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Abstract 

Autoregressive integrated moving average (ARIMA) models have been proven successful in application and 
simple in comprehension and consequently, they have been widely applied to different fields in forecasting. The 
order of an ARIMA model is determined subjectively based on the judgment of the experts where, the 
autocorrelation function (ACF) and partial autocorrelation function (PACF) plots for a given time series are used 
to determine the potential orders of the model. In this paper, a new heuristic algorithm is proposed for determining 
the order of ARIMA models. The proposed method determines the order of the ARIMA models, objectively, 
based on the Mean Squared Error (MSE), Akaike Information Criterion (AIC), and Schwarz Bayesian Information 
Criterion (BIC). In this regard, the order of the models is determined objectively and as a result, the forecasting 
results would be more accurate. The performance of the proposed method is evaluated based on a real-world 
dataset of global temperature anomaly where, the results show that the proposed method performs accurately and 
efficiently in determining the order of ARIMA models. 
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1. Introduction
Forecasting plays a crucial role in many fields including finance, business, environmental sciences, medicine and 
so on. Many different methods such as time series analysis, regression analysis and artificial intelligence can be 
implemented in forecasting. The chosen method mainly depends on the purpose of the forecasting as well as the 
accuracy of each method. Time series data are among the most valuable data in the forecasting field. Time series 
data refers to the chronological sequence of observations on the variable of interest taken at equally spaced points 
in time. In recent years, different models have been developed to analyze the time series data. These models have 
different purposes and accuracies including autoregressive integrated moving average (ARIMA) models, 
regression models, exponential smoothing models, and Holt-Winter models (Gooijer & Hyndman 2006). ARIMA 
models are one of the most popular and widely used statistical methods for forecasting time-series data. The 
ARIMA models characterize the existing trend in a sequence and extrapolate the trend to anticipate the future 
(Montgomery et al. 2015). 

In spite of the wide application of ARIMA models, difficulty of constructing an adequate model based on the 
information provided by finite number of observations remains. Difficulty arises in different stages of constructing 
the model. It should be noted that building an ARIMA model consist of three stages including model identification, 
parameter estimation, and diagnostic checking and selection between competing models. There are several means 
for determining the potential order of ARIMA models. In this process, the order of ARIMA models is determined 
commonly based on the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. In other 
words, the researcher investigates the ACF and PACF plots and suggests some potential orders and candidate 
models. It should be noted that the subjectivity in the first step of model building process can result in more 
iterations of other steps. In addition, this problem would be intensified when the number of observations is less 
than required number of observations. 
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In most of the research efforts performed in the literature, ACF and PACF plots are used to identify the potential 
models. However, there are many pitfalls including the subjectivity of this approach. It is quite clear that the most 
difficult part of ARIMA model building is the initial model selection stage. The selection of models can be time-
consuming if a large number of time series are to be analyzed. One way of looking at the issue of model selection, 
which does result in a definite answer, is to use automatic criteria to estimate the order of models (Newbold, 
1983). Liu (1989) proposed a filtering method for identifying seasonal ARIMA models when traditional methods, 
such as autocorrelation function (ACF) and partial autocorrelation function (PACF) methods, do not provide a 
clear-cut model. Ozaki (1977) used minimum Akaike’s Information Criterion estimation (MAICE) to address the 
difficulty in ARIMA model determination where, MAICE procedure selects a model whose structure and 
associated parameters produce a minimum AIC. 
 
 Hoglund and Ostermark (1991) introduced the cartesian ARIMA (CARIMA) search algorithm. They developed 
an automatic procedure for modeling time series in the spirit of ARIMA methodology. Hyndman and Khandakar 
(2008) described the implementation of two automatic univariate forecasting methods in the forecast package for 
R. Rahkmawti et al. (2019) used TSClust approach to forecast inflation and evaluated accuracy in ARIMA model 
identification based on model selection criteria. They compared AIC, BIC, AICc (AIC corrected), RMSE and 
MAPE, and concluded that BIC is the best model selection criteria because it leads to the highest average accuracy. 
Awe et al. (2020) proposed an alternative algorithm based on the principles of Cartesian products of sets in 
mathematics for ARIMA model selection. In this paper, a heuristic approach is proposed for identifying the orders 
of ARIMA models where the subjectivity of the decision-making process by the researcher is eliminated, and 
since it is an automated process, the order identification is faster than traditional approaches.  
 
The paper is organized as follows. Section 2 describes the ARIMA methodology in details. The proposed approach 
is described in Section 3. Section 4 provides a numerical example on global temperature anomaly and discusses 
the result of the proposed method which is used to forecast the given data set. Finally, section 5 presents conclusion 
and recommendations for future research. 
 
2. ARIMA Model Building 
2.1.  Autoregressive integrated moving average models 
ARIMA models first were introduced by Statisticians George Box and Gwilym Jenkins in 1970’s. Hence, they 
are also known as Box-Jenkins models. ARIMA models assume that the current observation is a linear function 
of past values and errors. The acronym ARIMA describes the key aspects of the model. In brief, they are: 
• Autoregressive (AR). A model that relies on the dependent relationship between a given observation and a 

given number of lagged observations. 
• Integrated (I). The process of moving raw observations through differencing or transformation in order to 

make the time series stationary. 
• Moving average (MA). A model which exploits the relationship between an observation and the residual error 

from a moving average model that is applied to lagged observations. 
 
All of these components are explicitly mentioned in the model as parameters. These classes of models are denoted 
as ARIMA (p, d, q), where p is referred to the number of autoregressive terms, d is referred to the number of 
differencing needed for stationarity, and q is referred to the number of moving average terms. In terms of Y the 
general forecasting equation is: 
yt = δ + ∑ φi

p
i=1 yt−i + εt − ∑ θjεt−j

q
j=1                     (1) 

where t = 1, 2, 3, … , n denotes the time values, n is the total number of observations in the time series, yt denotes 
the value of the time series variable y at time t, φi denotes the autoregressive parameters, θj denotes the moving 
average parameters, and εt represents the error term at time t. 
ARIMA methodology consists of three iterative steps including model identification, parameter estimation, and 
selection between competing models (Mudelsee 2019). 
Before identifying the order of the model, one must reproduce the times series to achieve a stationary time series. 
Stationarity is a crucial condition in ARIMA modeling, and is satisfied when statistical characteristics such as 
mean and autocorrelation of observations are almost constant over time. To reproduce a stationary time series 
different method such as differencing, transformation and a wide range of smoothing methods can be applied 
(Montgomery et al., 2015). The objective of these operations is to produce a set of stationary residuals. 
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2.1.1. Model Identification 
To determine an ARIMA model, three items should be checked: 1) A time series plot of the data to look for 
possible trend, seasonality, constant variance or non-constant variance, 2) ACF plot to determine the order of MA 
model, and 3) PACF plot to determine the order of AR model. ACF describes the dependence structure of a 
stationary time series. This function determines the correlation between yt and yt−k. On the other hand, PACF 
determines the correlation between yt and yt−k after adjusting for the correlations between the two observations. 
It is common for time series observations to be correlated with observations at previous time points. 
This step of the model identification is the trickiest part because the order will not be easy to be identified. In 
particular, the order identification of a mixed ARIMA model by observing the behavior of autocorrelations and 
partial autocorrelations are difficult and impractical. The ACF of an AR(1) process, for example, follows an 
exponential curve, whereas the ACF of a MA(1) process shows a single peak at k = 1. Furthermore, the potential 
candidates are highly subjective and accordingly, different experts may recognize different candidates. 
Furthermore, there will be several competing models to be taken into account. Basically, the expert has to guess 
and continue to next steps. 
 
2.1.2. Parameter Estimation 
After determining the potential models, parameters for each model should be estimated. There are several methods 
for estimating the parameters including least square method, maximum likelihood (ML), conditional least square 
(CLS), and back casting method (BC) which is also called back forecasting. However, many available software 
packages implement one or more of the introduced approximation methods (Newbold et al. 1994). 
 
2.1.3. Selecting Between Competing Models 
As stated above, in most of the cases, more than one model is identified as potential models for the same data set. 
The final model is determined by evaluating and comparing the performance of models based on some selection 
criteria. This step will probably require some type of cross-validation procedure. In this regard, the performance 
of each model is evaluated from two perspectives, i) how model fits the historical data and ii) how it is successful 
in forecasting future observations. After comparing the performance of models based on training data, the 
forecasting accuracy should be evaluated based on test data. 
 
The Akaike’s information criterion (AIC) (Akaike  1974), Schwarz Bayesian information criterion (BIC) 
(Schwarz 1978), and mean square error (MSE) are recommended for evaluating the goodness of fit for potential 
candidates (Jayawardena, 2020). These criteria are defined as: 
AIC = ln �∑ et

2T
t=1
T

� + 2p
T

                                 (2) 
BIC = ln �∑ et

2T
t=1
T

� + p ln(T)
T

         (3) 
MSE = 1

n
∑ [et(1)]2n
t=1                      (4) 

 
where et(1) = yt − y�t(t − 1) is called one-step-ahead forecast error. The AIC and BIC penalize the sum of 
squared residuals for including additional parameters in the model. MSE measures the variability in forecast 
errors. A model with small values of AIC, BIC, and MSE is considered as a good model (Montgomery et al., 
2015). It should be also noted that among different models which represent the data equally well, one chooses the 
most parsimonious one. In other words, due to principle of parsimony, the model which contains the least number 
of parameters is chosen. 
 
Note that, the adequacy of the model is checked by checking the residuals. In fact, diagnostic testing is conducted 
to assess whether there are significant autocorrelations among the residuals. If the appropriate model has been 
chosen, there will be zero autocorrelation in the residuals (Pierce and Box  1970). If the model does not fit the 
data adequately, one must go back to previous steps and choose a better model. 
 
3. Proposed Method 
As discussed in the previous section, in the classical approach, the competing models are selected based on ACF 
and PACF plots that is quite subjective. In this process, overlooking an optimal model due to human error is 
common. In other words, it is possible that the best model being overlooked because of poor judgment. 
Furthermore, when there are many time series to be analyzed, this can cause a difficulty and exhaustion.  
Accordingly, a new heuristic algorithm is proposed in this paper based on selection criteria addressed in section 
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2. The proposed algorithm represents an objective perspective on the matter. Instead of observational judgment 
to determine the potential models, the model is identified based on some selection criteria. In conventional 
ARIMA modeling, the potential models are chosen and then selection criteria are calculated for each of the 
candidates in order to find the best possible model. However, in the proposed method, the selection criteria are 
calculated for all combinations of (p, q). The proposed algorithm consists of three simple steps. In the first step, 
an upper bound on p and q must be determined. This upper bound should be chosen in such a way that all the 
potential ARIMA models are considered. In the second step, the AIC and BIC are calculated for all possible 
combinations of (p, q) whitin the upper bound. Considering the superiority of small values of AIC and BIC, the 
smallest calculated amounts for AIC and BIC is called (p1, q1) and (p2, q2), respectively, and accordingly, 
ARIMA(p1, d, q1) and ARIMA (p2, d, q2) are considered the two final models from which the final model is 
chosen. Finally, MSE is calculated for both candidates and the model with the smallest value of MSE is chosen 
and the related (p, q) is determined as the final order of the ARIMA model. After fitting the chosen model to the 
given data, residuls must be checked to see whether or not there are specific patterns. In other words, residulas 
should be checked if they behave like white noise. It should be noted that, the proposed heuristic order selection 
algorithm is designed to analyze and forecast nonseasonal data sets. The proposed algorithm does not search for 
the seasonal order of seasonal ARIMA (SARIMA) models where this subject is suggested for future research. The 
proposed heuristic algorithm is represented in Algorithm 1. 
 

Algorithm1. The proposed heuristic algorithm 
 

The proposed algorithm to determine the orders 𝐏𝐏 and 𝐐𝐐: 
Step 1: Specify an upper bound on orders 𝐩𝐩 and 𝐪𝐪 
Step 2: Based on three criteria (AIC, BIC, and MSE): 
For 𝐩𝐩:𝟏𝟏 𝐭𝐭𝐭𝐭 𝐏𝐏 Do 

For 𝐪𝐪:𝟏𝟏 𝐭𝐭𝐭𝐭 𝐐𝐐 Do 
Calculate BIC; 
Determine 𝐩𝐩 and 𝐪𝐪 based on BIC; 
(𝐩𝐩𝟏𝟏,𝐪𝐪𝟏𝟏) ← (𝐩𝐩,𝐪𝐪); 
Calculate AIC; 
Determine 𝐩𝐩 and 𝐪𝐪 based on AIC; 
(𝐩𝐩𝟐𝟐,𝐪𝐪𝟐𝟐) ← (𝐩𝐩,𝐪𝐪); 

End For 
End For 
Step 3: Choose between (𝐩𝐩𝟏𝟏,𝐪𝐪𝟏𝟏) and (𝐩𝐩𝟐𝟐,𝐪𝐪𝟐𝟐) based on MSE; 
(𝐏𝐏,𝐐𝐐) ← (𝐩𝐩,𝐪𝐪). 

 
4. A Case Study 
In this section, the performance of the proposed algorithm is evaluated based on a case study. In the past decade, 
global warming has gained a lot of attention. The researchers and world leaders are both concerned with the effects 
of this universal phenomenon. As an important key factor in climate impact, estimates of air temperatures have 
been investigated in many fields including agricultural, ecological, environmental, and industrial fields (Cifuentes 
et al., 2020; Ye et al., 2013; Mudelsee  2019). 
 
The medians of temperature anomaly from 1850 to 2018 have been used in this paper where the related 
observations are shown in Figure 1. As discussed previously, the first step is to apply differencing on data to 
obtain stationary time series. The observations after first-order differencing are shown in Figure 2 where the results 
show stationarity of the time series. 
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Figure 1. The global temperature anomaly time series 

Figure 2. The global temperature anomaly differenced time series 

Then, the proposed algorithm is applied on the stationary time series where the final results are shown in Table 1. 
The results are the same as the results of applying the classic approach using ACF and PACF plots. After 
comparing the competing models, the optimal model would be ARIMA (3,1,2). Also, the criteria for the optimal 
model are shown in Table 2. 

Table 1. Results of the proposed algorithm 

Order p q 
3 2 

Table 2. The criteria for optimal model 

Criteria for optimal model 
AIC BIC MSE 

-281.478 -265.847 0.0120 

Finally, the hybrid model proposed by Asadi et al. (2012) is used to estimate the parameters of the model. An in-
depth discussion of this method can be found in Asadi et al. (2012). The results are shown in Table 3 and the 
related model is shown in Equation (5). 
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Table 3. Estimated parameters 

Estimated parameter 
AR (1) 0.366163 
AR (2) -0.040087
AR (3) -0.012429
MA (1) 0.227594
MA (2) 0.680866

Constant 0.002758

yt = 0.366163yt−1 − 0.040087yt−2 − 0.012429yt−3 − 0.227594εt−1 − 0.688666εt−2 + 0.002758 (5) 
Following the classical approach for order determination of ARIMA models, with regard to the ACF and PACF 
plots which are shown in Figure 3, different models are nominated. The parameters of the potential models are 
estimated by Minitab software. Final model is chosen based on the selection criteria. It can be easily shown that, 
following the classic approach, the same results are obtained. 

Figure 3. ACF and PACF plot for differenced data set

5. Conclusions
To determine the order of ARIMA model effectively, a large number of historical data is often required. 
Furthermore, order estimation based on ACF and PACF plots often results in finding many potential models. 
These competing models can be biased. In this paper, a new heuristic algorithm has been introduced to determine 
the order of ARIMA models. The proposed method determines the order of the ARIMA model based on statistical 
selection criteria MSE, AIC and BIC. Also, the proposed method creates more objective results. The proposed 
algorithm is applied on a case study related to temperature anomaly where the results are promising. It indicates 
that the proposed method is efficient for determining the order of the ARIMA model. 
Future research should consider the potential effects of seasonality more carefully. For example, SARIMA models 
can be taken into account. In addition, parsimoniousness can be addressed in the proposed algorithm. 
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