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Abstract 

The high volume of daily e-commerce shipments in major urban areas require today’s technology of drones for last-
mile delivery (LMD) of parcels. The traditional method of delivering parcels using trucks is time-consuming due to 
traffic congestion, impeding their timely delivery. On the other hand, drones can avoid traffic congestion by flying 
over road networks. However, drones have a limited flight endurance due to their battery capacity constraints. At the 
same time, trucks possess long-haul capabilities. Hence, for achieving an efficient LMD, both trucks and drones should 
be integrated to offset each other’s disadvantages. This paper addresses one such truck-drone based last-mile delivery 
(TD-LMD) problem. There are plenty of studies which have investigated TD-LMD problem with different 
configurations. For our study, we examine the TD-LMD problems involving single depot, single truck and multiple 
drones (SD-ST-MD) configuration. In the literature, various researchers have used mathematical models and heuristics 
to address this problem. In our study, we consider one Mixed-Integer Linear Programming (MILP) model given in the 
existing literature for the TD-LMD problem with SD-ST-MD configuration and relax one of their assumptions to give 
it a new dimension. In the process of extending the MILP model, we also introduce the CO2 emission cost along with 
the economic cost for optimizing the TD-LMD problem. Accordingly, the workability of the MILP model is tested 
using a tiny numerical example and solved through developing a code in the Python-MILP solver module. Further, 
the computational complexity is analyzed by increasing the number of nodes in the SD-ST-MD based TD-LMD 
problem. 

Keywords 
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1. Introduction
In a last-mile delivery (LMD) system, the determination of an effective delivery path plays a pivotal role (Chang and 
Lee 2018). The usage of drones in an LMD can increase the overall efficiency of the system. This is because, drones 
can lead to a significant reduction in labour costs. Additionally, drones are faster than traditional vehicles like trucks, 
hence are used for delivering parcels. Moreso, they can fly over road networks to avoid traffic problems without any 
human intervention (Tinic et al. 2023). Despite these advantages, the utilization of drones in an LMD comes with a 
few drawbacks. Due to the physical characteristics of drones, they are subject to certain limitations. Firstly, their flight 
endurance is constrained by their battery capacity since they solely rely on battery power. Additionally, most delivery 
drones have a limited payload capacity, in terms of weight and size, often allowing for the transportation of only a 
single parcel at a time. In contrast, traditional vehicles like trucks possess the ability to transport multiple parcels 
simultaneously without being concerned about the individual parcel weight and size. Additionally, trucks possess long 
range travel capabilities, enabling them to visit multiple customers before returning to the depot for efficient deliveries. 
This brings the need to integrate both the trucks and drones for faster deliveries (Wohlsen  2014).  
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For achieving an efficient LMD structure, both trucks and drones should be synchronized so that each one’s 
disadvantage will be nullified by other’s advantage (Vasquez et al. 2021). By employing a combination of delivery 
trucks and drones, the endurance limitation of drones can be mitigated (Agatz et al. 2018). This approach also enables 
drones to be launched from nearby locations, near the customers, thereby reducing the overall distance and extending 
the effective range of the drones. Thus, combining drones with trucks results in efficient, faster, and in-time delivery 
which leads to more customer satisfaction. With this premise, this study addresses the truck-drone based LMD 
problem (TD – LMD). 

The remainder of this paper is organized as follows. In Section 2, we discuss a review of the existing literature on the 
TD-LMD problem. Section 3 discusses the problem description of the TD-LMD, considered in this study, briefly. In 
Section 4, we present a MILP model and the workability of the same is demonstrated in Section 5. Section 6 discusses 
the computational complexity of the proposed MILP model. Finally, we conclude the paper in the last section.  
 
2. Literature Review 
The problem of synchronizing drones with traditional delivery trucks was first introduced by Murray and Chu (2015). 
The authors studied two types of problems namely, the flying sidekick travelling salesman problem (FS-TSP) and the 
parallel drone scheduling TSP (PDS-TSP) that aimed to minimize the total travel time of the truck and the drone. For 
each problem, the authors proposed a MILP model and heuristics respectively. Along the same lines, Agatz et al. 
(2018) modified the original FS-TSP, as introduced by Murray and Chu (2015) and renamed it as “Traveling Salesman 
Problem with Drone” (TSP-D). This problem allowed the truck to wait at the launch location for the return of drones. 
The authors proposed an integer programming model with an objective of minimizing the completion time. They also 
proposed efficient heuristics based on local search and dynamic programming. Unlike the previous studies, Ha et al. 
(2018) formulated the TSP-D problem with the objective of minimizing the total operational cost of truck along with 
the waiting cost of drone. They provided a MILP model and two different heuristics. Vasquez et al. (2021) proposed 
a MILP formulation and an exact two-stage decomposition method for the TSP-D problem. The computational results 
on benchmark instances indicated that the optimal solution of instances could be found only up to 25 nodes. They 
further observed that the drone speed strongly affected the computational performance of the proposed method. 
 
At the same time since 2018, various researchers started exploring the usage of multiple drones, integrating the TSP 
with multiple drones (MD). Kitjacharoenchai et al. (2020) addressed the TSP-MD problem with multiple trucks where 
every truck had a limited capacity and could carry multiple drones that could be launched to serve one or multiple 
customers. The authors proposed a MILP formulation to solve small instances and two heuristics to solve large-scale 
instances for their problem. Poikonen and Golden (2020) considered the Multi-visit Drone Routing Problem, where a 
truck and multiple drones were assigned to work in tandem. They proposed a constructive heuristic approach for their 
problem. Murray and Raj (2020) considered a last-mile delivery (LMD) system in which a delivery truck operated in 
coordination with a fleet of drones which aims to leverage the delivery truck and the fleet of drones to complete the 
delivery process and return to the depot in the minimum amount of time. Due to NP-hard nature of the MILP model, 
the authors proposed a heuristic solution approach that consisted of solving a sequence of three subproblems. 
  
Moshref-Javadi et al. (2020) considered the setting where truck and drone operations are synchronized, with the 
objective of minimizing the waiting time of customers and proposed a MILP formulation which solved instances with 
up to 11 nodes to optimality. Additionally, to be able to solve real-world problem size instances, the authors proposed 
an efficient Truck and Drone Routing Algorithm (TDRA). Similarly, Cavani et al. (2021) provided a compact MILP 
formulation for the TSP-MD problem with the goal of minimizing completion time. They also proposed a 
decomposition based exact algorithm and claimed that their method could solve instances involving up to 24 customers 
to proven optimality. Salama and Srinivas (2022) introduced a new variant of the TSP-MD problem that allowed the 
truck to stop at non-customer locations for drone launch and recovery operations. The proposed variant accounted for 
three decisions namely, a) assignment of each customer location to a vehicle, (b) routing of truck and drones, and c) 
scheduling drone and truck operations at each stop. The authors solved a small numerical problem with only 8 
customers using a MILP formulation with an objective to minimize the completion time.  
 
Like Ha et al. (2018), Tinic et al. (2023) addressed the TSP-MD problem with the objective of minimizing the total 
operational cost including the vehicles’ operating and waiting costs. The authors proposed flow based and two cut 
based MILP formulations strengthened with valid inequalities. Further, their analysis revealed that solutions obtained 
from the models with an objective of minimizing cost have much lower cost as compared to models addressing the 
minimization of completion time. For the first time in the literature, Meng et al. (2023) proposed an innovative dual-
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objective MILP model to explore the environmental and economic impacts of drone-assisted truck delivery under the 
carbon market price. The objective of their study was to minimize carbon emissions and total cost, including energy 
consumption, carbon emissions, and driver’s wage. Their results indicated that drone-assisted delivery as compared 
to traditional truck delivery, reduced carbon emissions by 24.90%, total cost by 22.13%, and shortened delivery time 
by 20.65%. 
 
The above briefly reviewed literature on the TD-LMD problem is summarized in Table 1. From Table 1, it is observed 
most of the studies address the TD-LMD problem with an objective of minimizing the time. There are very limited 
studies which have minimized the cost component. Moreover, there is only one study with an objective of minimizing 
both the economic and environmental cost simultaneously. This research gap is addressed in this study. 
 
3. Problem Description 
There are plenty of studies in the literature addressing the TD-LMD problem with various configurations. For our 
study, we have considered only single depot, single truck and multiple drones (SD-ST-MD) configuration. Moreover, 
most of the studies have minimized the total completion time. However, with the rising environmental awareness, 
most governments have mandated to practice sustainability measures in their supply chain (Meng et al. 2023). Hence, 
minimizing the cost from an economic and environmental perspective as compared to the total completion time of 
delivery, would be a better objective. Accordingly, let N be the total number of nodes available in the network of the 
TD-LMD problem. Out of these ‘N’ nodes, node 0 represents a single depot (SD). The remaining ‘N-1’ nodes represent 
the customer delivery points. We consider a single truck (ST) from which multiple drones (MD) can be launched for 
delivery of the parcels. The values of the additional parameters are: time required for ST to travel from node ‘i’ to 
node ‘j’ (tij), time required for a drone to travel from node ‘i’ to node ‘j’ (tij’), distance from node ‘i’ to node ‘j’ (dij), 
operating cost of truck (CoT), operating cost of drone (CoD), waiting cost of truck (CwT) and waiting cost of drone 
(CwD), speed of truck (vt) and speed of drone (v). With these given data, the economic cost for the truck (ECt) and 
drones (ECd) can be computed, as follows: 

𝐸𝐸𝐸𝐸𝑡𝑡 = (𝐶𝐶𝐶𝐶𝐶𝐶 ×
𝑑𝑑𝑖𝑖𝑖𝑖
𝑣𝑣𝑣𝑣

× 𝑋𝑋𝑖𝑖𝑖𝑖) + (𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑘𝑘) and, 

𝐸𝐸𝐸𝐸𝑑𝑑 = �𝐶𝐶𝐶𝐶𝐶𝐶 × (𝐴𝐴𝑖𝑖𝑘𝑘𝑡𝑡𝑖𝑖𝑖𝑖′ + 𝐵𝐵𝑖𝑖𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘′ )� + (𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑈𝑈𝑘𝑘) 
 

where, 𝑋𝑋𝑖𝑖𝑖𝑖 = 1, if ST travels from node ‘i’ to node ‘j’ 
and 𝑆𝑆𝑘𝑘 = time that ST waits at node ‘k’ 
𝐴𝐴𝑖𝑖𝑘𝑘 = 1, if drone visits node ‘k’ from node ‘i’ 
𝐵𝐵𝑖𝑖𝑘𝑘 = 1, if drone returns from node ‘k’ to node ‘i’ 

              𝑈𝑈𝑘𝑘 = time that the drone returning from node ‘k’ waits for the ST at meeting point 

Similarly, for calculating the environmental cost of the truck (ENCt) and environmental cost of the drone (ENCd), the 
carbon price (Cp) is known. The CO2 emission for the truck is computed using the formula defined by Ubeda et al. 
(2014) as follows:  

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = 𝐶𝐶𝐶𝐶 × 𝐹𝐹(𝑧𝑧) × 𝑑𝑑𝑖𝑖𝑖𝑖 × 𝑋𝑋𝑖𝑖𝑖𝑖  - where F(z) is emission factor. 

For the TD-LMD problem considered in our study, we assume the truck to be fully loaded with diesel used as fuel. 
Accordingly, F(z) = 1.018 as per the classification scheme of trucks defined in Ubeda et al. (2014). On the other hand, 
a drone is an electric vehicle with prima facie zero emissions. However, the energy consumed by the drone is produced 
by power generation facilities. Thus, we consider the CO2 emitted by power generation facilities. Goodchild and Toy 
(2018) estimated that 0.3773 kg of CO2 is emitted for each kWh produced. They also considered β as the Wh consumed 
by the drone per km. The value of β depends on the characteristics of the drone and is considered to be in the range 
(10,100). Substituting these values in the formula defined by Pugliese et al. (2020), the CO2 emission for the drone is 
estimated as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑 = 𝐶𝐶𝐶𝐶 × 𝛽𝛽 × 0.3773(10−4) × �𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑑𝑑𝑘𝑘𝑘𝑘 �𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 

where, 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 = 1, if drone visits node ‘k’ while truck travels from ‘i’ to ‘j’ 
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Table 1. A summary on the existing literatures on the TD – LMD problem 

 
Meaning of Abbreviations used: SD – Single Depot, ST – Single Truck, ND – Number of Drones, SD – Single Drone, MD – Multiple 
Drones, MM – Mathematical Modelling, HA – Heuristic Algorithm, NHA – Neighbour HA, SaHA – Savings HA, R1C2HA – Root 1 
Cluster 2 HA, ILP – Integer Linear Programming, MILP – Mixed ILP, GRASP – Greedy Randomized Adaptive Search Procedure, DTRC 
– Drone Truck Root Construction, NS – Neighbourhood Search, LNS – Large NS, RTS – Root, Transform, Shortest Path, 3PHA – 3 
Phase HA, GHA – Greedy HA, SA – Simulated Annealing, DA – Decomposition Algorithm, BaC – Branch and Cut, VNS – Variable NS 
ED – Experimental Design 

 
Considering the above data, applicable for every node, the objective of the TD-LMD problem considered in this study 
is to deliver parcels to ‘N-1’ customer locations using an integrated ST-MD configuration by minimizing the total 
economic and the environmental costs for the truck and drones respectively. 

4. Proposed MILP Model 
In this study, the (0-1) mixed integer linear programming (0-1 MILP) model proposed by Tinic et al, (2023) is 
considered to model the problem described in section 3. Effectively, the (0-1) MILP model proposed in Tinic et al 
(2023) is extended by (a) relaxing one of the assumptions in Tinic et al. (2023): there is no limit on number of drones 
to be utilized and (b) introducing environmental cost along with economic cost while optimizing the cost for modelling 
the problem described in this study. Accordingly, the proposed MILP model for the problem described in section 3 is 
presented as follows: 
 
Notations 
Let LN= L⧵N for any set N⊂ L. We use Li and Li,j  for N={i} and N={i,j} respectively.       
     
Parameters Used: 
n Number of node/customer location except location 0 (depot)  
tij Time required for truck to travel from i∈ L to j∈ L 
tij

’ Time required by drone to travel from i∈  L  to j∈L 
dij Distance from customer location i∈ L to customer location j∈ L 
CoT Operating cost of truck 
CoD Operating cost of drone 

Sl. 
No. Authors Year 

Problem Configuration Objective is to Minimize 

Methodology Type of 
Model 

Source 
of Data SD ST ND Time 

Cost 

Eco. Env. SD MD 

1 Murray and 
Chu 2015 ✓ ✓ ✓  ✓   MM & HA MILP; NHA, 

SaHA ED 

2 Agatz et al. 2018 ✓ ✓ ✓  ✓   MM & HA ILP; 
R1C2HA ED 

3 Ha et al. 2018 ✓ ✓ ✓   ✓  MM & HA MILP; 
GRASP ED 

4 Kitjacharoenc
-hai et al. 2020 ✓ ✓  ✓ ✓   MM & HA MILP; 

DTRC, LNS ED 

5 Poikonen and 
Golden 2020 ✓ ✓  ✓ ✓   HA RTS ED 

6 Murray and 
Raj 2020 ✓ ✓  ✓ ✓   MM & HA MILP; 3PHA ED 

7 Moshref-
Javadi et al. 2020 ✓ ✓  ✓ ✓   MM & HA MILP; GHA, 

SA ED 

8 Cavani et al. 2021 ✓ ✓  ✓ ✓   MM & HA MILP; DA, 
BaC ED 

9 Vasquez et al. 2021 ✓ ✓ ✓     MM & HA MILP; DA ED 

10 Salama and 
Srinivas 2022 ✓ ✓  ✓ ✓   MM & HA MILP; SA, 

VNS ED 

11 Tinic et al. 2023 ✓ ✓  ✓  ✓  MM & HA MILP; BaC ED 

12 Meng et al. 2023 ✓ ✓ ✓   ✓ ✓ MM MILP ED 
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CwT Waiting cost of truck 
CwD Waiting cost of drone 
Cp          Carbon price 
F(z) Emission factor in kg C02/km 
E Endurance value of drone 
m Maximum number of drones used in the whole delivery process 
Ca Amount of carbon emitted (in grams) for each kWh power  
 
Decision Variables:  
Xij ∈ {0,1}   Xij =1 if the truck travels from i∈ L to j∈ Li.  
Yij

k
 ∈ {0,1}  Yij

k
 =1 if a drone visits k∈ L0 when the truck travels from i∈ Lk to j∈ Li,k 

Ai
k
 ∈ {0, 1}  Ai

k
 =1 if a drone is launched from i∈ Lk  to visit k∈ L0.                            

Bj
k
 ∈ {0,1}  Bj

k
 =1 if a drone returning from k∈ L0 is retrieved at j∈ Lk.                

Uk ≥ 0   Time that the drone returning from k∈ L0 waits for the truck at their meeting point, if the 
drone arrives earlier.            

Vk ≥ 0   Time that the truck waits for the drone returning from k ∈L0  at their meeting point, if the truck 
arrives earlier.            

Sk  ≥ 0                 Time that the truck waits at i∈ L.                              
Wi

k 
 ≥ 0    Time that the truck waits at i∈ Lk while the drone visiting k ∈ L0  is airborne unless the drone 

is retrieved at i.               
Tij ≥0                    Total travel time by the truck up through j∈ L if the truck travels from i∈ L to j∈ Li.   
  
Proposed 0-1 MILP model: 
 

𝑀𝑀𝑀𝑀𝑀𝑀�  
 

𝑖𝑖𝑖𝑖𝑖𝑖

�𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶
 

𝑗𝑗𝑗𝑗𝐿𝐿𝑖𝑖

+ � 𝑆𝑆𝑘𝑘
𝑘𝑘𝑘𝑘𝐿𝐿0

𝐶𝐶𝐶𝐶𝐶𝐶 + � � (𝐴𝐴𝑖𝑖𝑘𝑘

𝑘𝑘𝑘𝑘𝐿𝐿0,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡𝑖𝑖𝑖𝑖 ′ + 𝐵𝐵𝑖𝑖𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘′)𝐶𝐶𝐶𝐶𝐶𝐶 + �𝑈𝑈𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶
𝑘𝑘𝑘𝑘𝐿𝐿0

 

+ �𝐶𝐶𝐶𝐶 × ��𝐹𝐹(𝑧𝑧)𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗𝑗𝑗

𝑋𝑋𝑖𝑖𝑖𝑖  
𝑖𝑖𝑖𝑖𝑖𝑖

�     + �𝐶𝐶𝐶𝐶 × 𝛽𝛽 × 𝐶𝐶𝐶𝐶 × ���(𝑑𝑑𝑖𝑖𝑖𝑖 

𝑘𝑘𝑘𝑘𝐿𝐿0𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝑑𝑑𝑘𝑘𝑘𝑘 )𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘�                           

 
subject to  
        
∑ (𝑋𝑋𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑖𝑖

𝑗𝑗
𝑖𝑖𝑖𝑖𝐿𝐿𝑗𝑗 ) = 1 ………………………………………………………………………………………………..(1)           

             
∑ 𝑋𝑋𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝐿𝐿𝑗𝑗 =  ∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝐿𝐿𝑗𝑗 ……………………………………………………………………………………………….. (2) 
            
∑ 𝐴𝐴𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝐿𝐿𝐾𝐾 =  ∑ 𝐵𝐵𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝐿𝐿𝐾𝐾 ………………………………………………………………………………………………...(3)            
 
∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘𝑗𝑗𝑗𝑗𝐿𝐿𝑖𝑖,𝑘𝑘 −  ∑ 𝑌𝑌𝑗𝑗𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗𝐿𝐿𝑖𝑖,𝑘𝑘 =  𝐴𝐴 −  𝐵𝐵𝑖𝑖𝑘𝑘………………………………………………………………………………..... (4)            
 
∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 𝑘𝑘𝑘𝑘𝐿𝐿0,𝑖𝑖,𝑗𝑗 ≤ (𝑛𝑛 − 2)𝑋𝑋𝑖𝑖𝑖𝑖  …………………………………………………………………………………………... (5)            
 
𝐴𝐴𝑖𝑖𝑘𝑘  ≤  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 𝑗𝑗𝑗𝑗𝐿𝐿𝑖𝑖 ……………………………………………………………………………………………………... (6)            
  
𝑌𝑌𝑖𝑖0𝑘𝑘  ≤  𝐵𝐵0𝑘𝑘……………………………………………………………………………………………………………. (7)            
 
𝐴𝐴0𝑘𝑘 + 𝐵𝐵0𝑘𝑘  ≤ 1……………………………………………………………………………………………………….. (8)            
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∑ 𝐴𝐴𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝐿𝐿𝑘𝑘 𝑡𝑡𝑖𝑖𝑖𝑖 ′ + ∑ 𝐵𝐵𝑖𝑖𝑘𝑘𝑗𝑗𝑗𝑗𝐿𝐿𝑘𝑘 𝑡𝑡𝑘𝑘𝑘𝑘 ′ + 𝑈𝑈𝑘𝑘 ≤ 𝐸𝐸…………………………………………………………………………… (9)            
 
∑ 𝐴𝐴𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝐿𝐿𝑘𝑘 𝑡𝑡𝑖𝑖𝑖𝑖 ′ + ∑ 𝐵𝐵𝑖𝑖𝑘𝑘𝑗𝑗𝑗𝑗𝐿𝐿𝑘𝑘 𝑡𝑡𝑘𝑘𝑘𝑘 ′ −  ∑   

𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 
𝑗𝑗𝑗𝑗𝐿𝐿𝑘𝑘 𝑡𝑡𝑖𝑖𝑖𝑖  −  ∑ 𝑊𝑊𝑖𝑖

𝑘𝑘 𝑖𝑖𝑖𝑖𝐿𝐿0,𝑘𝑘 ≤  𝑉𝑉𝑘𝑘…………………………………………(10)            
 
∑   
𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 

𝑗𝑗𝑗𝑗𝐿𝐿𝑘𝑘 𝑡𝑡𝑖𝑖𝑖𝑖  +  ∑ 𝑊𝑊𝑖𝑖
𝑘𝑘 −  ∑ 𝐴𝐴𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝐿𝐿𝑘𝑘 𝑡𝑡𝑖𝑖𝑖𝑖 ′ −  ∑ 𝐵𝐵𝑖𝑖𝑘𝑘𝑗𝑗𝑗𝑗𝐿𝐿𝑘𝑘 𝑡𝑡𝑘𝑘𝑘𝑘 ′ 𝑖𝑖𝑖𝑖𝐿𝐿0,𝑘𝑘 ≤  𝑈𝑈𝑘𝑘………………………………………....(11)            

  
𝑉𝑉𝑘𝑘 − 𝐸𝐸�1 − 𝐵𝐵𝑖𝑖𝑘𝑘�  ≤  𝑆𝑆𝑖𝑖…………………………………………………………………………………………….. (12)            
 
𝑆𝑆𝑖𝑖  ≤ 𝐸𝐸∑ 𝐵𝐵𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝐿𝐿0,𝑖𝑖 …………………………………………………………………………………………………... (13)            
 
𝑆𝑆𝑖𝑖  ≤ 𝑇𝑇�1 −∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 

𝑗𝑗𝑗𝑗𝐿𝐿𝑘𝑘 �  ≤  𝑊𝑊𝑖𝑖
𝑘𝑘……………………………………………………………………………………...(14)            

 
𝑊𝑊𝑖𝑖

𝑘𝑘  ≤  𝑆𝑆𝑖𝑖…………………………………………………………………………………………………………... (15)  
           
𝑊𝑊𝑖𝑖

𝑘𝑘  ≤ 𝐸𝐸�∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 
𝑗𝑗𝑗𝑗𝐿𝐿𝑘𝑘 �………………………………………………………………………………………………....(16)             

 
∑   
𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝑋𝑋𝑖𝑖𝑖𝑖  ≥ 3 

𝑗𝑗𝑗𝑗𝐿𝐿𝑖𝑖 ………………………………………………………………………………………………… (17)            
 
∑ 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑗𝑗𝑗𝑗𝐿𝐿𝑖𝑖 ∑ 𝑇𝑇𝑗𝑗𝑗𝑗 − 𝑗𝑗𝑗𝑗𝐿𝐿𝑖𝑖 ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 

𝑗𝑗𝑗𝑗𝐿𝐿𝑖𝑖 = 0……………………………………………………………………………(18)            
 
 𝑇𝑇0𝑖𝑖 =  𝑡𝑡0𝑖𝑖𝑋𝑋0𝑖𝑖………………………………………………………………………………………………………. (19)            
 
𝑇𝑇𝑖𝑖𝑖𝑖 ≤ �𝑀𝑀 − 𝑡𝑡𝑗𝑗0�𝑋𝑋𝑖𝑖𝑖𝑖………………………………………………………………………………………………… (20)            
 
𝑇𝑇𝑖𝑖0  ≤ 𝑀𝑀𝑋𝑋𝑖𝑖0………………………………………………………………………………………………………... (21)            
 
𝑇𝑇𝑖𝑖𝑖𝑖 ≤ �𝑡𝑡0𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖………………………………………………………………………………………………... (22)            
 
∑ �∑ �𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑌𝑌𝑗𝑗𝑗𝑗𝑘𝑘� + 𝐴𝐴𝑖𝑖𝑘𝑘 + 𝐵𝐵𝑖𝑖𝑘𝑘𝑗𝑗𝑗𝑗𝐿𝐿𝑖𝑖,𝑘𝑘 )� ≤ 𝑚𝑚𝑘𝑘𝑘𝑘𝐿𝐿0,𝑖𝑖 ……………………………………………………………………… (23)            
 
Xij, Ai

j, Bi
j ∈ {0,1}                          

 
Yij

k ∈ {0,1}            
 
Vi, Si ≥ 0                          
 
Wi

k ≥ 0                          
 
The objective function is to minimize the total economic cost consisting of both the operating and waiting costs of 
truck and drones as well as CO2 emission costs of truck and drones respectively. 

Constraint (1) limits the customer deliveries to be done either by a truck or by drone. Constraint (2) ensures that if a 
truck visits a customer location, it also departs from the same location. Similar to constraint (2), Constraint (3) ensures 
that if a drone visits a customer location, it will depart from that location itself. Constraint (4) ensures that the truck 
starts its journey from where a drone is launched and ends its journey at the spot where that launched drone needs to 
be collected. Constraint (5) ensures that if a drone is launched to another node while the truck travels along its 
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designated path, then the path should be selected on the truck’s tour. Constraint (6) permits a drone to be launched at 
a customer's location only if that specific location is part of the truck's tour. Constraint (7) ensures that the drones are 
required to return to the depot after their customer visits so as to meet the truck. Constraint (8) describes the assumption 
that the depot cannot serve as both launch and retrieval location of a drone mission. Constraint (9) shows the limited 
endurance of the drone. Constraints (10) and (11) are the waiting time constraints for both truck and drones. 

Constraint (12) determines the time that the truck needs to wait at a location for the last arriving drone. Constraint (13) 
makes sure that the truck waits at a customer's location only for retrieving the drones. Constraints (14) and (15) 
together balance the truck’s waiting time. Constraint (16) exclude the retrieval location of the drone from the total 
waiting time of the truck associated with the particular drone delivery. Constraint (17) defines the requirement of 
minimum three nodes for a truck route. Constraint (18) represent elimination of subtours while constraints (19), (20), 
(21), (22) are time bounding constraints as stated in Tinic et al. (2023), where M denotes a sufficiently large number.  
Finally, Constraint (23) endogenously imposes the restriction on the usage of maximum number of drones in the whole 
delivery process.  
The rest of the constraints are non-negativity restrictions and binary restrictions on the variables. 
 
5. Demonstrating Workability of the Proposed 0-1 MILP Model 
Numerical Example: The numerical example in our study considers 11 nodes, with the first node as depot. This leads 
to 10 customer locations. For generating the location of the nodes, we use uniform instances in the range (0,100). 
Considering the first node as depot, we generate its coordinates uniformly in the range (0,1). The remaining 
coordinates of customer locations are chosen to be integers and generated in the range (0,100). Using these location 
coordinates, we find the Euclidean distance and round them off to the nearest integer. This distance remains the same 
for truck and drones. Further, using the obtained Euclidean distance and known speed of truck and drones, we 
determine the time required by both to move from one customer location to the other. Further, the value of drone’s 
limited endurance E is restricted only to 50th percentiles i.e., median of all possible drone sorties. 
Accordingly, the following parameters as defined earlier in Section 3 have been considered from various studies which 
are listed in Table 2. 
 

Table 2. Values of the Parameters for the TD-LMD problem considered in our study. 
Parameter Values Reference 

N 11 Assumed 
vt 0.6 

Tinic et al. (2023) 

v 1 
CoT 2 
CoD 1 
CwT 1.5 

CwD 1 

Cp 1 Assumed 

F(z) 1.018 Ubeda et al. 2014 

Ca 3.773(10-4) Goodchild and Toy (2018) 

 
The optimal solution yielded by the proposed MILP model is presented in Figure 1. The objective function value is 
1328.9. From Figure 1, it is indicated that the model utilizes 2 drones to deliver parcels at customer locations 8 and 
10. The first drone is launched from customer location 3 to visit customer location 8 and finally the drone is retrieved 
at customer location 5. Similarly, the second drone visits customer location 10 while the truck travels from customer 
location 5 to customer location 1 and the drone is retrieved at customer location 2 to meet the truck. The remaining 8 
customer locations (excluding starting depot 0) are served by the truck. Further, the model ensures that the truck 
returns from the last customer location i.e., location 4 back to starting depot 0 after finishing all the parcel deliveries.  

466



Proceedings of the 4th Asia Pacific Conference on Industrial Engineering and Operations Management 
Ho Chi Minh City, Vietnam, September 12-14, 2023 

 

© IEOM Society International 
 
 

 

Figure 1. Optimal solution for 11 nodes in the TD-LMD network 

6. Computational Complexity of the Proposed 0-1 MILP Model 
The computational complexity of the proposed 0-1 MILP model is analyzed by increasing the number of nodes in the 
parcel-delivery network. Table 3 illustrates the CPU time (in seconds) taken on Mac OS system running at 3.5 GHz 
using 8 GB of RAM for obtaining the optimal solutions. For the last row having 14 customer locations in the parcel-
delivery problem, the time exceeded 20 hours to get optimal solution after which we had to stop running the program. 
This shows the computational intractability of the 0-1 MILP model and further highlights the need to develop heuristic 
methods for tackling the TD-LMD problem involving more than 13 nodes. 

 
Table 3. Computational Complexity of the extended MILP model  

 

Number of 

Nodes 
Optimal Solution 

Problem Configuration 
Number of 

Drones Used 

CPU Time 

(seconds) Number of 

Constraints 

Number of Decision Variables 

Binary Continuous 

4 1021.23 130 48 31 0 0.02 

5 1176.86 212 100 49 0 0.9 

6 1235.76 314 180 71 1 1.9 

7 1291.86 436 294 97 2 2.4 

8 1252.16 578 448 127 0 16.4 

9 1365.49 740 648 161 4 33.9 

10 1241.89 922 900 199 3 228.3 

11 1328.91 1124 1210 241 2 334.9 

12 1466.58 1346 1584 287 4 2205.3 

13 1512.22 1588 2028 337 6 4651.5 

14 - 1850 2548 391 - > 72904.8 

 
7. Conclusions 
In this study, we considered a single depot, a single truck and multiple drones (SD-ST-MD) configuration for a truck-
drone based last-mile delivery (TD-LMD) problem. Due to the increasing environmental concerns, we considered 
minimizing the cost from an economic and environmental perspective as compared to the total completion time of 
delivery of TD-LMD. With this, the existing Mixed-Integer Linear Programming (MILP) model in the literature is 
appropriately extended for the additional dimension considered in the problem configuration of TD-LMD problem. 
Then, the proposed MILP model was demonstrated by developing a suitable numerical example to reflect the problem 
configuration considered in this study. Further, the computational complexity of the proposed MILP model was 
analysed by increasing the number of delivery points. The computational complexity analysis clearly indicated that 
the simpler version of TD-LMD is computationally intractable to get an optimal solution. So, the TD-LMD problem 
requires an alternate method such as heuristic algorithm and this becomes the immediate future research issue for 
addressing TD-LMD problem considered in this study.  
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