Applying Lean Thinking to Improve Processes in Low Volume/High Complexity Industry: Part I

Dave Olson¹, Naim Islam² and Kuldeep Agarwal²

¹Jones Metal, Inc., 3201 3rd Ave., Mankato, MN 56001 ²Department of Automotive and Manufacturing Engineering Technology , Minnesota State University, Mankato, MN 56001, USA <u>kuldeep.agarwal@mnsu.edu</u>, <u>naim.islam@mnsu.edu</u>

Abstract

Low-volume/high-complexity industries are known for their unique designs and custom products, which require extremely flexible manufacturing processes. Implementing Lean principles is the best way to enhance flexibility and achieve success by offering the "best price in the market" and "fast delivery." However, the application of Lean principles depends on the type of production layout and business. Continuous production processes and variable production processes have distinct demands and targets. Applying the same Lean terminology to both industries can result in losses in terms of inventory, safety stock, pull systems, and takt times. This paper aims to address the common problems faced by low-volume/high-complexity industries and demonstrate how Lean techniques and thinking can resolve them. This paper aims to explain the cost benefits resulting from process improvement in the Volume-1 case study. It further explores process improvements in different complex areas, providing a clearer explanation of how lean thinking transforms complex processes into flexible ones. The focus on improving the paint and shipping processes stems directly from customer feedback regarding quality nonconformances and new customer development. Additionally, special process audits by new customers have influenced this focus. To illustrate the practical benefits of Lean thinking in industrial development and highlight the differences between low-volume/high-complexity industries, we will examine the industrial painting process. Industrial painting involves a range of complex tasks, including storing, mixing, spraying, testing, data availability, tools arrangement, inventory management, climate control, paint estimation, spray procedures, measuring devices, lighting quality, and layout optimization for smooth product flow. Jones Metal Inc. serves as an excellent example of a high-volume/complex industry. Improving process quality and maintaining acceptable performance levels are crucial for the success of any organization. Lean thinking provides an opportunity to enhance process flexibility for successful organizations. This paper first explains the current processes of the complex industry and then demonstrates how lean thinking contributes to the development of these processes.

Keywords

Flexible manufacturing processes, Continuous production processes, Process improvement, Lean principles, Industrial painting.

1. Introduction

Low volume/high complexity industries face challenges with procedures due to the customization and varying manufacturing processes involved. These processes encompass cutting, molding, shaping, pressing, punching, bending, welding, painting, and more. Hence, implementing Lean manufacturing tools like kaizen and control boards becomes essential in such industries. To illustrate this concept, we can examine Jones Metal Inc., located in Mankato, Minnesota, as an example. Jones Metal Inc. excels in sheet metal processing and specializes in complex processes with low volume production. Their expertise lies in crafting unique custom-built sheet metal products for companies worldwide. However, consistently manufacturing products with different procedures, quality standards, and testing requirements poses a significant challenge. Therefore, continuous process improvement based on demand is crucial. The focus is on the paint process in Jones Metal Inc. with the objective of improving the process using lean methodologies. Furthermore, the process costs and savings due to lean process improvements are discussed as well as the reduced quality defects due to the combination of a six-sigma project with the lean processes. Using Six Sigma tools and ANOVA analysis, we can identify the root causes of paint quality issues. This process aligns well with the principles of Lean methodology.

1.1 Objectives

1. How may Lean concepts be used to increase flexibility and achieve success in low volume/high complexity industries?

- 2. How might the concepts of lean manufacturing be applied to raise the standard of goods and services in low volume, high complexity industries?
- 3. How can the use of lean concepts be adapted to the particular requirements of low volume/high complexity industries?
- 4. What are the most effective ways to apply Lean concepts in low-volume/high-complexity industries?
- 5. What are the cost benefits of implementing Lean principles in low-volume/high-complexity industries?

2. Literature Review

From 1992 to 2002 there was a revolutionary change in lean applications, which made companies change their processes with the use of improved technology. There were several billion-dollar companies that incurred huge losses due to unnecessary inventories and safety stock (Womack and Jones 2003). This paper focuses on the process improvement of a complex process that encompasses wash-painting and shipping. It highlights the application of lean principles and the significant results they can yield. A typical lean process involves the following steps:

- 1. Identified value: The current value of the product is identified by walking the process backward from the customer. The current state of the process is also checked to identify waste (Muda).
- 2. Value Stream Mapping: To identify waste and value-added processes, the process is mapped using value stream mapping. This analysis helps identify non-value-added processes. A time study is conducted to ensure accurate value streaming.
- 3. Creating Flow: Based on the value streaming analysis, areas for improvement are identified in terms of quality, process time, and costs. New process improvements are then implemented to improve flow. A thorough analysis is performed to determine the next steps (McCarthy and Rich 2015).
- 4. Establishing Pull: A pull system is introduced in the shipping area for a specific customer, and a pull situation is also created in the paint area. Implementing this system in custom shops can be challenging due to uncertainties related to customer demands. However, by adopting cell manufacturing and strategic placement of supermarkets, a flexible system can be created, meeting customer requirements and providing a future state map for improvement (Liker and Franz 2011).
- 5. Striving for Perfection: While perfection may not be achievable, continuous improvement projects are carried out to seek perfection. These projects aim to identify areas for improvement and make ongoing enhancements.

The problems with the current process at the paint shop are analyzed using various methods such as Six Sigma DMAIC, design of experiments, and lean methodologies. The choice of analysis method depends on the type of processes and products being examined. The following describes the paint shop technical data on the floor of Jones Metal:

- Paint matrix: Technical data availability plays a major role in speeding up the paint process. This data is needed to identify the supplier's paint used for a specific job, including the primer, catalyst, and reducer mix ratios. It also includes the recommended number of mills and the customer's thickness requirement. The current process involves a paint chart that consolidates information to simplify the process. However, there are issues with the current system. It lacks flexibility to accommodate changes in customer requirements or updates, as well as the introduction or discontinuation of new paints by suppliers.
- File tech sheets: Each primer, paint, catalyst, and reducer are accompanied by technical data sheets and safety data sheets. Consolidating all the tech sheets in one location is beneficial. However, finding the correct data sheet from the collection is time-consuming. Therefore, organizing the data sheets with relevant information and filing them is a lean thinking approach from 5S. This practice proves particularly valuable in industries with intricate and adaptable processes.
- Simple data charts: Building simple data charts saves time, simplifies life, and enhances process flexibility, as discussed in Lean Solutions by James P. Womack. Searching for parts or multiple data entries in a large inventory is time-consuming and complex, increasing the likelihood of human errors. To address this, consolidate all the data into one sheet and keep a hard copy for quick reference. These charts, known as simple data charts, are an integral part of continuous improvement (kaizen) for streamlining processes.
- Procedure plan for Chemical Treatment: Preparing the surface is essential before painting. Chemical treatment removes grease, rust particles, and debris. A procedure plan and control plan for this process are beneficial, eliminating the need for operators to call supervisors when problems arise. These plans also help new employees streamline the process.
- Paint inventory-shelfing: Inventory needs to be shelved using two principles: FIFO (First In First Out) and tagging. Problems arise in inventory storage, especially with FIFO, often referred to as FIFE (First in first expired). Without tracking expiration dates, there can be significant losses in customer satisfaction and paint quality due to expired products. Additionally, expiration dates may change upon opening the

paint can, highlighting the importance of tracking all paints using a simple process plan. Shelf tagging is necessary to easily locate inventory and reorder stock.

- Cost estimation and coverage: There are two major problems in the current process: a lack of proper cost estimation for the painting process and inadequate guidance on the amount of paint needed for the proposed area. These issues are crucial for a flexible process. Without knowing the coverage, the required amount of paint cannot be determined for specific jobs or place accurate inventory orders. Consequently, forecasting becomes complex and time-consuming. Estimating costs is essential for billing the customer, and it falls within the paint department's responsibility to determine the cost of paint for each job.
- Paint room lighting conditions: The suitable lighting conditions for a paint booth are 400 Lux, while for the paint-testing area, it is 800 Lux. Several factors can decrease lighting conditions, such as overspraying, long life of the lights, and their location. Over-spraying creates a layer on top of the lights, reducing Lux. The lifespan of the lights also affects their capacity. The location and height of the lights impact Lux in the spraying area. Regular measurement and maintenance of the lights are necessary to prevent quality problems and rework, which increase lead-time. Therefore, simplifying this complex process on a continuous improvement basis is crucial.
- Customer company expectations for future business: Customers expect these improvements because they do not want to pay for idle part sitting times, overhead times, and unnecessary processes. Some companies, like John Deere, can take the opportunity to improve processes at their suppliers' plants. However, most industries switch suppliers when they realize they are paying for unnecessary work done by the supplier company. Therefore, it is mandatory to simplify complex processes by applying lean methodologies, especially for small to mid-size industries.

3. Methodology

Creating or changing a process is a challenging task. First, the waste current process must be identified to determine areas for improvement. Next, a new lean process should be devised, emphasizing speed, simplicity, and cost-effectiveness. For a process to be considered improvement, it must enhance speed, efficiency, and cost-effectiveness while maintaining balance. However, if the speed is improved at a higher cost than budgeted, it cannot be considered a favorable improvement. Similarly, if a new process reduces costs by 50% but becomes more complex, it is not a desirable improvement. Complexity and human errors may result in rework, compromised quality, and delayed deliveries, offsetting the cost reduction benefits. Lean thinking offers an excellent solution for process development by eliminating waste (muda) and non-value-added events. The following are the processes proposed for each of the current process on the paint floor of Jones metal:

3.1 Building a paint matrix with flexibility for updates:

Creating a paint matrix for the paint shop is a significant task. The required data for painting is found in paint technical data sheets. In this case study, a chart is being built for 66 paint mixes. Before building the chart, certain clarifications are needed. Most spray paint mixes consist of paint (Part A), catalyst (Part B), and reducer. Some paints are ready to use. Each part requires priming before the final coat (topcoat). To complete this process, the mixing ratios for Part A, Part B, and the thinner need to be identified. The paints need to be categorized, such as epoxy, urethane, alkyd, and military, for easy access. The chart should be flexible, allowing the painters, purchasing department, and engineering department to add, update, and retrieve data. Columns such as paint code, description, routing code, inventory code, color code, supplier name, customer thickness requirement, primer specifications, and paint specifications should be included. This lean thinking eliminates the need for discussions between the purchasing, engineering, and painting departments and makes all the data available on the wall. This idea simplifies and clarifies the process without any additional costs. Table 1 displays a sample paint matrix. The main reason behind this improvement is the elimination of non-value-added events, making the complex process easier and clearer.

Table 1. Paint matrix tech data sheet

© IEOM Society International

Print Date:	7/13/2023	PRINT 5128 22664							
Rev. Date:	11/2/2017							PAINT M	ATRIX
JOF		🎲 METAL							
	Paint Code	Description	S+ PTP	INIX	Color Code	Paint Supplier Name	Notes	Overall Thickness	Max MILLS Type
	P100	Vellow Primer	SPP-P100	7-P100-MIX	Buff Vellow	Diamond Vogel	Yellow primer only no top cost	1 0-2 0 mile	2 00 Urethane
	P111	CAT Yellow	SRP-P111	7-P111-MIX	Cat Yellow	PPG	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
							Paint inside and out (Pebble Grey is now being sprayed		
	P112	Pebble Gray (Solar Gray top coat)	SRP-P112	Z-P112-MIX	RAL 7032	Diamond Vogel	with SOLAR GRAY TOP COAT)	Min. 6.00 mils	2.00 Urethane
	P114	Waukesha Orange	SRP-P114	Z-P114-MIX	Waukesha Orange	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
	P115	Cummins Red	SRP-P115	Z-P115-MIX	Cummins Red	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
	P116	Ansi Gray	SRP-P116	Z-P116-MIX	RAL 7042	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
THANE	P117	Cement Gray	SRP-P117	Z-P117-MIX	RAL 7033	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
	P118	Fire Red	SRP-P118	Z-P118-MIX	RAL 3020	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
	P119	Silver Gray	SRP-P119	Z-P119-MIX	RAL 7001	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
<u>.</u>	P120	Cummins Beige	SRP-P120	Z-P120-MIX	Cummins Beige	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
۲	P121	Mid Gloss Black	SRP-P121	Z-P121-MIX	RAL 9005		Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
	P124	Brilliant Blue	SRP-P124	Z-P124-MIX	RAL5007	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
	P125	Traffic Blue	SRP-P125	Z-P125-MIX	RAL5017	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
	P127	Grey-White	SRP-P127	Z-P127-MIX	RAL 9002	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
	P128	lvory (Used by Kohler)	SRP-P128	Z-P128-MIX	RAL 1014	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
	P129	MTU onsite Silver Gray	SRP-P129	Z-P129-MIX	RAL7001	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	2.00 Urethane
	P140	Cummins Red Primer	5KP-P140	Z-P140-MIX	Cummins Red	Diamond Vogel	Cummins Red Primer only No top coat	1.0 - 2.0 Mils	2.00 Urethane
	P150	Gray Primer	SRP-P150	Z-P150-MIX	Gray	Diamond Vogel	Gray primer only paint inside and out	1.0 - 2.0 Mils	2.00 Urethane
	P700	White (INSIDE)	SRP-P700	Z-P/00-1-MIX	White	Commercial Performance	Inside white/outside gray	3.0 -4.0 Mils	2.00 Urethane
		Gray (OUTSIDE)		Z-P /00-2-MIX	RAL 7042	Diamond Vogel		3.0 -4.0 Mils	2.00 Urethane
EPOXY	A100	White Primer	SRP-A100	Z-A100-MIX	White	Diamond Vogel	White primer only paint inside and out	Min 2.00 Mils	2.00 Epoxy
	A111	Rato Equipment Yellow (Cat yellow)	SRP-AIII	Z-A111-IVIIX	Equipment yellow	Diamond Vogel	Paint inside and out	NIN 6.00 Mills	2.00 Epoxy
	A112	Pebble Gray	SRP-A112	Z-A112-IVIX	RAL 7032	Diamond Vogel	Paint inside and out	NIN 6.00 Mills	2.00 Ep8xy
	A113	Ansi Grav	SPD-A114	Z-A113-WIX	RAL 5010	Diamond Vogel	Paint inside and out	Min 6.00 Mile	2.00 Epoxy
	A116	Elame Red	SPD-0116	Z-0114 MIX	RAL 2000	Diamond Vogel	Paint inside and out	Min 6.00 Mile	2.00 Epoxy
	A117	Light Gray	SRP-A117	Z-A117-MIX	RAI 7035	Diamond Vogel	Paint inside and out	Min 6 00 Mils	2.00 Epoxy
	A120	Green Grav	SRP-A120	Z-A120-MIX	RAL 7009	Diamond Vogel	Paint inside and out	Min 6.00 Mils	2.00 Epoxy
	A121	Grass Green	SRP-A121	Z-A121-MIX	RAL 6010	Diamond Vogel	Paint inside and out	Min 6.00 Mils	2.00 Epoxy
	A122	Brilliant Blue	SRP-A122	Z-A122-MIX	RAL 5007	Diamond Vogel	Paint inside and out	Min 6.00 Mils	2.00 Epoxy
	A417	Light Gray (OUTSIDE ONLY)	SRP-A417	Z-A417-MIX	RAL 7035	Diamond Vogel	Paint outside only	Min 6.00 Mils	2.00 Epoxy
UY-ALKYD	K100	Military Green Primer	SRP-K100	Z-K100-MIX	Military Green		Paint inside and out	1.0 - 2.0 Mils	2.00 Military Alkyd/Other
	K111	Military Gray	SRP-K111	Z-K111-MIX	Military Gray	NCP coatings	Paint inside and out	Min 6.00 Mils	2.00 Military Alkyd/Other
	K113	Millitary White	SRP-K113	Z-K113-MIX	NCP	NCP coatings	Paint inside and out	Min 6.00 Mils	2.00 Military Alkyd/Other
TAF	K411	Military Gray (OUTSIDE ONLY)	SRP-K411	Z-K411-MIX	Military Gray	NCP coatings	Paint outside only	Min 6.00 Mils	2.00 Military Alkyd/Other
	K700	Military White (INSIDE)	SRP-K700	Z-K700-1-MIX	White	NCP coatings	Inside white/outside gray	3.0 -4.0 Mils	2.00 Military Alkyd/Other
~		Military Gray (OUTSIDE)		Z-K /00-2-MIX	Military Gray	NCP coatings		Min 6.00 Mils	2.00 Military Alkyd/Other
Y RV	H100	Green - 150 (Military green primer)	SRP-H100	2-H100-IVIX		snerwin williams	Primer-paint inside and outside	3.0 - 4.0 mils	4.00 Military epoxy polyamide
¥ õ	H111	Haze gray - 151	SRP-HIII	Z-H111-IVIX		sherwin williams	Finishes-Paint inside and out	Min. 6 mils	3.00 Military epoxy polyamide
1 m	H700	Winte - 152	SRP-H700	Z-H700-1-WIX		sherwin williams	Write-Inside(special instruction for location)	Min. 6 mile	2.00 Military epoxy polyamide
	1001	Safety Yellow	SRP-1001	7-1001-MIX		Commercial Performance	case and, a stande apectar instruction for location)	3.04.0 Mils	2 00 Epoxy
	J002	JLG Orange	SRP-J002	Z-J002-MIX		Commercial Performance		3.0 -4.0 Mils	2.00 Epoxy
ALL OTHER CUSTOMERS MULTIME- EROXY BUTTART-ALMO EPOXY UREFHANE	J003	Repnet Purple	SRP-J003	Z-J003-MIX	1	Commercial Performance		3.0 -4.0 Mils	2.00 Epoxy
	J004	SVT Blue	SRP-J004	Z-J004-MIX		Commercial Performance		3.0 -4.0 Mils	2.00 Epoxy
	J005	Anderson Red	SRP-J005	Z-J005-MIX		Commercial Performance		3.0 -4.0 Mils	2.00 Epoxy
	J006	AgChem Yellow	SRP-J006	Z-J006-MIX		Commercial Performance		3.0 -4.0 Mils	2.00 Epoxy
ER CUSTOMERS	J007	Carc Green	SRP-J007	Z-J007-MIX		PPG		3.0 -4.0 Mils	2.00 Epoxy
	3008	Carc Tan	SRP-J008	Z-J008-MIX		PPG		3.0 -4.0 Mils	2.00 Epoxy
	1009	High Heat Black	SRP-J009	Z-J009-MIX		PPG		1.0 - 2.0 Mils	0.00 Alkyd Enamel
	J010	Wilmar White	SRP-J010	Z-J010-MIX		PPG		3.0 -4.0 Mils	2.00 Epoxy
	J011	Cat Yellow Primer	SRP-J011	Z-J011-MIX		PPG		1.0 - 2.0 Mils	2.00 Urethane
	J012	Cat Plack	SRP-J012	2-JU12-MIX		PPG		3.0 -4.0 Mils	2.00 Urethane
王	1013	Cat Black	SRP-JU13	2-J013-IVIX		PPG		3.0 -4.0 Mills	2.00 Greenane
ALL OTHER	1015	Black Drimer	SBD 1015	2-J014-IVIIX		000		1.0 - 2.0 Mills	2.00 Epoxy
	1015	Mhite Primer	SPP-1015	2-J015-IVIIX		PPG	1	1.0 - 2.0 Mils	2.00 Epoxy
	1017	Gloss White	SRP-1017	Z-1017-MIX		PPG		3.0 -4.0 Mils	2 00 Epoxy
	J018	Gloss Black	SRP-J018	Z-J018-MIX		PPG		3.0 -4.0 Mils	2.00 Epoxy
	J019	Gloss Black	SRP-J019	Z-J019-MIX		PPG		3.0 -5.0 Mils	2.00 Epoxy
	J020	Signal Black	SRP-J020	Z-J020-MIX	RAL 9004	PPG		3.0 -5.0 Mils	2.00 Epoxy
	J021	FS 26307 Gray Epoxy	SRP-J021	Z-J021-MIX		sherwin williams		6 mils	2.00 Military epoxy top coat
	1022	ANSI 61 GRAV	SPP-1022	7-1022-MIX	ANSI GRAV	PPG AMERCOAT		2 mile	

3.2 Creating data sheet file with contents and all necessary data:

After acquiring the paint matrix, it is crucial to obtain technical data sheets from vendors for cross-referencing and resolving quality problems. The data sheet file should include all paint data, such as customer requirements, paint shelf-life charts, storage instructions, sustainability charts, and a table of contents. Categorizing and tagging everything is essential for quick data retrieval. It is a quick and easy process for painters to access data regarding dry times, viscosity, and mixing instructions. However, electronic gadgets are prohibited in paint spraying and storing areas according to OSHA rules. Therefore, maintaining a technical data file is the best process improvement. Lean thinking eliminates the need to search for data sheets, making the process simple and efficient. The results highlight the differences between continuous production lines and custom product lines in terms of lean thinking. This process clearly demonstrates that lean thinking simplifies complex processes, resulting in time and cost savings.

3.3 Simple data charts for faster process:

These data charts are hard copies available near the computer desks, displaying inventory and routing codes. The chart reduces searching time, ensuring a fast process. Repeatedly searching for parts consumes valuable time. Thus, a simple data chart is necessary. A simple data chart has been created for quick reference which can be found in the tech sheets data file and on the engineers' desk. When searching for inventory, the paint code needs to be entered in the search box. Otherwise, one would have to sift through thousands of parts. This code provides a simple and quick reference, ensuring consistency between the paint code on the floor and the routing code. Table 2 depicts the simple data chart created.

Table 2. Simple data chart

© IEOM Society International

Rev. Date: 6/12/2017									
					GLOBAI	. SHOP PAINT C	DDES		
	-	•			-		1		1
	Paint Code	Description	St RTR	INV	Color Code	Paint Supplier Name	Notes	Overall Thickness	Customer
	P100	Yellow Primer	SRP-P100	Z-P100-MIX	Buff Yellow	Diamond Vogel	Yellow primer only no top coat	1.0-2.0 mils	Kato Engineering
	P111	CAT Yellow	SRP-P111	Z-P111-MIX	Cat Yellow	PPG	Paint inside and out	3.0 -4.0 Mils	Kato Engineering
	P112	Pebble Gray (Solar Gray top coat)	SRP-P112	Z-P112-MIX	RAL 7032	Diamond Vogel	Paint inside and out (Pebble Grey is now being	Min. 6.00 mils	Kato Engineering
	P114	Waukesna Orange	SRP-P114	Z-P114-MIX	Waukesha Orange	Diamond Vogel	Paint inside and out	3.0 -4.0 Mills	Kato Engineering
	P115	Anni Grav	SPD.0116	2-P115-MIX	RAL 7042	Diamond Vogel	Paint inside and out	2.0.4.0 Milk	Kato Engineering Kato Engineering
	P117	Cement Grav	SRP-P117	Z-P117-MIX	RAI 7033	Diamond Vogel	Paint inside and out	3.0-4.0 Mils	Kato Engineering
<u> </u>	P118	Fire Bed	SRP-P118	7-P118-MIX	RAL 3020	Diamond Vogel	Paint inside and out	3.04.0 Mils	Kato Engineering
HAIN	P119	Silver Gray	SRP-P119	Z-P119-MIX	RAL 7001	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	Kato Engineering
E T	P120	Cummins Beige	SRP-P120	Z-P120-MIX	Cummins Beige	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	Kato Engineering
5	P121	Mid Gloss Black	SRP-P121	Z-P121-MIX	RAL 9005		Paint inside and out	3.0 -4.0 Mils	Kato Engineering
	P124	Brilliant Blue	SRP-P124	Z-P124-MIX	RAL5007	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	Kato Engineering
	P125	Traffic Blue	SRP-P125	Z-P125-MIX	RAL5017	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	Kato Engineering
	P127	Grey-White	SRP-P127	Z-P127-MIX	RAL 9002	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	Kato Engineering
	P128	Ivory (Used by Kohler)	SRP-P128	Z-P128-MIX	RAL 1014	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	Kato Engineering
	P129	MTU onsite Silver Gray	SRP-P129	Z-P129-MIX	RAL7001	Diamond Vogel	Paint inside and out	3.0 -4.0 Mils	Kato Engineering
	P140	Cummins Red Primer	SRP-P140	Z-P140-MIX	Cummins Red	Diamond Vogel	Cummins Red Primer only No top coat	1.0 - 2.0 Mils	Kato Engineering
	P150	Gray Primer	SRP-P150	Z-P150-MIX	Gray	Diamond Vogel	Gray primer only paint inside and out	1.0 - 2.0 Mils	Kato Engineering
	P700	Crew (OUTFIDE)	SRP-P700	2-F700-1-WIX	DAL 2042	Commercial Performance	Inside white/outside gray	2.0 4.0 Mills	Kato Engineering
	A100	White Primer	SPR-A100	2-F700-2-WIX	White	Diamond Vogel	White primer only paint inside and out	Min 2 00 Mile	Kato Engineering Kato Engineering
	A100	Kato Equipment Vellow (Cat vellow)	SPD-A111	2-A111-MIX	Equipment vellow	Diamond Vogel	Paint inside and out	Min 6 00 Mils	Kato Engineering
	A112	Pebble Gray	SRP-4112	7-A112-MIX	RAI 7032	Diamond Vogel	Paint inside and out	Min 6 00 Mils	Kato Engineering
~	A113	Pure White	SRP-4113	7-A113-MIX	RAL 9010	Diamond Vogel	Paint inside and out	Min 6 00 Mils	Kato Engineering
õ	A114	Ansi Grav	SRP-A114	Z-A114-MIX	RAL 7042	Diamond Vogel	Paint inside and out	Min 6.00 Mils	Kato Engineering
8	A116	Flame Red	SRP-A116	Z-A116-MIX	RAL 3000	Diamond Vogel	Paint inside and out	Min 6.00 Mils	Kato Engineering
	A117	Light Gray	SRP-A117	Z-A117-MIX	RAL 7035	Diamond Vogel	Paint inside and out	Min 6.00 Mils	Kato Engineering
	A120	Green Gray	SRP-A120	Z-A120-MIX	RAL 7009	Diamond Vogel	Paint inside and out	Min 6.00 Mils	Kato Engineering
	A121	Grass Green	SRP-A121	Z-A121-MIX	RAL 6010	Diamond Vogel	Paint inside and out	Min 6.00 Mils	Kato Engineering
	A122	Brilliant Blue	SRP-A122	Z-A122-MIX	RAL 5007	Diamond Vogel	Paint inside and out	Min 6.00 Mils	Kato Engineering
~	A417	Light Gray (OUTSIDE ONLY)	SRP-A417	Z-A417-MIX	RAL 7035	Diamond Vogel	Paint outside only	Min 6.00 Mils	Kato Engineering
No.	K100	Military Green Primer	SRP-K100	Z-K100-MIX	Military Green		Paint inside and out	1.0 - 2.0 Mils	Kato Engineering
I-AL	K111	Military Gray	SRP-K111	Z-K111-MIX	Military Gray	NCP coatings	Paint inside and out	Min 6.00 Mils	Kato Engineering
AR	K113	Millitary White	SRP-K113	Z-K113-MIX	NCP	NCP coatings	Paint inside and out	Min 6.00 Mils	Kato Engineering
5	K411	Military Gray (OUTSIDE ONLY)	SRP-R411	Z-K411-MIX	Military Gray	NCP coatings	Paint outside only	MIN 6.00 MIIS	Kato Engineering
N	K700	Military Gray (OUTSIDE)	SRP-K700	Z-K700-2-MIX	Military Grav	NCP coatings	inside white/outside gray	Min 6 00 Mils	Kato Engineering
	H100	Green - 150 (Military green primer)	SRP-H100	Z-H100-MIX		sherwin williams	Primer-paint inside and outside	3.0 - 4.0 mils	Kato Engineering
, W	H111	Haze gray - 151	SRP-H111	7-H111-MIX		sherwin williams	Finishes-Paint inside and out	Min 6 mils	Kato Engineering
4 TZ		White - 152		Z-H700-1-MIX		sherwin williams	white-inside(special instruction for location)	Min. 6 mils	Kato Engineering
EPC	H700	Haze gray - 151	SRP-H700	Z-H700-2-MIX		sherwin williams	Haze Gray-Outside(special instruction for locatio	Min. 6 mils	Kato Engineering
	J001	Safety Yellow	SRP-J001	Z-J001-MIX		Commercial Performance		3.0 -4.0 Mils	
	J002	JLG Orange	SRP-J002	Z-J002-MIX		Commercial Performance		3.0 -4.0 Mils	
	J003	Repnet Purple	SRP-J003	Z-J003-MIX		Commercial Performance		3.0 -4.0 Mils	
	J004	SVT Blue	SRP-J004	Z-J004-MIX		Commercial Performance		3.0 -4.0 Mils	
	J005	Anderson Red	SRP-J005	Z-J005-MIX		Commercial Performance		3.0 -4.0 Mils	
	1006	AgChem Yellow	SRP-J006	Z-J006-MIX		Commercial Performance		3.0 -4.0 Mils	
	J007	Carc Green	SRP-J007	Z-J007-MIX		PPG		3.0 -4.0 Mils	
ERS	1008	Care Tan	SRP-JOO8	Z-J008-MIX		PPG		3.0 -4.0 Mils	
MO	1009	High Heat Black	SRP-J009	Z-J009-MIX		PPG		1.0 - 2.0 Mils	
STOMER	1011	Wilmar White	SRP-JU10	2-JULU-IVIX		PPG 0DC		3.0 -4.0 Mills	
CC	1011	Cat Yellow Primer	SRP-JU11	Z-JU11-IVIX		PPG		1.0 - 2.0 Mills	
OTHERCUS	1013	Cat Black	SRP-1012	7-1013-MIX		PPG		3.0 -4.0 Mils	1
	1014	Gray Primer	SPP-1014	7-1014-MIX		PPG		1.0 - 2.0 Mile	
TT ST	1015	Black Primer	SRP-1015	7-1015-MIX		PPG		1.0 - 2.0 Mils	
	1016	White Primer	SRP-J016	Z-J016-MIX		PPG		1.0 - 2.0 Mils	
	J017	Gloss White	SRP-J017	Z-J017-MIX		PPG		3.0 -4.0 Mils	
	J018	Gloss Black	SRP-J018	Z-J018-MIX		PPG		3.0 -4.0 Mils	
	J019	Gloss Black	SRP-J019	Z-J019-MIX		PPG		3.0 -5.0 Mils	
	J020	Signal Black	SRP-J020	Z-J020-MIX	RAL 9004	PPG		3.0 -5.0 Mils	
	J021	FS 26307 Gray Epoxy	SRP-J021	Z-J021-MIX		sherwin williams		6 mils	Military epoxy
	J022	PSX 700 Series ANSI 61 Gray Epoxy	SRP-J022	Z-J022-MIX	ANSI 61 GRAY	PPG Amercoat		6 mils	Jones Metal Box Works

3.4 Creating chemical treatment process procedure for reference:

Chemical treatment is important before painting a metal part. The procedure typically depends on the type of metal and the customer's requirements. However, a procedure plan is needed to simplify the complex process and provide a quick reference. This procedure plan explains the safety equipment, required chemicals, and procedure. At Jones Metal, we perform two types of chemical treatment: pressure washing and tank processing. Therefore, we need two different procedures based on part size. The sample procedure clearly explains the processes and requirements. The picture shows the part sizes that can fit in the tanks. If the part size is larger than the mentioned size, then it should be pressure washed. This procedure plan ensures that everyone can follow the same procedure and provides easy reference. This improvement saves time, improves efficiency, and is cost-effective. Therefore, it is a perfect lean improvement to make complex processes more flexible. Figure 1 displays the surface cleaning procedure for painting.

Figure 1. Surface cleaning procedure

3.5 Paint inventory sorting and applying FIFO:

Applying the FIFO (First In First Out) method is an important process for warehouses to track material expiration dates. This is especially important for paints, which tend to expire more quickly after opening. Therefore, it is mandatory to label paints with an expiration date after they are opened. To do this, a tagging process was created, which begins by creating a shelf-life tag. The shelf-life tag contains the manufacturing date, which is the order date, and the expiration date, which is the actual expiration date with seal. The open date must be written immediately after the seal is broken and the new expiration date. This process will be easier when computers and scanners are used, but electronic devices should not be used in the chemical warehouse because it is highly flammable. Figure 2 shows the paint shop life tagging instructions.

PAINT SHOP LIFE CONTROL INSTRUCTIONS

Figure 2. Tagging instructions

3.6 Invented shelf-life chart:

Table 3 shows the new shelf-life chart with the expiration dates for closed and open containers. This makes the tagging process easier, as the expiration dates are not printed on the paint boxes. Therefore, it is important to maintain a chart. This process adds value to the product by reducing time, making it a perfect lean process.

Table 3 . Shelf-life chart

		S	helf Life Ch	nart	
		J			
	Part Number	Description	Supplier	Closed Container Shelf Life	Opened Container Shelf Life
	04488WEP-4	OFF WHITE EPOXY PRIMER	HENTZEN	24 MONTHS	12 MONTHS
~ 1	EPX-904	GRAY EPOXY PRIMER	COMMERCIAL PERFORMANCE	24 MONTHS	12 MONTHS
<u> </u>	EPX-908	BLACK EPOXY PRIMER	COMMERCIAL PERFORMANCE	24 MONTHS	12 MONTHS
8	EPX-950	WHITE EPOXY PRIMER	COMMERCIAL PERFORMANCE	24 MONTHS	
2	N-8330 BG-0255	GREEN ALKYD PRIMER	DIAMOND VOGEL	12 MONTHS	
8	PG-0255		DIAMOND VOGEL		
E	PG-5255 SDI175052	SPLI 75952 VELLOW PRIMER	BRG		6 MONTHS
	F90H226	MIL-DTL-53022 FROXY PRIMER	SHERWIN WILLIAMS	12 MONTHS	6 MONTHS
	N10G350	MIL-DTL-24441D FPOXY POLYAMIDE	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
	N106450	Military	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
	N-5113	WHITE ENAMEL	NCP COATINGS	24 MONTHS	12 MONTHS
	AUE100 C9405	GLOSS BLACK	COMMERCIAL PERFORMANCE	48 MONTHS	12 MONTHS
	AUE100 0130-10250	SVT BLUE	COMMERCIAL PERFORMANCE	48 MONTHS	12 MONTHS
	AUE100 0130-91001	WII MAR WHITE	COMMERCIAL PERFORMANCE	48 MONTHS	12 MONTHS
	AUE100 61310	JLG ORANGE	COMMERCIAL PERFORMANCE	48 MONTHS	12 MONTHS
	AUE100 71781	ANDERSON RED	COMMERCIAL PERFORMANCE	48 MONTHS	12 MONTHS
	AUE100 81496	SAFETY YELLOW	COMMERCIAL PERFORMANCE	48 MONTHS	12 MONTHS
	AUE100 92121	WHITE	COMMERCIAL PERFORMANCE	48 MONTHS	12 MONTHS
	AUE100 51264	REPNET PURPLE	COMMERCIAL PERFORMANCE	48 MONTHS	12 MONTHS
	AUE360 32048	PEBBLE GRAY	COMMERCIAL PERFORMANCE	48 MONTHS	12 MONTHS
	AUE360 81774	AGCHEM YELLOW	COMMERCIAL PERFORMANCE	48 MONTHS	12 MONTHS
	B62 WZ111 RAI 3000	FLAME RED	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
	B62TZ104 RAL6010	GRASS GREEN	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
	B62TZ104 RAI 6010	BRILLIANT BLUE	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
	B62 W7111 BAI 7009	GREEN GRAY	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
	B62 W7111 RAL7032	PEBBLE GRAY	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
	B62 W2111 RAE7032			36 MONTHS	12 MONTHS
	B62 W2111 RAE7035	ANSI GRAY		36 MONTHS	
	B62 W2111 RAL9010			36 MONTHS	
	E79YYH14249-4247	CUMMINS REIGE		24 MONTHS	12 MONTHS
	HHR-900		PRO PAINT INC	NA	
	IG-1280 PAL5007	PRILLIANT RULE	PRO PAINT INC	48 MONTHS	
<u> </u>	IG-1280 RAE5007		DIAMOND VOGEL	48 MONTHS	
A	IG-1280 IAE5017	SILVER GRAV & IVORY	DIAMOND VOGEL	48 MONTHS	12 MONTHS
D	IG-1281	CEMENT GRAV	DIAMOND VOGEL	48 MONTHS	
	IG-5282		DIAMOND VOGEL	48 MONTHS	
	MI N8045	CARC GREEN	ALITO BODY SPECIALTIES	12 MONTHS	6 MONTHS
	MLN8048	CARCITAN	AUTO BODY SPECIAL TIES	12 MONTHS	6 MONTHS
	N-7411	MILITARY GRAY ENAMEL	NCP COATINGS	24 MONTHS	12 MONTHS
	SPU72726	CAT BLACK	PRO PAINT INC	12 MONTHS	6 MONTHS
	SP1172739	CAT YELLOW	PRO PAINT INC	12 MONTHS	6 MONTHS
	VI X19396-02	ANSI GRAY	DIAMOND VOGEL	48 MONTHS	12 MONTHS
	VI X19664-04	WALISKESHA OBANGE	DIAMOND VOGEL	48 MONTHS	12 MONTHS
	VI X19395-07	Solar Gray	DIAMOND VOGEL	48 MONTHS	12 MONTHS
	Pinnacle 460	SILVER GRAY	DIAMOND VOGEL	48 MONTHS	12 MONTHS
	IG-0280 BAI 5007	BRILLIANT BLUE	DIAMOND VOGEL	48 MONTHS	12 MONTHS
	KI20980-0316	Kato Equipment vellow	DIAMOND VOGEL	24 MONTHS	12 MONTHS
	KI22165-0217	Pebble grav	DIAMOND VOGFI	24 MONTHS	12 MONTHS
	KI22166-0217	Ansigray	DIAMOND VOGEL	24 MONTHS	12 MONTHS
	KI22225-0317	Light gray	DIAMOND VOGEL	24 MONTHS	12 MONTHS
	N10A351	Haze grav	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
	N10W352	white	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
	AUE 370	GLOSS BLACK	SHERWIN WILLIAMS	48 MONTHS	12 MONTHS
	AUE 370	signal Black	SHERWIN WILLIAMS	48 MONTHS	12 MONTHS
	F92SAA26307	Grav epoxy	SHERWIN WILLIAMS	24 MONTHS	12 MONTHS
	04489CEH-4	CATALYST		24 MONTHS	12 MONTHS
	EPX901	CATALYST		24 MONTHS	12 MONTHS
	GXH1080	CATALYST	PPG	6 MONTHS	6 MONTHS
	IG-0245	CATALYST	DIAMOND VOGEL	48 MONTHS	12 MONTHS
5	V93V227	CATALYST	SHERWIN WILLIAMS	24 MONTHS	12 MONTHS
Ĕ	N10V350	CATALYST	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
S	N10V450	CATALYST	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
_ <u>≻</u> _	AUF-101	CATALYST	PRO PAINT INC	24 MONTHS	12 MONTHS
7	B60VZ70	CATALYST	SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
2	GXH1080	CATALYST	PPG	6 MONTHS	6 MONTHS
4	GHX1086	CATALYST	PRO PAINT INC	24 MONTHS	12 MONTHS
C	160260	CATALYST	DIAMOND VOGEL	48 MONTHS	12 MONTHS
-	V66-V29	CATALYST	SHERWIN WILLIAMS	24 MONTHS	12 MONTHS
	MULT E-PDYX 190 PECHIA	CATALYST		24 MONTHS	
	N10V351		SHERWIN WILLIAMS	36 MONTHS	12 MONTHS
	1/02//228	CATALYST		24 MONTHS	
	10 506				
E.	TOTTENE				
ž	N-2022 Xviol	REDUCER		72 MONTHS	
	P 120	REDUCER	DIAWOND VOGEL		
~	1-120	REDUCER			

3.7 Create paint coverage and cost estimator:

Finding a calculator that could provide the data on the required gallons of paint to cover a part and the cost of the paint was a real challenge. This calculator would make the process faster by allowing parts to be ordered just in time. Otherwise, parts would need to sit on the floor for 5 days (lead time) waiting for paint from the purchasing department. The coverage calculator would also be useful for maintaining the right amount of safety stock. Cost estimation makes the process very accurate, saving the industry a lot of money by providing accurate numbers that account for overspray and waste. Part 2 discusses more about paint shop cost savings after lean thinking. Figure 3 shows the multi-step cost estimator, which can be used for more customized results for any paint mix. The calculator considers the following factors: percentage of solids, coverage for a gallon with 1 mil thickness, gallon price, cost per square foot of part A, ratio of part B, cost of part B, ratio of reducer, cost of reducer, and total cost per square foot with 1 mil thickness. The total cost can be multiplied by N number of mills based on customer requirements. This process has been continuously improved to create a single-step cost estimator. This is extremely easy to use and has tons of background data. The main goal of this calculator is to find coverage and cost in 1 second. This sheet is easy to update and add more paints.

Figure 3. Multi-step cost estimator

Figure 4 shows a single-step cost estimator. It works with custom formulas for each paint based on paint properties and technical data. The user simply enters the area of the part in square feet in the specified red cell and presses enter. All costs and paint volumes are instantly updated with the new number. The user then needs to find which paint is being used to obtain the correct values. This calculator eliminates many emails and communication processes, making everything a single step. A price update sheet is directly linked from the coverage sheet as background data to update new paint prices. A user guide shows the background formulas and explains how to use the calculator and how to update or change the paints. This is one of the best process improvements in the paint shop, saving a lot of money and making the process faster and simpler. Therefore, this process improvement is an excellent example of lean thinking.

Figure 4. Single step cost and coverage estimator

© IEOM Society International

3.7 Create paint coverage and cost estimator:

The current light status and locations should be known in order to restore the paint shop light. If the light capacity is 600 Lux, that does not mean that there are 600 Lux on the ground. Lux should be calculated on the part surface area. To do this, all of the paint line layout must be considered, and every point must be measured using a Lux meter. In this research, the Lux meter HDE Lx-1010B was used. This meter can provide accurate readings of +/-5%. A current Lux plant layout was then created. Figure 5 shows the Lux report of the current layout. The arrows represent the paint line flow. Both sides of the line need to be measured because the painter will be spraying from both sides. Therefore, it is important for the painter to check every corner clearly.

Solution:

- 1. Restore all the screens of the lights. If possible add new LED tubes at paint exhaust area.
- 2. Add new lights in front of the exhaust at both the paint booths and top of the pots in galley

Figure 5. Lux report

The report explains the solution based on the requirement and the difference between the current lux level. In this case, new tubes need to be added and old ones restored. Therefore, the quality of the painting is improved, and rework is reduced at a lower cost. This is a good process improvement and an example of lean thinking.

3.7 Customer company expectations for future business:

Customer companies expect their suppliers to have processes that are not too complex, as this could lead to quality errors and extra overhead costs. Most companies, such as aerospace and motor vehicle companies, need very accurate parts, so they need to follow all procedures with flexibility, which reduces errors. Small to mid-size companies that want to win projects should follow the best procedures with the least possibility of errors. Lean manufacturing is the best way to make procedures easier, simpler, and more profitable.

4. Results and Discussion

4.1 Fast processing and on time delivery:

The lean thinking in Jones metal's paint shop led to a significant improvement in processing speed. More practical numbers will be discussed in Volume 2. The paint matrix and cost estimators saved costs and improved process speed. Expiration charts and shelf-life tags improved the FIFO process and quality. The 5S event played a major role in the improvement process, changing the entire warehouse layout to make it easier to store paints. All the spaces were used very well, and tools were standardized. The improvement in lighting Lux also increased quality.

4.2 Paint quality:

All the process improvements discussed in the case study were found to increase paint quality, both directly and indirectly. Improved quality led to profits and business improvements in the future.

4.3 Saves money:

Lesser money was spent on process improvement, and in most cases, no money was spent at all. This directly saved money in the form of less maintenance. Cost estimator and coverage charts saved direct money by purchasing the right amount and billing the customer the right amount. This also saved money on labor charges by making the processes faster by eliminating non-value-added time and sitting time.

4.4 More scope for business development:

After these improvements were made at Jones Metal Inc., the company won a project and qualified as a supplier for a well-respected company. This was due to the company's best procedures, failure processes, and ongoing improvement. Therefore, there is a lot of potential for future business development.

5. Conclusion

Lean thinking has increased flexibility, process speed, and cost savings (Womack et. al, 1990). The major difference between continuous production processes and custom product processes is the rate of improvement due to complexity. The rate of change is much slower for custom production due to unique designs and complex processes, but it still decreases complexity. The same changes in high-volume/continuous production plants give much better results. While applying lean methodologies, only a few have been applied because some do not work, such as pull. It is difficult to apply pull in more customized settings due to different paints, customers, and procedures. Lean thinking always makes changes towards flexibility regardless of the size of the industry, but there will be a difference in applying lean to complex and non-complex industries, and the development rate will also be different.

References

- Carroll, B. (2002). Lean performance ERP project management : Implementing the virtual supply chain (The St. Lucie press/APICS series on resource management). Boca Raton: St. Lucie Press,2002.
- Godinho Filho, M., Variations of the kanban system: Literature review and

classification. International Journal of Production Economics, 125(1), pp 13-21, 2010.

- Liker, J. and Franz, J. (2011). The toyota way to continuous improvement: Linking strategy and operational excellence to achieve superior performance. New York: McGraw-Hill.Hines, P., and Taylor, D. (2000).
- McCarthy, D. and Rich, N. (2015). Lean TPM: A blueprint for change (Second edition. ed.). Oxford: Elsevier Butterworth-Heinemann, 2015.
- Murthy, D. and Kobbacy, K., Complex system maintenance handbook (Springer series in reliability engineering). London: Springer, 2008.
- Womack, J. and Jones, D. (2003). Lean thinking: Banish waste and create wealth in your corporation (1st Free Press ed., rev. and updated. ed.). New York: Free Press, 2003.
- Womack, J., Jones, D. Roos, D., and Massachusetts Institute of Technology., The machine that changed the world : Based on the Massachusetts institute of technology 5-million dollar 5-year study on the future of the automobile. New York: Rawson Associates, 1990.

Biographies

Dave Olson is an industry veteran with 30 years of experience in metal fabrication industry. His core competencies include Sales, Metal Fabrication, Laser Cutting, Sheet Metal, Lean Manufacturing, Product Development, Machine Tools, Sales Management, Quality Assurance, Water Jet, Saws, Press Brake, Robotic Welding, MIG welding, Spot Welding, Resistance Welding, Tube Bending, Tube Cutting, Plating, Painting

Dr Kuldeep Agarwal is a professor in the Department of Automotive and Manufacturing Engineering Technology at Minnesota State University Mankato. His research is in the areas of Additive manufacturing, metal forming, process improvements, and robotic welding. He is the graduate coordinator and works with local industries on lean, project manufacturing, and six sigma methodologies.

Naim Islam is a professional science master's student, pursuing engineering management under the Department of Industrial and Manufacturing Engineering at Minnesota State University, Mankato. He completed his bachelor's degree in communications engineering from International Islamic University, Malaysia. Upon

completing graduation, he worked as an IT assistant in Sydney, Australia and as a performance marketer in Dubai, U.A.E. During his work experience, he has handled process improvement and waste reduction projects in different applications. He is actively involved and interested in various research topics including quality assurance, supply chain management, Lean manufacturing, Lean-Six-sigma applications, project management, new product development, design of experiments, data analysis and statistics. He has registered with IEOM as a student member to be actively involved and learn more from the industrial/manufacturing sector.