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Abstract 

Effective traffic prediction is crucial due to a surge in deliveries by commerce and urbanization. This has led to a 
notable rise in traffic within megacities, causing route delays to the final destinations and countless vehicle accidents. 
E-commerce has been in a constant boom, as buying something online and having it delivered to the front door is
easier than going to the store. As more people engage in this activity, e-commerce platforms' challenges are more
complicated and need to be addressed faster. However, these challenges escape the delivery company's scope when
external factors influence the objective of optimized deliveries, for example, traffic issues or bad weather during the
last mile, issues that are only exacerbated where traffic sensors are not widely used (i.e., underdeveloped countries).
The main contributions of this research are to (1) provide a contextual foundation of current frameworks used for
traffic prediction, (2) use social media and multi-modal traffic-related data (weather, points of interest, calendar of
events) by leveraging social network analysis to improve the accuracy of traffic prediction, and (3) to show a
methodology that can be used for partially observed traffic. The proposed methodology includes deep learning tools
like Long-Short Term Memory Networks, attention mechanisms, Graph Convolutional Networks, and social media
tools like sentiment analysis.
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1. Introduction
Urbanization is a direct consequence of population growth. Cities with more than 1 million habitants will rise by 
almost 30% from the year 2018 (548 habitants) to 2030 (706 habitants), and the number of megacities with more than 
10 million inhabitants is “projected to rise from 33 in 2018 to 43 in 2030” (UN, 2018). These megacities are located 
all over the world, from New York in North America and London in the United Kingdom to Lima in Peru, Bogota in 
Colombia, and Mexico City in Mexico. However, these are generally located in the southern hemisphere. Population 
growth would not have a concerning impact on everyday life if it increased inhabitants in rural areas, but that is not 
the case. Population density in urban areas has always been increasing, but since 2010, urban areas have a higher 
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population density than rural areas, with the percentages being 49 and 51%, which has grown in 2023 to 43 and 57% 
("Worldometer," 2023). 

Given the amount of increasing population density and urbanization, vehicle ownership is also impacted consequently. 
The results of studies done on the relationship between urbanization and vehicle ownership have two outcomes. On 
the one hand, vehicle ownership decreases in developed countries when the urban areas are further developed (for 
example, construction of points of interest or intersections) (Sabouri, Tian, Ewing, Park, & Greene, 2021), meaning 
that people do not see the need of owning a vehicle due to the proximity to jobs or schools and advanced public 
transportation. On the other hand, vehicle ownership increases on underdeveloped countries when roads, parking lots, 
and vehicle-friendly structures are built, increasing vehicle density within the city (Anirudh, Mazumder, & Das, 2022), 
which creates a slippery slope fallacy where the more the city is developed, the higher the vehicle density will be. 

Smart city planning has included population growth, urbanization, and vehicle ownership to build infrastructure like 
tunnels, road upkeeping, and reliability checks. Other plans include sustainable transportation, reduction of gas 
emissions, scrapped vehicle recycling, among other advanced projects to aid with the rapid density growth. One of 
the most researched topics within transportation systems is traffic prediction, which is used in planning. This includes 
adding IoT systems to increase data repositories (Bresciani, Ferraris, & Del Giudice, 2018) and bring added value to 
citizens while improving the economy by bringing innovative companies and their solutions to a city-wide integration. 
While this, in turn, brings fast-evolving research venues like smart city planning (Axelsson & Granath, 2018) or 
policies on urban innovation (Caragliu & Del Bo, 2019), underdeveloped countries are still trapped on a slippery 
slope, without infrastructure, resources, or the knowledge to fix a basic urban issue: tardiness due to traffic. 

1.1 Traffic Management Challenges in Underdeveloped Countries 
Latin America is the most urbanized region in the world due to rural exodus (Estupiñán et al., 2018). However, cities 
in this region are behind in Intelligent Transportation Systems despite having chaotic traffic. Lima in Peru, Bogota in 
Colombia, and Mexico City in Mexico are some examples, having the eighth, tenth, and thirteenth places, respectively, 
for the cities with the worst traffic congestion in the world. Furthermore, Lima and Bogota experienced an average 
time of traveling 10km of 27 min with 7 sec and 26 min with 20 sec in 2022, respectively (TomTom, 2023). On the 
other hand, cities in the United States have at most a travel time of 24 min with 30 sec (New York) (TomTom, 2023). 
The growth in urbanization and in congestion calls for an enhanced ITS. Despite the cities’ need for an update, there 
are still challenges that prevent Latin America from improving the system: lack of long-term mobility policies, 
resistance by transport operators to system integration, limited infrastructure, lack of financial resources, and limited 
use of bank accounts by the population (Toro, Krogt, & Vallejo, 2021). Unfortunately, some of these challenges are 
correlated. For example, if a city lacks financial resources, it cannot have a high-end infrastructure. Public 
transportation is widely available in the US, where cities like Los Angeles, New York, and Seattle have a multimodal 
system including buses, subways, light rails, etc. Improving public transportation to reduce the number of private 
vehicles on the road is an ongoing project in many Latin American countries, but budget limitations and lack of 
planning make this a multi-year project, where traffic is still a problem due to many short-distance routes like going 
to work, getting groceries, or taking the kids to school (Ramirez, 2023). 

1.2 The Need for Effective Traffic Prediction 
Industry grows fast for B2B and B2C e-commerce companies and management face a big challenge: bar keeps raising, 
and customers will always turn to the best option, usually the faster and most reliable service. Specifically, last-mile 
delivery has the urge to meet good service delivery and usually that leads to poor vehicle utilization and service 
duplication (Allen et al., 2018). They set a list of challenges that last-mile delivery service face like (1) demand 
patterns and its peak times, where processes are pushed nearly out of control, (2) times being shortened between the 
orders being placed and the delivery of the product by companies who optimize quickly, (3) sets of times too complex 
for the service to deliver quality, including time windows and restrictions, (4) delivery failures for residential 
addresses, (5) high return rate due to failures in attempts to manage stated challenges, and (6) lack of logistics, like 
distribution centers, budget, vehicles, drivers, etc. to fulfill the demand rate. Cities rely on traffic prediction for 
accident prediction, road repairs, environmental concerns, just as supply chain companies rely on it to optimize their 
delivery routes on last-mile deliveries. Many factors can be determined by either , cities or companies, that impact on 
traffic. However, external factors, such as weather, can also be implemented in routing optimization to avoid traffic 
congestion, which can be determined by many intelligent transportation systems like lane change behavior analysis, 
passenger flow analysis, vehicle combination effect on traffic flow, among others (Balas, Jain, & Zhao, 2017). A 
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report outlines many benefits that Intelligent Transportation Systems bring, among them are predicting traffic, which 
in fact, can make commercial vehicles more efficient, decrease traffic congestion in metropolitan areas and improve 
safety issues (Intelligent Transportation Systems : real world benefits, 1998). 
 
1.3 Objectives  
The need for effective traffic prediction extends beyond urban planning to impact customer satisfaction in the e-
commerce industry. The accelerated growth of online shopping, driven by the demand for fast and reliable services, 
emphasizes the importance of accurate delivery predictions. For logistics service providers (LSPs), meeting customer 
expectations for reasonably priced, fast, and reliable services is crucial for customer loyalty. However, challenges in 
last-mile delivery, such as demand patterns, shortened delivery times, and high return rates, pose obstacles to achieving 
optimal service levels. Traffic prediction becomes a vital component for e-commerce companies and cities alike to 
enhance last-mile delivery efficiency, reduce congestion, and meet customer expectations. Despite various factors 
influencing traffic, challenges persist in accurately predicting traffic in residential areas due to the limited deployment 
of traffic sensors, especially in underdeveloped regions. 
 
The following research questions were derived before conducting the systematic literature review and taking into 
consideration the challenges stated. These questions are the basis of the research and are included as eligibility criteria 
for deletion and inclusion of papers in the study and further analysis. 
 
a) What are the current methods developed for traffic prediction using deep learning tools and external factors such 
as weather, social media, and points of interest?  
b) How can multimodal data, including information from diverse sources such as traffic sensors, GPS devices, and 
points of interest, be effectively integrated to enhance the accuracy of traffic prediction models in underdeveloped 
countries, where limited infrastructure and resources present unique challenges? 
c) Could this framework be an initial point to further implement a real-time route optimization, if needed, for highly 
variable optimal routes? 
 
2. Literature Review 
The objectives of the literature review are threefold: first, to provide a contextual foundation of current technologies 
used for spatio-temporal traffic prediction and their levels of accuracy, computational complexity, and data 
availability; second, to summarize the instances where social media has been used as vehicular traffic predictor and 
how the data has been handled; and third, explore the challenges that traffic prediction has in light of limited data 
availability in underdeveloped countries when using technologies from the first objective. Therefore, this literature 
review provides a background to identify research gaps where the methodology proposed can be applied. 
 
2.1 Recurrent Neural Networks with Convolutional Neural Networks 
Hybrid networks that use CNN and RNNs are mostly used with spatiotemporal data, where both spatial and temporal 
features are required to have a high accuracy. It merges the strengths of RNNs for temporal data and CNN for spatial 
data. In traffic prediction, this is one of the most used methods when the input data only includes one dataset for spatial 
data, like a network of traffic sensors deployed in a city, and one dataset for temporal data, like readings over time of 
each of these sensors. These types of models will usually outperform CNN (Cheng, Lu, Zhou, Zhang, & Zhang, 2022; 
Zang, Ling, Wei, Tang, & Cheng, 2019) and LSTM when used on their own (W. Lu, Rui, & Ran, 2020). Since it 
exploits each NNs characteristics, it can more accurately predict new sensors based on neighboring ones (Fouladgar, 
Parchami, Elmasri, Ghaderi, & Ieee, 2017) and have more customization in model architecture (Han, Chen, & Sun, 
2019). 
  
Weather implementation in road network traffic prediction holds the most advanced models for CNN-RNN 
architectures, which usually hold multidimensional feature space (Jingyuan Wang, Cao, Du, & Li, 2019; Z. Wang, 
Ding, & Wang, 2021). However, since the convolutions still hold a high-demand computation, some methodologies 
include residual networks to support more convolutional layers needed for high-dimensions (J. Zhao & Zhu, 2021). 
These studies could have improvements like being able to handle large road networks (J. Xu, Zhang, Jia, & Xing, 
2019), using solely ResNet for spatial features (Elmi & Tan, 2020), or use it as part of the feature engineering phase 
to extract features (R. He, Liu, Xiao, Lu, & Zhang, 2022). Other methods of reducing complexity include incremental 
learning, which is special needed for a wider range of factors such as traffic, weather, and traffic accidents (Shao, 
Zhao, Yu, Zhu, & Fang, 2021). 
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CNN-RNN models have a good accuracy for low dimensional data, requiring help from other machine learning 
mechanisms every time another variable is added. As stated above, there are many factors that affect traffic patterns, 
some induce more uncertainty than others, and most of them are geographically placed. Since CNNs are limited to 
3D, not all the influential factors are going to fit the model. The next section introduces a generalization of CNNs that 
was design for multidimensional graphs. 
 
2.2 Neural Networks with Graph Methods 
There are many types of neural networks that include graphs, like Graph Convolutional Network (GCN) and Graph 
Attention Network (GAN). Unlike CNN-RNN architectures, GNN can handle multi-modal data and can propagate 
the information across the nodes in a graph depending on the number of convolutions (Agafonov & Ieee, 2020). The 
input graph can be directed or undirected, can hold weights or other type of information on the edges (Y. Lv, Cheng, 
Lv, & Li, 2022) that could help improve graph representation. There is limited research for GNNs predicting traffic 
for one road, freeways or highways, this includes short-term and daily prediction at toll gates (Shi, Yuan, Wang, & 
Zhao, 2021), dividing data into components (seasonal, static, acyclic) (Y. S. Shen, Li, Xie, Li, & Xu, 2022), and pre-
processing methods that improve accuracy like feature engineering (Mihaita, Papachatgis, & Rizoiu, 2020) and models 
for incomplete or missing data (Y. Liu, Wu, Wen, Xiao, & Chen, 2022). Highways are not always represented as a 
graph, while GNNs expect an explicit graph structure. Forcing a single-road system into a graph representation might 
not capture the spatial relationships optimally and, hence, not yielding the best results. 
 
Inherently, GNNs are designed to process graph-like data, which make them useful for road-network traffic 
predictions. Some studies focus on pre-processing features for incomplete data (Zhong, Suo, Jia, Zhang, & Su, 2021), 
getting graph analysis metrics (Z. Q. Hu, Shao, & Sun, 2022; Q. Wu, Fu, & Nie, 2020), and correlating nodes that are 
not geographically close (M. Lv et al., 2021; Y. M. Zhao, Cao, Zhang, & Liu, 2021). These is a necessary step for 
GNNs since it must fit a graph form, which might require extensive engineering. Other studies increase accuracy by 
adapting a divide-and-conquer approach (Chattopadhyay & Tham, 2022), using techniques like clustering (Huang, 
Song, Zhang, & Yu, 2021; C. Zhang, Zhang, Yu, & Yu, 2020) and separating roadmap into sub-regions (Ren & Xie, 
2019; N. Zhang, Guan, Cao, Wang, & Wu, 2019). These techniques let the model use knowledge transfer from one 
sub-graph to another or between graphs in the same cluster. The goal of this techniques is to reduce computational 
complexity by complementing the model’s learning process.  
 
GNNs frameworks concentrating on the temporal feature for prediction accuracy is a common practice given that the 
data is more user-friendly. Including multiple components of periodicity with convolutions prioritizing temporal 
components (M. Liu et al., 2023; Yang, Wen, Yu, Zhang, & Ieee, 2020) and modeling asynchronous relation within 
a road network (Qi, Li, Chen, & Xue, 2021) are some examples. However, working with the spatial components has 
shown to yield better results. Construction of hypergraphs allows for more flexible relationships among nodes, some 
which may not be geographically related (F. X. Li et al., 2023; J. C. Wang et al., 2022; Y. Wang & Zhu, 2022) like a 
similarity graph with node embedding (Gou, Han, & Zhang, 2022) or multigraph convolutions for nodes further apart 
(J. Ye, Zheng, Zhao, Ye, & Xu, 2021). A two-component GCN considers global spatial relations between non-first 
order sensors, while a local component analyzes first-order ones (Feng, Huang, Shen, Shi, & Shi, 2022), this method 
avoids the smoothing problem of GCNs, where information from neighboring nodes has to be aggregated 
(“smoothed”), other methods are constant modifications of the graph data to fit an encoder-decoder architecture (Xie 
et al., 2020) and using GCN-LSTM structure where the k-order convolution process k neighboring nodes (Yan, Wang, 
Yu, Jin, & Zhang, 2021). Graph data has a high complexity, especially when working with hypergraphs, data tends to 
be over smoothed. With multi-graph approaches, generalization might arise as a problem, since not all networks have 
data for all available roads. Meaning, there might low accuracy predictions for roads with sparse data. 
 
If parallelized correctly, graph networks can be a solution for traffic prediction tailored for last-mile problems. They 
show a high accuracy due to their ability of retaining complex relationships within the road network and scalability to 
bigger networks or a wider range of features. Their usage with other methods, like resnets and attention mechanisms, 
make them very customizable, depending on the prediction objective. 
 
2.3 Neural Networks with Attention Methods 
Attention mechanisms are a valuable tool for neural networks. They increase interpretability and performance by 
discerning the most important inputs to generate the best outputs. Highlighting the features that drive the model’s 
decision makes it easier to perform with a high accuracy. This attention mechanism can be embedded to identify 
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important temporal dependencies (Abdelraouf, Abdel-Aty, & Yuan, 2021; S. Zhang, Guo, Zhao, Zheng, & Chen, 
2021) or spatial dependencies  (Miao, Su, Fu, Chen, & Zang, 2022), or both (H. Hu, Lin, Hu, & Zhang, 2022; Zhihong 
Li, Xu, Gao, Wang, & Xu, 2022; G. J. Shen, Yu, Zhang, & Kong, 2021). Road-network traffic prediction with attention 
mechanisms has been a common practice for half a decade, from including them in simple RNN or CNN architectures 
(Do, H.L, B.Q, Z, & D, 2019; Mao, Huang, Lu, Chen, & Liu, 2022), to more complicated ones like Graph Attention 
Networks (Rajkumar & Jegatha Deborah) or hybrid RNN-GCN with attention weights (Buroni, Lebichot, & 
Bontempi, 2021; Zhishuai Li et al., 2019).  
Using dynamic graphs could help adapt to evolving situations like traffic accidents or sudden surges in traffic due to 
construction (X. Luo, Zhu, Zhang, & Li, 2023). This has been shown to aid simultaneous short and long-term 
predictions (B. Li, Guo, Wang, Gandomi, & Chen, 2021; Lin, Ge, Li, Zeng, & Ieee, 2022) and GRU models by 
capturing long-term dependencies while dynamically adjusting weights to important time steps (X. Luo et al., 2023). 
A more in-depth work used dynamic spatiotemporal graphs, where temporal and spatial dependencies are represented 
by dynamic edges (Z. Fang, Pan, Chen, Du, & Gao, 2021). This research used a four-component model where each 
had a special attention to dynamic properties. Nonetheless, it lacks traffic-related variables like weather. 
 
One of the main issues with attention mechanisms is that it’s prone to only focus on local features, ignoring the global 
dependencies. There are many ways to mitigate this problem, like feeding the model different compositions of the 
temporal feature (Duan et al., 2022; B. Sun, Zhao, Shi, & He, 2021; Xue, Zhao, & Han), visibility graphs that considers 
global context and lane interconnectedness (Zeng & Tang, 2022), or adding layers to the model that capture long-term 
and global trends (Chen, Han, Yin, & Cao, 2020; R. Luo, Song, Huang, Zhang, & Su, 2022; X. S. Wu, Fang, Liu, & 
Wu, 2021). The choice of mitigating strategy will depend on the objective of the prediction and study, like focusing 
on getting global dependencies for spatial components.  
 
Even though Graph Attention Networks (Rajkumar & Jegatha Deborah) perform better than GCN (D. Li & Lasenby, 
2021; Z. Pan et al., 2020) for a regular road-network, attention mechanisms are particularly useful when using multi-
modal data. (Jin et al., 2021; Jichen Wang, Zhu, Sun, & Tian, 2021; X. Xu et al., 2020), where a hypergraph can be 
evaluated (H. Zhang, Liu, Tang, Xiong, & Ieee, 2020). When including weather, for example, research shows an 
improvement in prediction with using an attention mechanism in the temporal component (de Medrano & Aznarte, 
2020; K. Wang et al., 2021) which enables an LSTM to capture high dependencies, but when including taxi, bike, and 
weather data, decomposing the temporal component with a multi-granularity approach shows a better performance 
(Ali, Zhu, & Zakarya, 2021; J. Liu, Qu, Chen, & Gong, 2022; X. Zhang, Huang, Xu, & Xia, 2020). This is because, 
as stated before, attention mechanisms have issues capturing the global context of the data, and including different 
decompositions help understand better the input. Another setback for attention mechanisms is higher complexity, but 
this can be mitigated as well by introducing parallelization of tasks, as shown in divide-and-conquer approaches where 
the road graph is divided in smaller sections for analysis (Long et al., 2023; Zheyi Pan et al., 2019; J. R. Sun, Peng, 
Jiang, Hong, & Sun, 2022; Y. Ye et al., 2023). Another solution is to fuse model components (S. Fang et al., 2022; L. 
Liu et al., 2021), which lets the attention mechanism work, for example, on the temporal component and then fuses it 
with the spatial component.  
 
These types of neural networks have been shown to increase accuracy in traffic prediction by enabling models to 
capture complex spatial and temporal patterns, while including multi-modal data. Even though they have some 
downsides like lack of global context or complexity, these can be mitigated by using the correct architecture and data 
preprocessing. Attention mechanisms are used in most of traffic research articles analyzed in this systematic literature 
review, which makes it a state-of-the-art methodology for the latest six years. 
 
2.4 Social Media in Traffic Prediction 
Studies showing correlation between social media and vehicular traffic have been around for a decade, showing a 
decrease in prediction error by using tweets semantics as traffic indicators (J. He, Shen, Divakaruni, Wynter, & 
Lawrence, 2013), or using topics within tweets as one of many multi-source features (L. Lu, Jianxin, Feng, Jieping, 
& Jinpeng, 2018). These types of social media usage arise challenges like tweet ambiguity i.e., choosing “traffic” as 
one of the topics and not differentiating “communication traffic” from “vehicular traffic”, which elevate complexity. 
Using an advanced Natural Language Processing (NLP) model that transforms tweets into time-series records (Tsai 
et al., 2022) diminished this ambiguity, but also lacks the computational power to handle other factors. Limiting the 
number of topics to only traffic accidents (Liyong, Vateekul, & Ieee, 2019; Yao & Qian, 2021) or nonrecurrent events 
(Essien, Petrounias, Sampaio, & Sampaio, 2021) also show an improvement in accuracy without complicating the 
model. Placing accidents or events within a road network is one solution to social media usage without text mining, 
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given the geocoding of tweets, but these types of matrices will have an even bigger sparsity problem than non-
geocoded ones. 
 
Geographically placed social media requests help predict traffic around hotspots (Liao et al., 2018; Rajkumar & 
Jegatha Deborah, 2020). These types of requests are user-specific and make it hard to predict people mass movement 
around an entire network. A study claimed that using tweets from user accounts related to transportation in the city 
helps the problem of complex data mining (Dayong, Longfei, Jianping, & Senzhang, 2018). By doing so, they find 
co-occurrence congestion patterns, but important information regarding social media users that react to this type of 
news is not evaluated, nor its influence on the social network activity. This type of study is done in (Laynes Fiascunari 
& Rabelo, 2022), where a deterministic information diffusion model is performed after influential accounts post 
tweets. The research showed that the independent cascade model does not have an impact of the study and leaves the 
possibility of other diffusion models, as well as multi- modal factors, being of higher relevancy.  
 
Partially observed traffic prediction is a great improvement (X. Liu, Kong, Li, & Acm, 2016), especially for 
underdeveloped countries that are not data-rich and surely have the same last-mile needs from a smart-city. This aims 
to use location-based social media information to fill in roads without sensors, but its limitations on the amount of 
geocoded data still holds, which could be complemented by analyzing the social network and not only specific tweets’ 
semantics. An advancement has also been made regarding the amount of factors to potentially include in the model 
(Nguyen, Dao, & Zettsu, 2020), where four urban sensing sources – twitter, traffic, accidents, weather – were stored 
in a single 2d multi-layer image per time stamp. This model also has the ability to integrate perfectly more data sources 
but has not been tested for partially observed traffic or using social networks instead of sparse geolocated tweets. 
 
Social media holds data that could improve the accuracy of traffic prediction, it has been shown to be correlated and 
an important factor. Even though its usage might not be a big accuracy improvement for smart cities, cities where 
traffic is alarming and lack sensor technology could complement many sources and get a better prediction to use in 
last-mile deliveries. 
 
3. Methods 
Three main deep learning tools were used to build multiple permutations of the models. LSTM, GCN, and an attention 
mechanism were stacked and paired in different ways to explore the computational complexity and their accuracy 
when predicting traffic. 
 
3.1 Long-Short Term Memory Neural Network 
Described in the Literature Review section, is a Recurrent Neural Network (RNN) type that avoids the backpropagated 
error to be blown up or decayed exponentially by inserting an LSTM cell, illustrated in Figure 1, instead of just a Tanh 
layer.  
 

   
Figure 1. LSTM cell in RNN 

 
The LSTM NN has three gates: (1) the input gate, which controls if the memory cell is updated, and (2) the forget 
gate, which decides if the memory must be set to 0. And (3) the output gate, which decides if the information on the 
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current state of the cell is made visible. The formulas for each of these gates can be found in Formulas (1), (2), and 
(3), respectively. 

i^((t))= σ(W^i [h^((t-1) ),x^t]+b^i)      (1) 
f^((t))= σ(W^f [h^((t-1) ),x^t]+b^f)     (2) 
o^((t))= σ(W^o [h^((t-1) ),x^t]+b^o)    (3) 

 
Where σ is the activation function, W represents the weights, h^((t-1)) is the input from the previous computation, x 
is the input from the first layer (blue circle ), and b is the bias. This neural network can manage sequence-to-sequence 
(seq2seq) problems, using an encoder to translate the input sequence to a vector and a decoder to translate the vector 
to the output sequence. This scheme is mostly used in text translation, handwriting recognition, speech recognition, 
and in this case, traffic prediction. 
 
3.1 Graph Convolutional Network 
Unlike regular Convolutional Networks, GCNs can handle high-dimensional and non-Euclidean data. GCNs have 
vertices that send and receive messages to and from other vertices through edges, and at each vertex and layer, an 
aggregation function is performed. The number of convoluted layers determines the number of neighborhoods the 
message will travel through. The architecture of the network is represented in Figure 2. 
 
 

 
Figure 2. Graph convolutional network architecture. 

 
GCNs use forward propagation using an adjacency matrix to include graph information in the formula. Formula (4) 
belongs to forward propagation, where H^((l+1)) represents the feature representation in layer l+1, σ is the activation 
function, W^l is the weights for layer l, H^l is the feature vector for layer l and b^l represents the biases for layer l. In 
contrast, Formula (5) is the adjusted formula for GCN. 
 

H^((l+1))= σ(W^l H^l+b^l)    (4) 
H^((l+1))= σ(D ̃^(-1/2) A ̃D ̃^(-1/2) W^l H^l+b^l)   (5) 

 
After deriving an adjacency matrix from the road network map and using a GCN, each road segment can have a set 
of variables that defines it, characterizing them with weather conditions, points of interest, and degree of change from 
traffic influencers. Furthermore, this will allow the dependency of traffic flow in a road segment with adjacent roads. 
 
3.1 Attention Mechanism 
Attention mechanisms allow the code to identify the most relevant parts of the data for prediction. In this case, the 
model developed by (Ashish Vaswani, 2017) was used by its Keras implementation. Specifically, this mechanism 
uses a multi-head attention, which projects the inputs and performs the attention calculation on each projection in 
parallel. These values are concatenated and projected to get the final output of the layer. This module needs three 
arguments: query (Q), value (V), and key (K). Its comparison with a singular head attention mechanism is depicted in 
Figure 3. 
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Figure 3. (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers 

running in parallel. Source: (Ashish Vaswani, 2017). 
 
4. Data Collection 
The methodology was tested and verified using datasets collected from Los Angeles, California. Datasets included 
information regarding traffic, road network, weather, touristic attractions, and Twitter. 
 
4.1 Traffic and Road Network 
The PeMS California dataset was included for traffic, using only the weekdays of May and June from 2012 in 5-
minute intervals for a total of 228 sensors (Figure 4). Instead of using an adjacency matrix, and to consider co-
occurrences in traffic along the road network, a correlation matrix was used, which gives the freedom of adding or 
reducing roads according to the computing capability available. Figure 4 shows different scenarios in which the 
acceptable correlation parameter was changed gradually from 0.90 to 0.25. This image also shows that, while most 
roads close together are correlated at a high level (i.e. 0.90) are closer together, some roads that are further away might 
also impact traffic on the road being evaluated. 
 
For the models where GCN is not used, the correlation matrix is changed by the roads with highest correlation, setting 
the acceptable correlation parameter at 0.90. For example, when predicting traffic for road 1, the roads that achieved 
a correlation higher than 0.90 are roads 7, 8, 11, and 15. These roads will be added to the input matrix for non-GCN 
models as independent variables, having road 1 as the target variable. 
 
4.2 Weather 
The weather dataset was downloaded from the National Centers for Environmental Information, using the Los Angeles 
International Airport sensors. Variables used from this dataset are temperature, dew point, visibility, and wind. Since 
the sensors provide hourly data, the dataset was formatted to fit the traffic dataset, having 12 5-minute intervals within 
the hour where the weather information remained constant. 
 
4.3 Touristic Attractions 
Points of interest (POIs) were included for this study within the boundaries of Los Angeles city (Figure 4). 1142 POIs 
were identified and placed as a feature for their nearest traffic speed sensor. This will impact the traffic speed 
prediction by generating more conglomeration around these sensors. 
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Figure 4. Road-to-road correlation showing high correlation (white) and low correlation (black) depending on the 

acceptable correlation parameter. 
 
4.4 Social Media Networks 
Tweets were collected using the Twitter API for academic research v2. By using the SEARCH endpoint, we had 
access to the full tweet archive, where we selected all tweets posted within a 25-mile radius of the center of Los 
Angeles that contained words related to traffic (“i.e. traffic”, “congestion”, “traffic jam”, “delay”). 2887 tweets were 
collected (shown in Figure 5), which were assigned to a sparse matrix of time steps x number of roads. This will 
allocate the tweet in the timestep in which it was posted and to the geographically closest traffic sensor. Furthermore, 
sentiment analysis was applied to the tweets, which yielded a new variable ranging from -1 (negative) to 1 (positive). 
This was added to the variables as constant across the roads but varying in time, representing the collective social 
network’s mood. 

Figure 5. Placement of traffic speed sensors (top), tweets (bottom left) , and points of interest (bottom right) within 
Los Angeles City. 
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5. Results and Discussion 
All models were run using Google Cloud Platform (GCP) c2-standard-8 machine with 8 vCPU and 32 GB memory. 
The train/validation split was set to 0.5/0.2 respectively, using the remainder of the data for testing. The models were 
run using libraries like Keras and TensorFlow, and hyperparameter tuning using Bayesian Optimization. Table 1 
shows the specifications for both hyperparameters. Additionally, the specifications for the models can be found in 
Table 2. 
 

Table 1: Hyperparameter settings for tuning 
 

Variable Min Max Step Type 
Learning rate 0.1 0.0001 x 0.1 Choice 
LSTM units 32 160 + 16 Int 

 
Table 2: Model Metadata 

 
Data Value Description 

Input sequence length 12 12 timesteps prior to the target timestep were used in the LSTM 
stage to make the prediction 

Forecast horizon 3 The predicted forecast was 3 timesteps ahead 
Acceptable correlation 0.9 Correlation parameter for adjacency matrix 
Executions per trial 2 Number of executions per trials the tuner will run 
Number of trials 3 Number of maximum times the tuner will run  
Epochs 10 Number of times the model will run to calculate loss 
Number of optimized epochs 100 Number of epochs the model will be trained for using the best 

hyperparameters to find the necessary number of epochs 
 
From the Table 2, we infer that each model will be run a total times of executions per trial x number of trials x 
epochs = 60 times to find the best hyperparameters based on the loss and an additional 100 to get the epoch with the 
best value for validation loss. 
 
5.1 Numerical Results 
Two models were tested, GCN with LSTM and GCN with LSTM and Multiheaded Attention Mechanism. The 
summary of the performance of each model can be found in Table 3. 
 

Table 3. Summary of model performance. 
 

Model Best Hyperparameters Number of 
best epochs 

Validation 
Loss 

Naïve 
MAE 

Model 
MAE 

GCN-LSTM Learning rate: 0.01 
LSTM units: 80 

84 0.002457 0.003554 0.003801 

GCN-LSTM with 
Attention 

Learning rate: 0.01 
LSTM units: 144 

21 0.002489 0.003554 0.003799 

 
From the Naïve, which are the forecasts of the last value of speed in each node, and MAE of the model we can see 
that neither model suffered from overfitting. The model, GCN-LSTM, shows a low validation loss and high accuracy 
for the testing datasets (as can be seen in Figure 6). The GCN-LSTM with Attention model also shows a low validation 
loss, although not lower than GCN-LSTM, is not significantly worse, and shows a slight improvement for the MAE 
accuracy. The number of best epochs is based on a baseline of 100, which implies that the GCN-LSTM model took a 
significantly longer time to train, 84 epochs, than the GCN-LSTM with Attention model. 
 
Further experiments will be run to show lower-complexity models like LSTM and LSTM with Attention. Additionally, 
the question whether which model can predict with high accuracy with a partially observed traffic dataset still holds. 
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With the current experiments being performed with a forecast horizon of 3 5-minute timesteps, this is a short-term 
prediction, which would be more likely to be implemented in a real-time system. Since last-mile deliveries are in need 
of long-term predictions to optimize their routes before the workday, a third set of experiments with a forecast horizon 
of 720 5-min intervals, 12 hours, will also be run. 
 
5.2 Graphical Results 
The prediction yields forecast for each road on the adjacency matrix (228 sensors). As an example, we’ll show road 
#0 in Figure 6. This shows a high accuracy for both models, but the GCN-LSTM with Attention model seems to 
predict better in both, high-demand and low-demand traffic speed, and the GCN-LSTM model has a better prediction 
for low-demand. 
 
5.3 Proposed Improvements 
There are a few proposed improvements for this research: (1) Since the acquisition of Twitter on 2023 and a new 
CEO/owner, the Twitter API was deprecated for academic use hence this research cannot be further replicated using 
this social media platform. Using other media platforms like Instagram or TikTok would be a research venue worth 
investigating, (2) POIs have more popularity whenever people masses post about them on social media, using 
Instagram to generate new POIs or weights for POIs depending on the number of geotags or amount of size of network 
from the user posting the geotag is an ongoing effort to continue the findings on this paper, and (3) this methodology 
is tailored to be experimented with scarce traffic data, next steps include partially-observed speed sensor data to 
achieve an acceptable accuracy with the help of the other variables that are present without a strain in the transportation 
system’s budget. 

 

Figure 6. Prediction (orange) and actual (blue) values for road #0 using GCN-LSTM (top) and GCN-LSTM with 
Multihead Attention (bottom). 
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6. Conclusion 
After performing the literature review, some research gaps were identified. On one hand, social networks have yet to 
be exploited for influential data. Social media  has been proposed in the literature to fill in the gap of lack of traffic 
data in urban areas but requires constant queries to apply data mining to sparse tweets.  
 
On the other hand, there is still a need to find a hybrid framework that can develop a traffic prediction tailored for last-
mile deliveries while using social network analysis. While methodologies and heuristics have been proposed for traffic 
prediction (including RNNs, CNNs, hybrid CNN-RNN models, GNN, and attention mechanisms), these are mainly 
tailored for developed countries. Underdeveloped countries have a data problem, either inexistent or too sparse, and 
there is no implementation of a multimodal architecture using social media that has been tested against partially 
observed traffic to simulate lack of data in non-ITS. 
 
A hybrid methodology that can implement a social network analysis and include it in traffic prediction with multiple 
factors, tailored for last-mile deliveries, has been developed. By using GCN, LSTM, and Multiheaded attention 
mechanism, the 8-variable dataset (7 independent and 1 dependent) was processed and yielded a higher accuracy by 
using Bayesian Optimization. The GCN-LSTM model showed a slight improvement in validation loss, while GCN-
LSTM with Attention showed improvement in training time (number of epochs) and MAE accuracy. Further research 
will include other social media networks, like Instagram, and further analysis of partially observed traffic to tailor the 
methodology for underdeveloped countries. 
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