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Abstract 

In the Dual-Resource Constrained Flexible Job Shop Problem (DRCFJSP), two different types of resources, such as 
workers and machines, are required to process each job's operations. The analysis and assessment of priority decision 
rules for scheduling production jobs in DRCFJSPs is the primary goal of this work. The evaluation criteria in this 
research consists of demand, due date, cycle time, number of operations, and setup time. Then, a set of priority rules 
for development is chosen after a review of the literature, including Composite Dispatching Rules (CDRs) and Multi-
Criteria Decision Making (MCDM)-based priority rules like Preference Selection Index (PSI), and Proximity Index 
Value (PIV). The weights of criteria are obtained by fuzzy Stepwise Weight Assessment Ratio Analysis (Fuzzy 
SWARA). Discrete Event Simulation (DES) model is developed to assess the performance of the DRCFJSPs with 
different rules. Numerical examples and real-world problems (with 114 jobs, 28 machines, and 23 people) are used to 
determine the best-performing prioritization rule. For all cases, the CDR considering Processing Time, Least Work 
Remaining, Earliest Due Date were found to be the best. The PSI-based rule is in second rank for large-scale case. 
Overall, the suggested approach yields solid results and is easy to adapt to real-world scenarios. 

Keywords 
Dual-Resource Constrained Flexible Job Shop Scheduling (DRCFJSP), Discrete Event Simulation (DES), Priority 
Dispatching Rule (PDR), Multi-Criteria Decision Making (MCDM), and Composite Dispatching Rule (CDR)  

1. Introduction
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most important multimodal optimization issues, a 
well-known standard abstraction of the real production process. Routing and scheduling are the two subproblems that 
make up the FJSP (Soofi et al. 2021). The assigned processes must be sequenced across all machines in order to 
generate a workable schedule with a tolerable goal value. The routing sub-problem entails allocating each operation 
to one of a group of given machines. However, in practice, tasks cannot be completed if employees are not present or 
do not possess the necessary skills. The worker-resources constraint must be taken into consideration to get around 
this problem. Thus, the dual-resource limited flexible job shop scheduling problem—an expanded FJSP that considers 
the worker resources constraint—is suggested. Determining the operation order and allocating the resources, including 
employees and machinery, are necessary to solve the Dual-Resource Constrained Flexible Job Shop Scheduling 
(DRCFJSP). 

In manufacturing, the presence of skilled operators is crucial for task completion. Processing times depend on operator 
efficiency and specialization, impacting the overall job shop schedule. Different operators using the same machine 
exhibit varied skills and speeds. Operator proficiency often corresponds to experience and specialization. This 
variation can lead to tasks being completed at different rates. In general, each job can only be handled by the 
appropriate equipment and operator for the assembly process to be successful. This implies that each job needs two 
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distinct resources, a machine, and an operator, at the same moment from the standpoint of scheduling. Therefore, it is 
essential to properly allocate the operation to the workers and plan the tasks to control the machines in the jobs shop 
in order to reduce the batch makespan. 

1.1 Objectives 
This study encompasses three primary objectives. Firstly, the research aims to successfully formulate a set of hybrid 
dispatching rules  employing Multi-Criteria Decision Making (MCDM) techniques. Secondly, it seeks to establish a 
Discrete Event Simulation (DES) model for the Dual-Resource Constrained Flexible Job Shop Scheduling Problem 
(DRCFJSP). Through this model, essential job shop performance evaluation metrics, namely Makespan, Mean Flow 
Time, Mean Tardiness, and Maximal Tardiness, will be extracted. Lastly, the objective involves acquiring job shop 
performance evaluation parameters founded upon the MCDM-based rules, followed by a comparative assessment 
against the outcomes of existing Composite Dispatching Rules (CDRs). 

2. Literature Review
The intricacy of the problem has led to numerous techniques being suggested throughout the years. Because the 
DRCFJSP is NP-hard, finding the best solution may require some time and effort. As a result, many meta-heuristic 
solutions had been proposed: Simulated Annealing (SA), Genetic Algorithm (GA), and Vibration Damping 
Optimization (VDO) using a variety of neighborhood structures (Soofi et al. 2021 and Yazdani et al. 2015). These 
methods were perceived as capable of offering the best solutions for small- to medium-sized problems. Besides, Wu 
et al. (2018) investigate a flexible job shop scheduling problem with two resource restrictions, accounting for the 
employees' potential for learning to create a successful hybrid genetic algorithm to solve the issue. The outcomes show 
that the suggested approach can address the issue successfully and quickly. However, this study did not consider the 
Tardiness objective. Next, with a Makespan reduction objective, Zheng and Wang (2016)  attempted to subsequently 
tackle a DRCFJSP. The research had suggested a new encoding technique and knowledge-guided fruit fly 
optimization. Two different kinds of permutation-based search operators were created for the proposed algorithm to 
carry out the smell-based search for operation sequence and resource assignment. However, this approach did not take 
into account reducing performance measures associated to tardiness.   

To encourage the use of exact techniques and to make it simpler to evaluate the efficacy of heuristic approaches, two 
modeling frameworks—mixed-integer programming and constraint programming—were introduced (Kress and 
Müller 2019). Still, this study did not include assessing Tardiness metrics. Besides, a first investigation into a FJSP 
with multi-objective and operator adaptability is made in paper of Gong et al. (2018). The issue is illustrated using 
non-linear integer programming. Next, the proposed methodology is solved using a memetic algorithm (MA), whose 
goal is to minimize the Flow Time related measures, as well as workload related measures of all machines. The 
outcomes show that, for the proposed method, the MA performs better than alternative algorithms. However, this 
study also did not include considering assessing Tardiness metrics. 

Other methods, such as Priority Dispatching Rules (PDRs) including both Composite Dispatching Rules (CDRs) and 
MCDM-based rules, and the combination of dispatching rules and DES, will be discussed more descriptively below. 

2.1 Priority Dispatching Rule 
In Job Shop Scheduling Problem (JSP), the next operation is chosen from the waiting queue using Priority Dispatching 
Rules (PDRs) (Sculli and Tsang 1990). These rules require several operations to be completed in the shop, which 
necessitates limitations on machine requirements, staff skills, flow patterns, and component assembly requirements. 
As work orders build up, facilities will be unable to satisfy all the urgent demands. As a result, the PDRs used, as well 
as the operational characteristics of the business, determine how long it takes to complete the operation and how 
frequently it is finished late. Unlike previous approaches, PDRs have been implemented by numerous researchers for 
determining job priority because of their easy accessibility, simplicity of execution, non-technological barriers, ability 
to come up with effective solutions in a shorter amount of time, as well as the potential to solve large-scale problems 
(Thenarasu et al. 2022). 

Moreover, PDRs have never been used in the DRCFJS issue before, despite being used in Flexible Job Shop 
Scheduling (FJSP) (Thenarasu et al. 2022). Apart from that, the CDRs along with MCDM-based priority rules have 
not had much adoption in the scheduling problem, hence, these rules will be considered more. 
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2.1.1. Composite Dispatching Rule 
Tay and Ho (2008)  had used CDRs to tackle the multi-objective FJSP by reducing the Makespan, Mean Tardiness, 
And Mean Flow Time. It had been shown that for the benchmark case, CDRs surpassed SPRs. In addition, Sels et al. 
(2012) examined the Flow-Time and Tardiness-related measures of 30 distinct priority rules, including CDRs 
extracted from the literature. Furthermore, the analyses of the CDRs of Ashwin et al. (2022) and Thenarasu et al. 
(2022) showed that the CDRs from the previous two researches excelled in both small-scale and large-scale FJS issues. 
Therefore, this research would also retest these rules in the DRCFJSP. 
 
2.1.2. Multi-Criteria Decision-Making Priority Rule 
Research has found that MCDM implementation has had a tremendous effect on JSP (Thenarasu et al. 2020). To 
identify which dispatching rule offers the most effective solution, along with the application of CDRs, a hybrid Multi-
Criteria Decision Making (MCDM) PDR-based strategy has been adopted in the FJSP (Thenarasu et al. 2022). In that 
study, five methods were applied. Despite having outstanding results, these rules had high processing techniques, an 
inconvenient weighting strategy, and the potential to reverse rank (Munier and Hontoria 2021). It is also possible to 
infer that even though there have been some MCDM-based priority rules proposed in the FJSP, not much MCDM 
application has been made to the DRCFJSP. Moreover, there are many more methods that should be considered. 
 
Given its simplicity and ability to utilize easier pair-wise comparisons, fuzzy SWARA is among the most effective 
methods for obtaining the weights of criteria (Banihashemi et al. 2021 and Thakkar 2021). Besides that research, to 
prioritize the JSP sequencing rules from best to worst, the Preference Selection Index (PSI) technique was suggested 
(Bari and Karande 2022). This approach is much less complicated and more efficient than other MCDM methods 
because it does not consider determining the relative importance of the criteria, which minimizes the work required to 
calculate the weights of the criteria. Next, Mufazzal and Muzakkir (2018) recently designed an approach called PIV. 
In many areas, such as dispatching rules in job sequencing (Ahmad et al. 2021), this approach avoids the rank reversal 
that occurs with the traditional TOPSIS method (Thakkar 2021). 
 
2.2 Combination of Dispatching Rule and Discrete Event Simulation 
In the Job Shop Lot Streaming Problem (JSLSP), the simulation technique is employed with MCDM to decide the 
production scheduling strategy under various circumstances. The findings show that customer-oriented dispatching 
rules deliver better outcomes when important customers heavily outnumber other customer segments, while other 
traditional rules produce better results when customer segments have similar significance weights (Güçdemir and 
Selim 2018). Besides, Thenarasu et al. (2022) had proposed a DES model of an FJSP using Arena software to evaluate 
the best dispatching rule. It was determined that the suggested approach could be successfully applied to real-world 
circumstances. According to the literature, simulation-based models in job shop scheduling are useful for solving 
significant real-world issues and have become more popular because of advances in processing technology. The 
industrial issue can be represented in the DES model without sacrificing the limitations of reality. The effectiveness, 
economic sustainability, and competitiveness of industrial sectors on the world market can all be increased using 
modeling techniques. Unfortunately, the simulation-based approach still has not been adopted by the DRCFJSP. 
 
In summary, there have been many research studies about solving the DRCFJSP using dispatching rules. However, 
there has not been a particular paper that addresses the application of simulation-based research under the dual-
resource constrained situation. Hence, this study will suggest an innovative use of the CDRs and MCDM-based rules 
when combining with Arena simulation model that incorporates concurrent restrictions and parameters. Then, those 
dispatching rules are used to assess the efficiency metrics of real-world problems using the DES model. 
 
3. Methods 
According to Figure 1, this study will consist of three phases: (1) the development of hybrid MCDM-based priority 
rules; (2) the development of a discrete event simulation model; and (3) determining the best priority rule.  
 
The initial phase involves several steps. Firstly, a set of criteria will be chosen, followed by the determination of their 
weights using Fuzzy SWARA. Subsequently, MCDM methods will be employed to formulate priority rules. In the 
next phase, input data alongside all rules will be fed into the simulation model. A priority rule will be selected, and 
resources—both machines and workers—will be assigned accordingly. The highest-priority jobs will then be allocated 
to workers on specific machines. Sequential testing of all rules will take place, concluding only after exhaustive 
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examination. Consequently, performance metrics will be documented. In the final phase, this study will assess the 
performance of the priority decision rules across three benchmarks and a real-world case. Evaluation metrics, 
encompassing Makespan, Mean Flowtime, Mean Tardiness, and Maximum Tardiness, will be appraised. The most 
optimal solution, thus, will be determined by the rule yielding the best results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
For the CDRs, we selected the composite rules proposed by Thenarasu et al. (2022) and Ozturk et al., (2019). The 
Hybrid MCDM based priority dispatching rule involves the usage of Fuzzy SWARA method to determine the criteria 
weights and the Preference Selection Index (PSI) and the Proximity Index Value (PIV) for ranking calculation. 

• Rule 1 (R1): 2PT + LWKR + EDD  (Thenarasu et al. (2022)) 
• Rule 2 (R2): AVPRO + PT + LWKR (Ozturk et al., (2019)) 
• Rule 3 (R3): Preference Selection Index (PSI) 
• Rule 4 (R4): Proximity Index Value (PIV) 

(PT- Process Time, LWKR- Least Work Remaining, EDD- Earliest Due Date, AVPRO- Average Processing time per 
Operation.) 
 
3.1. The Development of Hybrid MCDM-Based Priority Rules 
3.1.1. Determine The Set of Criteria 
Cycle time refers to the duration needed to complete the entire production process of a single unit. When the objective 
is to minimize Flow Time and Tardiness related metrics in a scheduling problem, cycle time is non-beneficial. 
 
Number of operations refers to the quantity of individual tasks involved in a schedule. When the objective is to 
minimize Flow Time and Tardiness related metrics in a scheduling problem, number of operations is non-beneficial. 

Figure 1. Methodology Framework  
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Setup time criteria refers to the duration needed to prepare resources or equipment prior to commencing a task. When 
the objective is to minimize Flow Time and Tardiness related metrics, setup time is non-beneficial. 
 
Due date refers to the predetermined deadline for task completion. When the objective is to minimize Flow Time and 
Tardiness related metrics in a scheduling problem, incorporating the due date criteria as a decision factor is beneficial. 
  
Demand is the number of products that must be manufactured to meet the requirements of its customers or clients. 
When the objective is to minimize Flow Time and Tardiness related metrics, demand is non-beneficial.  
 
3.1.2. Weight Assignment for Criteria Using Fuzzy SWARA 
 
In order to calculate the weights of each criterion, the Fuzzy SWARA method is applied.  
 

Step 1: Determine experts’ scores. 
After determining a set of criteria, a survey of 
scoring those criteria will be conducted for 
three experts. The questionnaire includes 
asking about their experiences in the 
mechanical or manufacturing fields, as well as 
their scores for each criterion in scale from one 
to nine based on their opinion and knowledge. 

Table 1. The experts’ experience in the mechanical industry and 
their scores for each criterion 

Expert E1 E2 E3 
Experience (years) 8 15 18 

Cycle time 7 8 8 
Due date 8 7 9 

Number of operations 7 7 8 
Setup time 6 6 7 
Demand 9 8 9 

 

Step 2: List the criteria in descending order and make pairwise comparisons between criteria. 
Based on the calculated average score, list the criteria in the descending order and compute the comparative 
importance of average value 𝑠𝑠𝑗𝑗 of the 𝑗𝑗𝑡𝑡ℎ criteria with respect to (𝑗𝑗𝑡𝑡ℎ − 1) criteria: 

𝑠𝑠𝑗𝑗 =
𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑗𝑗+1

𝑋𝑋
 

Where, 𝑋𝑋𝑗𝑗 is the average score of 𝑗𝑗𝑡𝑡ℎ criteria. 
 𝑋𝑋𝑗𝑗+1 is the the average score of the next criteria. 
 𝑋𝑋 is the maximum value in the scale. 
Step 3: Transform the score to the fuzzy form. 
With the help of the linguistic scale of the 
fuzzy value, transform the crisp value of 
comparative importance of average value 𝑠𝑠𝑗𝑗 to 
the fuzzy form 𝑠𝑠𝚥𝚥�. 

Table 2. Fuzzy and linguistic scale 

Linguistic scale Response scale 
Absolutely less significant 1 1 1 
Dominantly less significant 1/2 2/3 1 
Much less significant 2/5 1/2 2/3 
Really less significant 1/3 2/5 1/2 
Less significant 2/7 1/3 2/5 
Moderately less significant 1/4 2/7 1/3 
Weakly less significant 2/9 1/4 2/7 
Equally significant 0 0 0 

 

Step 4: Calculate the coefficient values and weight values of criteria. 
During this step, the weight values of the criteria are reevaluated, and the final relative importance scores of the 
selection criteria are calculated. The coefficient value 𝑘𝑘𝚥𝚥�  is determined using the following formula: 

𝑘𝑘𝚥𝚥� = �
1� ,                 𝑗𝑗 = 1
𝑠𝑠𝚥𝚥� + 1� , 𝑗𝑗 > 1

 

Then, calculate the weights values of the criteria 𝑞𝑞𝚥𝚥� : 
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𝑞𝑞𝚥𝚥� = �
1� ,                𝑗𝑗 = 1
𝑞𝑞�𝑗𝑗−1
𝑘𝑘𝚥𝚥�

, 𝑗𝑗 > 1 

Step 5: Calculate the fuzzy weight coefficients 
values of criteria then defuzzying them. 
The formula to compute the fuzzy weight 
coefficients values of criteria: 

𝑤𝑤𝚥𝚥� =
𝑞𝑞𝚥𝚥�

∑ 𝑞𝑞𝚥𝚥�𝑛𝑛
𝑗𝑗=1

 

 
After that, defuzzying the weights of criteria 
by using the formula: 

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑤𝑤(𝑣𝑣) + 4𝑤𝑤(𝑚𝑚) + 𝑤𝑤(𝑣𝑣)

6
 

Table 3. Weights of criteria 

Criteria Demand Due 
date 

Cycle 
time 

Number of 
operations 

Setup 
time 

Crisp 
value 0.322 0.241 0.187 0.146 0.104 

 

 
 
3.1.3. The MCDM Methods 
 

Preference Selection Index (PSI) Proximity Index Value (PIV) 
Step 1: Create a decision matrix of criteria and alternatives. 

𝐷𝐷𝑚𝑚×𝑛𝑛 = �
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋯ ⋯ ⋯
𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

� 

In the above representation, each element 𝑎𝑎𝑐𝑐𝑗𝑗 in the decision matrix 𝐷𝐷𝑚𝑚×𝑛𝑛 corresponds to the actual value of the 
𝑖𝑖𝑡𝑡ℎ alternative in term of 𝑗𝑗𝑡𝑡ℎ criterion. 
Step 2: Normalize the decision matrix. 
If 𝑗𝑗𝑡𝑡ℎ criterion is beneficial, 

𝑟𝑟𝑐𝑐𝑗𝑗 =
𝑋𝑋𝑐𝑐𝑗𝑗
𝑋𝑋𝑗𝑗𝑚𝑚𝑣𝑣𝑚𝑚

 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2, … ,𝑚𝑚;  𝑗𝑗 = 1,2, … ,𝑛𝑛 

If 𝑗𝑗𝑡𝑡ℎ criterion is non-beneficial,  

𝑟𝑟𝑐𝑐𝑗𝑗 =
𝑋𝑋𝑗𝑗𝑚𝑚𝑐𝑐𝑛𝑛

𝑋𝑋𝑐𝑐𝑗𝑗
 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2, … ,𝑚𝑚;  𝑗𝑗 = 1,2, … ,𝑛𝑛 

Where, 𝑟𝑟𝑐𝑐𝑗𝑗  is the normalized value of the decision 
matrix. 

 𝑋𝑋𝑐𝑐𝑗𝑗 is the original score of decision matrix. 
 𝑋𝑋𝑗𝑗𝑚𝑚𝑣𝑣𝑚𝑚  and 𝑋𝑋𝑗𝑗𝑚𝑚𝑐𝑐𝑛𝑛  are the maximum and 
minimum scores of decision matrix for each 𝑗𝑗𝑡𝑡ℎ 
criterion. 

Step 2: Normalize the decision matrix. 

𝑟𝑟𝑐𝑐𝑗𝑗 =
𝑋𝑋𝑐𝑐𝑗𝑗

�∑ 𝑋𝑋𝑐𝑐𝑗𝑗2𝑚𝑚
𝑐𝑐=1

 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2, … ,𝑚𝑚;  𝑗𝑗 = 1,2, … ,𝑛𝑛 

Where, 𝑟𝑟𝑐𝑐𝑗𝑗  is the normalized value of the decision 
matrix. 
 𝑋𝑋𝑐𝑐𝑗𝑗 is the original score of decision matrix. 
 

Step 3: Calculate the preference variation value (𝑃𝑃𝑉𝑉𝑗𝑗) 
Calculate the average normalized value for 𝑗𝑗𝑡𝑡ℎ criterion: 

𝑟𝑟𝚥𝚥� =
∑ 𝑟𝑟𝑐𝑐𝑗𝑗𝑚𝑚
𝑐𝑐=1

𝑚𝑚
 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1, … ,𝑛𝑛 

Then, calculate the preference variation value (𝑃𝑃𝑉𝑉𝑗𝑗): 

𝑃𝑃𝑉𝑉𝑗𝑗 = ��𝑟𝑟𝑐𝑐𝑗𝑗 − 𝑟𝑟𝚥𝚥��
2

𝑛𝑛

𝑐𝑐=1

 

Step 3: Calculate the weighted normalized decision 
matrix. 

𝑣𝑣𝑐𝑐𝑗𝑗 = 𝑤𝑤𝑗𝑗 × 𝑟𝑟𝑐𝑐𝑗𝑗 
Where, 𝑣𝑣𝑐𝑐𝑗𝑗  is an element in the weighted normalized 

matrix. 
 𝑤𝑤𝑗𝑗  is the corresponding element in the weight 

vector. 

Step 4: Calculate the overall preference value (𝜓𝜓𝑗𝑗): 
Firstly, calculate the deviance in 𝑃𝑃𝑉𝑉𝑗𝑗: 

𝜙𝜙𝑗𝑗 = 1 − 𝑃𝑃𝑉𝑉𝑗𝑗 
Then, calculate the preference variation value (𝑃𝑃𝑉𝑉𝑗𝑗): 

Step 4: Calculate the weighted proximity index. 
If 𝑗𝑗𝑡𝑡ℎ criterion is beneficial, 𝑢𝑢𝑐𝑐𝑗𝑗 = 𝑣𝑣𝑗𝑗𝑚𝑚𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑐𝑐𝑗𝑗 
If 𝑗𝑗𝑡𝑡ℎ criterion is non-beneficial, 𝑢𝑢𝑐𝑐𝑗𝑗 = 𝑣𝑣𝑐𝑐𝑗𝑗 − 𝑣𝑣𝑗𝑗𝑚𝑚𝑐𝑐𝑛𝑛 
Where, 𝑢𝑢𝑐𝑐𝑗𝑗 is the weighted proximity value. 
 𝑣𝑣𝑗𝑗𝑚𝑚𝑣𝑣𝑚𝑚  is the maximum weighted normalized 

value for 𝑗𝑗𝑡𝑡ℎ criterion. 
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𝜓𝜓𝑗𝑗 = 𝜙𝜙𝑗𝑗/�𝜙𝜙𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 
 𝑣𝑣𝑗𝑗𝑚𝑚𝑐𝑐𝑛𝑛  is the minimum weighted normalized 

value for 𝑗𝑗𝑡𝑡ℎ criterion 

Step 5: Calculate the PSI score. 

𝐼𝐼𝑐𝑐 = �𝑟𝑟𝑐𝑐𝑗𝑗 × 𝜓𝜓𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … ,𝑚𝑚 

Step 5: Calculate the overall proximity value. 

𝑑𝑑𝑐𝑐 = �𝑢𝑢𝑐𝑐𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 

Step 6: Rank the alternatives 
 
The job rankings obtained from the two MCDM based priority rules PSI and PIV are shown in Table 4. 

Table 4. Job rankings using eight MCDM-based priority rules in real-world problem. 

        Job 
Rule 1 2 3 … 113 114 

PSI 91 34 53 … 76 56 
PIV 40 62 10 … 78 109 

       
 
3.2. The Development of Discrete Event Simulation Model 
3.2.1. Numerical example  
The study evaluates suggested rules using three numerical data set from Brandimarte (1993). These examples vary in 
the number of jobs, machines, operations, and workers. The model assumes a range of values for these parameters 
across different scenarios. Machine processing times are determined using uniform distribution within specified limits. 
The model considers situations where one machine and one worker can perform various operations. Multiple machines 
can perform similar operations with different times. Machines rely on workers for operation. The study also assumes 
that machines require setup before each operation, even for consecutive similar operations. 

Table 5. Descriptions of the numerical instances and real-world case. 

Instances (n × m × k × w) * NOP Flexibility 
Factor ** 

Job per 
1 batch 

Processing 
time (T.U) 

Due Date 
(T.U) 

Setup time 
(T.U) 

MK1 10 × 6 × 54 × 4 5 to 7 3 50 1 to 7 35-55 0.35–1.14 

MK2 15 × 8 × 82 × 6 3 to 10 3 50 1 to 10 65-135 3.42–10.55 

MK3 20 × 10 × 141 × 8 5 to 10 2 50 5 to 20 145-215 6.45-16.43 

Real-World 114 × 28 × 245 × 23 1 to 14 4 5000 2 to 32 120–360 0.12–0.48 
 
Note: * n – No. of Jobs, m- No. of Machines, k- Total operations and w- No. of Workers, NOP- Number of operations 
per Job. T.U- Time Units. Time units for MK1, 2, 3 are in minutes, for real case are in hours. ** Flexibility Factor: 
maximum number of equal machines per operation. 
 
3.2.2. Real-World Problem 
A real-world case is a press plant had 28 machines with varying capacities, and it needed to complete 114 tasks 
involving 245 procedures for producing vehicle parts. Each task required one to fourteen operations, and tasks had 
specific orders to be executed on available machines. The production was based on a monthly demand. The work 
schedule was from 7 am to 11 am and 1 pm to 5 pm, with ten workers available for overtime from 7 pm to 10 pm.  

Table 6. Data of Press-shop industry contain detailed elements of jobs. 

Job Operation Processing time 
(Hrs.) 

Eligible worker 
(Worker number) 

Monthly 
Demand 

Due 
Date 

(Days) 

Cycle 
Time 
(Hrs.) 

Setup Time 
Distribution 

(Hrs.) 
Job 1 

(Part 1) Blanking M1 (8), M11 (7), 
M23 (15), M24 (24) 

1, 2, 3, 4, 6, 8, 12, 
14, 15, 20, 21, 22 20,000 9 256 UNIF 

(0.12,0.48) 
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Trimming M1 (2), M7 (32), 
M13 (30), M15 (23) 

1, 2, 3, 4, 6, 8, 14, 
16, 20, 21 

Job 114 
(Part 
114) 

Piercing M5 (24), M16 (3), 
M22 (3), M25 (23) 

1, 2, 7, 9, 10, 15, 
16, 17, 20, 22 

15,000 5 192 UNIF 
(0.12,0.48) 

Slitting M14 (6), M15 (14), 
M27 (6), M28 (8) 4, 5, 12, 17, 18, 23 

 
3.2.3. The Arena model 
After setting up a conceptual model and collecting required data, the Arena model is built. The development of 
simulation models considers the static nature of task arrivals for processing. Jobs in small-scale instances are processed 
in a predictable amount of time. In contrast, in the real-world case, the setup time is determined using the relevant 
probability distributions. By doing statistical analysis on historical data, the probability distribution is determined.  
 
The simulation model begins with the part arrival module which defines job arrival information such the quantity of 
jobs arriving at the shop floor and the inter-arrival time. For each incoming work, the total/maximum number of 
operations that the job must go through is defined. The model receives a definition of the number of batches and the 
batch size as inputs. Then, the machine loading rule is used to specify and map the number of machines that may 
execute each operation for each task. According to the user-selected priority rule, jobs that are awaiting processing 
are given precedence at each workstation. Following the conclusion of each operation in the model, the job ranks are 
updated. Arena offers simple queuing priority options such as first in first out, last in first out or by attribute values. 
For more complicated decision rules such as the CDRs and MCDM in this work, we need to employ VBA in Arena 
or Excel. The simulation model is then divided into three main phases, namely (a) Step 1: assigning work to machines, 
(b) Step 2: prioritizing jobs, and (c) Step 3: gathering performance metrics.  
 
 Step 1: Assign operations to machines (Figure 2) 

Step 1 involves the creation of jobs and the assignment of characteristics. Processing speed, machine adaptability, 
deadline, the quantity of processes, etc. are some of the attributes. Entities are directed to the appropriate machines 
depending on their sequences of operation once the characteristics have been assigned. We assumed that the entities 
created would be the jobs and one entity will be the batch of 5000 products. Only one entity would be created per 
arrival as well as there are 114 arrivals in real-world problem. After that, the job type, entity sequence, entity picture 
are the attributes which are assigned to the entity. The sequence will follow the data file and the entity picture will be 
based on the attribute job type. The module Route will transfer the job to the station in its sequence. When they have 
done the process, they will be moved to the record station (step 3). 

 
 
 
 
 Step 2: Determine the order job based on priority rules. (Figure 3-5) 

Figure 2. Arena Modules of step 1 
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After jobs are assigned to the machine that is not busy, the job priorities in queue are determined by the hybrid MCDM 
rules and CDR.  
 
 

 

 

 

Seize module and queue element are used to assign the priorities. A combo box was created in the simulation to allow 
users to choose the preferred rule. VBA coding (Figure 6) is required to calculate the ranking. After the job is 
completed in the process module, it is released to next operation by Route module. 

 

Figure 4. Logic of decide modules to choose machine worked 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Arena Modules of step 2 

Figure 3. Determine the job priority based on priority rules. 
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Figure 6. Example of VBA coding in Arena for Rule 1: 2PT + LWKR + EDD) 

 Step 3: Recording the performance measures (Figure 7) 
Prior to leaving the system, the record modules are used to record the Job Type, Total Process Time, Due Date, 
Tardiness of each job. Following that, the lateness and earliness are also measured and wrote to the output file. 
 

Figure 7. Recording the performance measures 

4. Results and Discussion 
The following equation is used to calculate each rule's performance in terms of percentage of departure from the best-
performing rule: 

% 𝑫𝑫𝑫𝑫𝑫𝑫 =  
𝒁𝒁𝑿𝑿 − 𝒁𝒁𝑩𝑩

𝒁𝒁𝑩𝑩
 

where 𝒁𝒁𝑿𝑿 is the average objective function value over the same instances produced by the priority rule that is being 
evaluated over all cases, and 𝒁𝒁𝑩𝑩 is the average objective function value over the same instances acquired by the best 
priority. 
 
4.1. Selection of The Best Performing Rule in small-scale instances 
The outcomes of the benchmarks reveal that the CDRs mostly outperform the MCDM-based priority rules for almost 
every performance metric (Table 7). Except in terms of minimizing Makespan, R4: PIV is the best performing rule. 
Overall, the CDR R1: 2PT + LWKR + EDD rule is the one that performs best, according to the average performance 
measure of all objectives. Between the two MCDM-based rules, R4: PIV has shown to be the better rule. 
 

Table 7. Top priority rules on objective functions (1 - %Dev) of 3 small-scale instances. Number 1 indicates the best 
performance 

Priority rule Makespan Mean 
Flowtime 

Mean 
Tardiness 

Max 
Tardiness Average 

R1: 2PT + LWKR + EDD 0.982 0.985 0.943 1 0.977 
R2: AVPRO + PT + LWKR 0.932 1 1 0.869 0.950 
R4: PIV 1 0.921 0.704 0.927 0.888 
R3: PSI 0.938 0.966 0.873 0.695 0.868 

 
4.2. Selection of The Best Performing Rule in large-scale case 
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The outcomes of the real-world problem reveal that most CDRs in Table 8 outperform the MCDM-based priority rules 
for every performance metric. Overall, the CDR R1: 2PT + LWKR + EDD rule is the one that performs the best, 
according to the average performance measure of all objectives. And between two MCDM-based rules, R3: PSI has 
shown to be a better rule. 
 

Table 8. Top priority rules on objective functions (1 - %Dev) of large-scale case study. Number 1 indicates the best 
performance 

Priority rule Makespan Mean 
Flowtime 

Mean 
Tardiness 

Max 
Tardiness Average 

R1: 2PT + LWKR + EDD 1 1 1 0.985 0.996 
R3: PSI 0.9997 0.982 0.789 0.937 0.927 
R2: AVPRO + PT + LWKR 0.9997 0.990 0.895 0.816 0.925 

R4: PIV 1 0.934 0.263 1 0.799 
 
Overall, it is evident that in both small-scale and real-world situations, the effectiveness of CDRs, especially R1: 2PT 
+ LWKR + EDD, surpassed that of MCDMs. This discrepancy in performance, as indicated by the average measure 
across all objectives, could be attributed to the inherent feature of preprogrammed job prioritization within CDRs, a 
characteristic absent in MCDMs. The CDR approach dynamically recalculates job priority whenever modifications 
occur in the criteria data during simulation, in contrast to the MCDM-based rules which establish job ranking solely 
during the initial phase without subsequent updates. 
 
5. Conclusion 
In this research, hybrid MCDM-based priority rules were created as an innovative solution to the DRCFJSP. The 
MCDM approaches are used with a Fuzzy SWARA method to calculate criteria’s weights. Job prioritizing was 
accomplished using two MCDM techniques, i.e., PSI, and PIV. A DES model is also built to assess the DRCFJSPs' 
efficiency metrics.  
 
To evaluate the effectiveness of the CDRs and MCDM-based priority rules, we used numerical instances of small 
scale and a case study of large scale. For all cases, the CDR considering processing time, Least Work Remaining, 
Earliest Due Date (R1) were found mostly outperforming the MCDM-based priority rules for almost every 
performance metric. The PSI-based rule is in second rank after the R1 for large-scale case. However, the MCDM-
based rules offer the flexibility to change the ranking criteria and the optimal weights depending on the expert's 
knowledge. The performance of the shop floor may be enhanced by using MCDM-based priority rules for complex 
issues involving numerous factors, such as demand, due date, setup time, cycle time, and the number of operations. 
The suggested technique is straightforward and user-friendly in practical settings. The research's drawback, however, 
is that for the MCDM method, it fails to automatically update the new criteria information once each operation is 
completed, which prevents the simulation from automatically updating the new job rating. This can be solved by 
integrating VBA coding in Arena, which will be addressed in our future work. 
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