method to reduce the dimensions of the larger 
box to the smallest size necessary to accommodate the remaining orders. 

The algorithm stores the packaging volumes in a TreeMap and chooses the pair of containers with the smallest 
combined volume. It then revises the box inventory to include these enhanced boxes and recalculates the total volume 
of packing. 

This procedure is repeated for each pair of boxes in the environment until no further packing solution enhancements 
are possible. 

The algorithm optimizes the packaging of orders in boxes by iteratively examining potential improvements, resizing 
the boxes, transferring orders between boxes, and recalculating the total packing volume. The algorithm is anticipated 
to substantially improve the packaging and shipping process's efficiency and effectiveness, resulting in cost savings 
and increased customer satisfaction. 

Pseudocode of our heuristic algorithm; 

1. Read input data from files: large.txt, medium.txt, short.txt 
2. Create empty lists for large, medium, and small orders 
3. Loop through each file and populate the corresponding order list with data from the file 
4. Sort the orders in each list by size 
5. If there will be N boxes with different sizes, create a list of boxes, with the first N-1 boxes initialized with size 0, 

and the last box having sizes equal to the upper bound of each of the edge categories(largest,medium,small). 
6. Create an initial environment object with the box list 
7. Loop until the environment is not improvable: a. For each pair of boxes, create a new environment object with 

the boxes swapped b. Try to improve the new environment by moving orders between boxes with adjusting box 
sizes and chooses the new sizes of that pair of boxes which creates minimum volume with that box pairs and the 
orders inside of these boxes c. Add the new environment to a map, with its volume as the key 

8. Set the environment to the one with the smallest volume in the map 
9. Update the volumes of the boxes in the environment. 
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10. If the total volume isn’t different from the beginning it sets isImprovable attribute of environment to false, loop 
stops and returns the latest environment. 

11. If the total volume has decreased, it continues to re-run the bestSol method with the updated environment until 
isImprovable becomes false. 

12. Output the total volume and details of each box, including the number of orders, largest edge, medium edge, and 
smallest edge 

4. Results 

In order to reach the solution we needed to search, learn and use various of new softwires and programs which will 
support us solving the linear model, non-linear model and algorithm. 

4.1 Excel Solver for Second Step: Non-Linear Model 
In order to solve the model we developed, shown in chapter 3.3.2., in excel solver, it was written in the excel sheet in 
the following format, respectively: 

1. The table with the index of 10 order - 3 boxes was prepared for the oij decision variable, which indicates which 
order will be in the box. Then the totals for each order row for constraints in the model are added to the Sum column. 

 

                                       Figure 2. Excel Solver Screenshot “oij” Decision Variable 

2. Decision variables representing the dimensions of the boxes Lj, Mj, Sj were added empty to fill after the solution. 
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                                  Figure 3. Excel Solver Screenshot “Lj, Mj, Sj” Decision Variables 

3. M(1-oij) values were created by using the previously written oij variables using constraints ... which compares 
order sizes with box sizes. 

 

Figure 4. Excel Solver Screenshot M(1-oij) for Constraints 

4. The order lengths are pasted into the gray table. The order length and the previously created variables Lj, Mj, Sj and 
M(1-oij)  were used to use the constraint for each length to be used in the excel solver. Lj  - li + M(1-oij)   ≥ 0, Mj - mi 

+ M(1-oij) ≥ 0, Sj - si + M(1-oij) ≥ 0.     
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Figure 5. Excel Solver Screenshot Order and Box Sizes comparison Constraints 

 

 

5. Finally, the objective function was created in three stages. First, 3 volumes were obtained by multiplying the box 
sizes. Then, the volumes obtained were multiplied by the oij variables on a box basis to calculate the volumes occupied 
by the order. Lastly all of them are summed to obtain the objective function. 

                          

      Figure 6. Excel Solver Screenshot Box Volumes                   Figure 7. Excel Solver Screenshot Total Volume  
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Figure 8. Excel Solver Screenshot Total Volume of Orders Chosen for Specific Box Types 

6. The model was written manually for the Excel solver screen. First of all, the cell where we wrote the objective 
function is selected for the 'Set Objective' cell. Then the oij and Lj, Mj, Sj variables are selected for the 'By Changing 
Variable Cells' cell. Lastly, the Lj  - li + M(1-oij)   ≥ 0, Mj - mi + M(1-oij) ≥ 0, Sj - si + M(1-oij) ≥ 0  constraints 
mentioned in the third step were added and corrected to be greater than zero; the Sum column mentioned in first step 
is set to 1; oij variables are set to binary. 
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Figure 9. Excel Solver Screenshot for Solving the Model 

7. Since the model we developed is a complex problem such as Mixed-integer non-linear programming (MINLP), we 
adjusted the Constraint Precision and Integer Optimality values to approach the optimal result in Excel Soler. We 
aimed to meet Constraints more precisely by lowering the Constraint Precision. Likewise, we increased the optimal 
sensitivity by lowering the Integer Optimality value and aimed to find solutions closer to the optimal. However, 
lowering both values increased the solution times individually. 

Proof: 
Firstly, when Constraint Precision: 0.1 Integer Optimality: 1 shown in Figure 10 is taken, In Figure 11 it is written 
that it solved in 184789436,354 seconds, but according to our manual measurement, it gave the answer in about 130 
seconds. Objective function value is 1.01627597064138E-12, which corresponds to 0.0000000000010162759706 and 
the given values were resolved in a short time. However, it was concluded that it did not give the correct result. 

                  

Figure 10. Excel Solver Screenshot Integer Optimality and Precision Values        

 

Figure 11. Excel Solver Screenshot Solver Results and Performance 

Then, to increase the affordability percentage of the constraints and to reach the optimal result, the values were 
adjusted as Constraint Precision: 0.0001 Integer Optimality: 0.001 as shown in the Figure 12 and solved again. 
According to our manual measurement, Solver solved the model in about 633 seconds with the new values, but found 
the objective function value of 13617.3672542409. It has been concluded that with smaller constraint precision and 
integer optimality values, it gives more optimal answers in a longer time. 
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Figure 12. Excel Solver Screenshot Lower Integer Optimality and Precision Values    

                                  

 

   Figure 13. Excel Solver Screenshot Solver Results and Performance with Lower Integer Optimality and Precision 
Values 

4.1.2 Excel Solver Results  
Constraint Precision 0,0001 and Integer Optimality 0,001 
Chapter 4.1 constraint precision 0.0001 and integer optimality 0.0001 in step 7 were run on 10 selected data sets, but 
it was concluded that it did not get optimal results every time. 
The proof that Environment 0 selected among them does not give the optimal result is as follows: 

According to the result in Figure 14, as you can see from the Oij table, the value of O73 is given as 1, that is, the 7th 
Order is in the 3rd box. However, the longest side of the 7th Order is 33, while the longest side of the 3rd Box is 30. 
This shows that the 7th Order does not fit in the 3rd Box. The result leads to the conclusion that the result of excel 
Solver is not optimal and constraints are not met. 
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Figure 14. Excel Solver Screenshot a Part of the Solution of the Solver 

 

The 5 randomly selected environment results tested are shared in the Table 1:  

 

    Table 1. Excel Solver Results of Different Problem Instances 

Environments Excel Solver Results 

Env0 20250 

Env1 37678 

Env2 13782 

Env3 15955 

Env4 29385 

                                                

As you can see, the objective function results of the excel solver do not meet the constraints while 5 Environments 
run. For example, in Environment 2, the smallest length of the 3rd Box is 0.  
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As a result, the values obtained with Constraint Precision 0,0001 and Integer Optimality 0,001 values did not give the 
optimal answer, so the values were changed. New results were obtained by arranging 15 different environments, 
including the 5 environments solved above, as Constraint Precision 0,000001 and Integer Optimality 0,0001 which is 
shown in Figure 15 .  

 

Figure 15. Excel Solver Screenshot Lower Integer Optimality and Precision Values 2 

 

Arranged Excel Solver results will be explained in Final Result Section by comparing them with Java and Neos results.  

4.2 Neos and Gams for Second Step:  Non-Linear Model 
To solve the non-linear model, Gams Studio was first downloaded to our computer and an academic license was 
obtained to use the program. However, since the license cannot solve small size data, we decided to use Neos' online 
solvers. We uploaded the Gams code file we have to the Baron solver of Neos, which solves the mixed integer non-
linear program, and obtained the answers from Neos. However, here too, the big problems could not be solved because 
it exceeded the time limit while solving it. Only small size problems could be solved from Neos. We also solved the 
same size problems from Excel Solver and compared the results. Then, we developed and used a heuristic algorithm, 
since the problem at hand was larger in size. 
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Figure 16. Neos Solver Result Screenshot 

 

 

 

 

 

 

Figure 17. Gams Solver Screenshot 
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4.3 Java for Algorithm 
To solve the algorithm, we needed a coding environment that we were familiar with before. For this, we preferred to 
use Java. We developed a heuristic algorithm in Java and used this algorithm for large size problems. Although it 
gives much faster results than other solvers, some problems in small size have deviations from the optimal result. In 
our report, we took the average of the optimality gaps we detected in the algorithm and added them. 

You can see the output of the Algorithm with 68 orders and 10 boxes which are obtained from the data given by Xxx 
Logistics. 

Table 2. Algorithm Solution of 68 Orders 10 Boxes 

Ordercount: 7  Largest Edge: 37.0 Medium Edge: 28.0 Shortest Edge: 3.0 Box ID: b0 

Ordercount: 10 Largest Edge: 20.0 Medium Edge: 17.0 Shortest Edge: 8.0 Box ID: b1 

Ordercount: 1 Largest Edge: 40.0 Medium Edge: 35.0 Shortest Edge: 1.0 Box ID: b2 

Ordercount: 5 Largest Edge: 38.0 Medium Edge: 28.0 Shortest Edge: 5.0 Box ID: b3 

Ordercount: 1 Largest Edge: 39.0 Medium Edge: 30.0 Shortest Edge: 13.0 Box ID: b4 

Ordercount: 21 Largest Edge: 20.0 Medium Edge: 9.0 Shortest Edge: 5.0 Box ID: b5 

Ordercount: 1 Largest Edge: 21.0 Medium Edge: 19.0 Shortest Edge: 18.0 Box ID: b6 

Ordercount: 17 Largest Edge: 35.0 Medium Edge: 17.0 Shortest Edge: 5.0 Box ID: b7 

Ordercount: 4 Largest Edge: 35.0 Medium Edge: 27.0 Shortest Edge: 7.0  Box ID: b8 

Ordercount: 1 Largest Edge: 48.0 Medium Edge: 40.0 Shortest Edge: 20.0 Box ID: b9 
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233683.0 Total Volume 

 

 

Figure 18. Algorithm Result with 68 Orders 10 Boxes 

 

In addition, below you can see the run-time values of the different size of randomly generated problems. In our mixed-
integer nonlinear model, problem sizes are depending on the amount of orders and the number of available boxes with 
different sizes. In a sample problem with N-orders and k-box types, our model consists of N*k binary variables and 
3*k continuous variables. 

• Execution time: 673.1554326 seconds 1000 orders 100 boxes (problem size of 100000 binary variables and 
300 continuous variables) 

• Execution time: 352.4037074 seconds 1000 orders 68 boxes (problem size of 68000 binary variables and 204 
continuous variables) 

• Execution time: 55.1165279 seconds 1000 orders 30 boxes (problem size of 30000 binary variables and 90 
continuous variables) 

• Execution time: 22.3729194 seconds 1000 orders 20 boxes (problem size of 20000 binary variables and 60 
continuous variables) 

• Execution time: 12.811688 seconds 1000 orders 15 boxes (solved 3 times and the mean is written)  (problem 
size of 15000 binary variables and 45 continuous variables) 

• Execution time: 6.79053567 seconds 1000 orders 10 boxes (solved 3 times and the mean is written) (problem 
size of 10000 binary variables and 30 continuous variables) 

• Execution time: 8.15922283 seconds 200 orders 20 boxes (solved 3 times and the mean is written) (problem 
size of 4000 binary variables and 60 continuous variables) 

• Execution time: 3.96086227 seconds 200 orders 15 boxes (solved 3 times and the mean is written) (problem 
size of 3000 binary variables and 45 continuous variables) 

• Execution time: 1.81056907 seconds 200 orders 10 boxes (solved 3 times and the mean is written) (problem 
size of 2000 binary variables and 30 continuous variables) 

• Execution time: 1.33370097 seconds 100 orders 10 boxes (solved 3 times and the mean is written) (problem 
size of 1000 binary variables and 30 continuous variables) 

• Execution time: 246.3202423 seconds 68 orders 68 boxes (problem size of 4624 
• binary variables and 204 continuous variables) 
• Execution time: 26.2029533 seconds 68 orders 30 boxes (problem size of 2040 
• binary variables and 90 continuous variables) 
• Execution time: 7.0039728 seconds 68 orders 20 boxes (problem size of 1360 
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• binary variables and 60 continuous variables) 
• Execution time: 1.1705193 seconds 68 orders 10 boxes (problem size of 680 
• binary variables and 30 continuous variables) 
• Execution time: 0.4228647 seconds 68 orders 5 boxes (problem size of 300 
• binary variables and 15 continuous variables) 
• Execution time: 0.3488401 seconds 34 orders 10 boxes (problem size of 340 
• binary variables and 30 continuous variables) 
• Execution time: 0.1090495 seconds 34 orders 5 boxes (problem size of 170 
• binary variables and 15 continuous variables) 
• Execution time: 0.0746078 seconds 17 orders 5 boxes (problem size of 85 
• binary variables and 15 continuous variables) 
• Execution time: 0.0291601 seconds 17 orders 3 boxes (problem size of 51 
• binary variables and 9 continuous variables) 
• Execution time:0.0288277 seconds 15 orders 3 boxes (problem size of 45 
• binary variables and 9 continuous variables) 
• Execution time: 0.0187489 seconds 10 orders 3 boxes (problem size of 30 
• binary variables and 9 continuous variables) 
• Execution time: 0.0386097 seconds 20 orders 3 boxes (problem size of 60 
• binary variables and 9 continuous variables) 
• Execution time: 0.0581197 seconds 20 orders 4 boxes (problem size of 80 
• binary variables and 12 continuous variables) 
• Execution time: 0.0954053 seconds 20 orders 5 boxes (problem size of 100 
• binary variables and 15 continuous variables) 
• Execution time: 0.0697145 seconds 15 orders 5 boxes (problem size of 75 
• binary variables and 15 continuous variables) 
• Execution time: 0.0483631 seconds 15 orders 4 boxes (problem size of 60 
• binary variables and 12 continuous variables) 
• Execution time: 0.0326716 seconds 10 orders 4 boxes (problem size of 40 
• binary variables and 12 continuous variables) 
• Execution time: 0.1048102 seconds 30 orders 5 boxes (problem size of 150 
• binary variables and 15 continuous variables) 
• Execution time: 0.0537614 seconds 10 orders 5 boxes (problem size of 50 
• binary variables and 15 continuous variables) 
• Execution time: 0.0744879 seconds 30 orders 4 boxes (problem size of 120 
• binary variables and 12 continuous variables) 
• Execution time: 0.0458658 seconds 30 orders 3 boxes (problem size of 90 
• binary variables and 9 continuous variables) 

4.4 Gurobi for First Step: Linear Model 
To solve the algorithm, we needed a coding environment that we were familiar with before. Since this model is a 
linear model, we preferred to use the Gurobi library to solve the model. By solving the first stage of the problem from 
Gurobi, we determined the dimensions of the rectangular prisms with the minimum volume that they can enter 
separately for each order. In our second step, we used our results in the form of rectangular prisms as the measurements 
of the orders, which we assumed to be in the form of the same rectangular prism. 
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4.5 Final Result 

Comparison of the Java, Neos and Excel Solver: 

The results of Java, Neos and Excel Solver are shown in Table 3 as follows : 

Table 3. Result Comparison of Problems with 10 Orders 3 Boxes 

 Java Results Neos Solution 
Results 

Excel Solver Results 
(Taking the right 
ones) 

Data 1 20902 20901,9466 20902 

Data 2 30940 30940 39582 

Data 3 40970 40970 48690 

Data 4 37869 37869 37869 

Data 5 31590 30029.9398 34438 

Data 6 71139 71139 72840 

Data 7 25294 25294 26096 

Data 8 30099,999999998166 26412 26676 

Data 9 33642 33642 38192 
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Data 10 28905 28518 30458 

Data 11 57266 54420 66692,72 

Data 12  27625 27624.94 27625 

Data 13 27980 27979,9251 27980 

Data 14 27625 27624,94 27625 

Data 15 14598 14598 15108 

The 15 Environments which we run in Java, Neos, and Excel Solver gave answers that are not exactly optimal. We 
see from the results that Excel Solver in Table 3 gave the same or greater than Java and Neos results. 

Since it is not certain that we achieved an optimal result in all 3 Solver methods we used, we wrote the sub-optimality 
according to the Neos or Excel value that gave the lowest result. So the real optimality gap will be greater than or 
equal to the optimality gap that we have found with the formula below. The formula is shown in Figure 19 as follows:  

   Figure 19. Optimality Gap Calculation of Algorithm 
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According to formula shown in Figure 19 , The comparison results are shown in Table 4 as follows: 

 
Table 4. Optimality Gaps 

 

 Comparison 

Data 1 0,0% 
 Data 2 0,0% 
 Data 3 0,0% 
 Data 4  0,0% 
 Data 5 5,2% 
 Data 6 0,0% 
 Data 7 0,0% 
 Data 8 14,0% 
 Data 9 0,0% 
 Data 10 1,4% 
 Data 11 5,2% 
 Data 12 0,0% 
 Data 13 0,0% 
 Data 14 0,0% 
 Data 15 0,0% 

 
4.6 Verification and Validation 
To guarantee the reliability and accuracy of a mathematical model, verification and validation are essential processes that must be 
taken. The equations of the model have been included into the system in a manner that is accurate and correct. The assumptions that 
are used in the model are rational and appropriate for the problem that is being modeled. It is reliable and gives outcomes that are 
never inconsistent. We tried to simplify things by linearizing the model, and once we did so, we were able to solve the model using 
the data we had. While this was happening, we tested it out on a few smaller orders and found that it produced accurate results. 
To ensure the accuracy and robustness of our algorithm, we conducted multiple experiments with various input datasets, including 
both synthetic and real-world problems with varying order counts and bin sizes. These tests were designed to validate the algorithm's 
ability to manage a variety of problem sizes and characteristics, as well as its packaging and computational efficiency. 
Using NEOS Solver and Excel Solver, the results of the algorithm were compared to those of a two-stage mixed integer nonlinear 
model. Particularly for 10-3 dimensional (30 binary variables, 9 continuous variables) problem examples, our algorithm provided 
exact solutions that matched both NEOS Solver and Excel Solver's results. This demonstrates that our algorithm is effective at locating 
optimal solutions for these specific problem scales. 
 
For other problem sizes, our algorithm's performance exhibited a relatively narrow optimality range, with the difference between the 
obtained solutions and those of NEOS Solver and Excel Solver usually very close. Based on our 15 sample problems which contains 
10 orders and 3 box we have obtained 11 solutions with approximately %0,0001 or less optimality gap, 1 solution with %1.4 
optimality gap, 2 solutions with %5.2 optimality gap and one solution with %14 optimality gap and it can also solves problems as 
large as a mixed-integer nonlinear model that contains 100000 binary variables and 100 continuous variables. This demonstrates that 
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our algorithm can usually produce near-optimal solutions for a wide range of problem instances while maintaining a reasonable level 
of computational efficiency. 
 
*In addition, our algorithm proved to be an accurate method for one-dimensional and two-dimensional problems and provided optimal 
solutions for examples of such problems. This demonstrates the adaptability and dependability of our algorithm when dealing with 
different dimensions of the Box Packing Problem. 
Overall, the verification and validation process demonstrated that our algorithm effectively reduces the total number of crates used 
for order packaging while maintaining efficient search space exploration. Our algorithm contributes to more efficient and 
environmentally responsible supply chain practices by minimizing the total volume of cartons used.  
 
 

5. Implementation 
There is no requirement for additional data or resources for deployment. We have enough information that our 
organization has provided to us. We can choose from orders of the cardboard type. For each order, a new sort of 
cardboard will be used. Because there are just a few different kinds of cardboard, we built this model to determine if 
the products in an order will fit in the cardboard that will be utilized in that particular order. The ideal answer will 
then be obtained when we run this model.  
After the greedy algorithm we developed, we created a solution that will overcome the problem we want to solve. Our 
solution can be easily adapted to daily life and gives visible results. As we mentioned earlier, our main focus in this 
semester is to simplify the model we developed in IE401 and reduce computational complexity. In this direction, we 
created a two-stage model in which we developed our own algorithm to satisfy the needs of the company. Xxx 
company can run the two-stage method we have developed by putting the data it wants into it. In the first stage, the 
rectangular box in which the items will be located is minimized for the second stage and turns it into an input. The 
company can solve the problem by reaching the optimal number of boxes specified at the end of the second stage. Our 
solution will ensure that the problem reaches a conclusion without requiring any resources when the necessary data is 
provided. 
Our method computes the results with the expected speed and ease in accordance with the targeted and planned 
situation. The problem that may be encountered during the application of this method is that in the presence of very 
large and complex data, it may deviate from the optimal result. In smaller sizes, we observed that the optimality gap 
was approximately 1.72% on average when we selected 10 random orders and ran them in 3 boxes. 
 
6. Conclusion 
 
6.1 Summary of the Work Done 
As previously indicated, the project's main focus was on issues with suitable packaging for online sales. A literature 
review, investigation, and in-depth handling and analysis of the problem were all done throughout the problem's 
solution phase. According to the principle of having the least total volume, we produced the orders for this project as 
rectangular prisms. Along with the larger challenges, we also used the model we developed for it to smaller issues. 
Input data, iterative improvement, greedy resizing, box resizing, order transfer, and optimization techniques are 
planned, and a heuristics model built on top of the optimized box packing algorithm is created and programmed in 
Java. The problem is thoroughly evaluated.  
 
6.2 Conclusion 
To determine the packaging orders into boxes, we designed the optimum box packing algorithm and used its output 
data. We employed iterative improvement, greedy search, and local search to create the optimized box packing 
algorithm. The goal of performing these searches is to identify the order packaging into boxes that comes the closest 
to being ideal. We sought to reduce the overall volume of orders that would be placed in a constrained number of 
boxes of various sizes. To tackle the issue, we examined the supplied data, and we programmed the algorithm in Java. 
To sum up, after collecting all the necessary data and information from the company and visiting the company, the 
problems were identified and made organized and resolved by using the necessary assumptions and creating the 
necessary algorithm. 
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