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Abstract 
 
3D printing (3DP) is a revolutionary manufacturing method that enables rapid prototyping, customization and local 
production of parts, hence reducing waste of resources. A new paradigm in the supply chain could be then realized by 
capitalizing on 3DP, that is: decentralized manufacturing, characterized by geographic dispersion and enhanced 
resilience to risks and disruptions, while also offering customers numerous benefits, including faster fulfilment of 
personalized orders. However, optimizing the allocation of customer demands is a complex challenge, especially in 
the context of decentralized 3DP shops operating under limited capacity constraints. By optimizing based on delivery 
distance, it is possible to reduce resource consumption and environmental impact while also shortening overall 
delivery time, thereby achieving better realization of the advantages of decentralized 3DP. This research firstly 
addresses the challenge of efficiently allocating customer demand to decentralized 3DP shops, optimizing delivery 
distances while considering capacity constraints by leveraging on mature Mixed Integer Linear Programming (MILP) 
based 3DP optimization techniques and innovative combination with Monte Carlo simulation. Furthermore, the study 
analyzes quantitatively and qualitatively the superior probability and difference in overall delivery distance between 
decentralized 3DP shops and hypothetical centralized 3DP hubs across various sub-scenarios with massive, 
randomized customer instances in the greater Cairo region in Egypt. Through this research, we aim to gain a 
comprehensive understanding on the advantages of decentralized 3DP on a much broader scale.  
 
Keywords 
Decentralized 3D printing, Demand allocation, Delivery distance optimization, Monte Carlo simulation and 
Sustainable 3DP logistics. 
 
1. Introduction 
3D printing, also known as Additive Manufacturing (AM), has evolved into a versatile and disruptive technology. 
This technology creates a 3D-printed object from a digital 3D model by adding materials layer-by-layer (Espino et al. 
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2023). This technology has found applications in various industries, from aerospace (Karkun et al. 2022) and 
healthcare (Whitaker. 2014) to consumer goods (Bogers et al. 2016), offering unprecedented possibilities for 
customization and rapid prototyping. Decentralized 3DP brings about a fresh approach to manufacturing. This 
approach is marked by spreading operations across different locations, bolstering resilience to potential risks (Choong 
et al. 2020). Additionally, it provides customers with various advantages, such as quicker delivery of personalized 
orders (Ben-Ner et al. 2017). 
 
Within the realm of decentralized 3D printing, realizing its full potential hinges upon a central challenge: the precise 
allocation of customer demands to a web of decentralized 3DP shops. This allocation must masterfully harmonize the 
crucial objectives of optimizing delivery distances while gracefully accommodating the practical constraints 
associated with each shop's capacity. This challenge takes on a profound significance when considered within the 
context of greater Cairo region in Egypt (shown in Figure 1), where a plethora of decentralized 3DP shops, each with 
its unique capacity constraints, is strategically dispersed throughout the cityscape. 
 
The foremost benefit of optimizing total delivery distances is the significant reduction in total delivery time. By 
intelligently routing customer demands to the decentralized 3DP shops, products can be delivered swiftly, meeting 
customer expectations for rapid order fulfillment. Beyond its impact on delivery times, the optimization of 
transportation routes also holds substantial environmental significance (Dekker et al. 2020). This tangible reduction 
in pollution emissions aligns closely with broader environmental protection goals, making a significant contribution 
to cleaner air and a healthier urban environment. In summary, this research is vital in addressing the pressing need for 
sustainable practices, particularly within the context of the greater Cairo region, where the unique challenges and 
opportunities of decentralized 3DP demand our attention and innovative solutions.  
 

 
 

Figure 1. The greater Cairo region in 2017 (Salem. 2018) 
 
1.1 Research Objectives 
The paper centrally focuses on leveraging existing 3DP infrastructure for decentralized manufacturing in Cario area. 
It emphasizes the infeasibility of decentralized manufacturing without 3DP and capitalize on current real available 
distributed 3DP network.  
 
Utilizing real-world 3D printing (3DP) data from Cairo, Egypt, and prioritizing customer satisfaction, this study 
innovatively combines Monte Carlo simulations with mature 3DP MILP-based demand allocation optimization 
techniques while integrating the Open-Source Routing Machine (OSRM) for precise shortest path distance 
calculations. Its primary aim is thus to analyze the probability and difference in the total delivery distances, comparing 
between customer allocation to decentralized 3DP shops and hypothetical centralized 3DP factories across various 
scenarios and massive randomized customer instances.  
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Furthermore, the proposed scenarios add another layer in providing a deeper understanding and analysis of when to 
use central hubs versus the decentralized network of 3DP facilities. Each scenario varies in demand range and number 
of customers, offering decision makers and stakeholders with comprehensive information in determining the 
circumstances of which choice would be more efficient as in cases of disruptions that affect demand and customer 
size change.  
 
2. Literature Review 
In the field of 3DP task allocation and scheduling, heuristic approaches and methods based on Mixed Integer 
Programming (MIP) are widely applied. 
 
In the realm of heuristic methods, Cheng et al. (2018) proposed a bi-level programming approach to optimize 
collaborative manufacturing resources on a 3DP cloud service platform, effectively balancing customer and enterprise 
interests. Alicastro et al. (2021) introduced a reinforcement learning iterated local search algorithm for complex AM 
machine scheduling, providing efficient heuristic solutions with low computational expenses. Furthermore, Wang et 
al. (2023) introduced an Adaptive Large Neighborhood Search (ALNS) heuristic to minimize travel and service delay 
costs for vehicles equipped with 3D printers, particularly effective for instances with up to 200 customers.   
 
Shifting to the realm of Mixed Integer Programming (MIP) methods, Chen et al. (2019) significantly contributed with 
an IoT system for 3D printing, reducing cycle times by 33% through efficient order management and workload 
balancing with Mixed Integer Quadratic Program (MIQP). Kucukkoc (2019) addressed AM machine scheduling, 
providing detailed solutions for various scenarios to optimize processing time-related performance measures, 
particularly to minimize make span, with MILP models. Furthermore, de Brito et al. (2019) optimized 3D printer 
deployment in spare part supply chains using MILP models, achieving cost-effective solutions. In contrast, Santander 
et al. (2020) explored the integration of plastic recycling and open-source 3D printing, using a MILP model to assess 
its economic and environmental feasibility in closed-loop supply chains. In a different domain, Demir et al. (2021) 
integrated logistics within 3DP production planning with a comprehensive MILP-based approach for optimizing both 
production and delivery schedules. Additionally, Alghamdy et al. (2023) introduced an MILP-based optimization 
model for 3D food printing job-scheduling, effectively improving deadline compliance. Lastly, Shahpasand et al. 
(2023) designed a specialized closed-loop supply chain for 3D-printed tires, demonstrating 51-61% greater economic 
efficiency and reduced carbon emissions through MILP-based optimization. 
 
In the context of manufacturing and supply chains, the Monte Carlo simulation method stands out for its ability to 
address complex scenarios and uncertainties. Lee et al. (2013) utilized Petri nets and Monte Carlo simulation to model 
distributed manufacturing networks, evaluating quality risks and mitigation strategies. Khajavi et al. (2014), using the 
F-18 fighter jet's spare parts supply chain as a case, employs Monte Carlo simulation to investigate four scenarios with 
different supply chain configurations and AM machine specifications, indicated that, under current AM technology, 
centralized production is the preferred. However, as AM machines become more cost-effective, autonomous and have 
shorter production cycles, distributed production becomes a viable option. Franke et al. (2021) incorporated Monte 
Carlo simulation into production planning to assess plan robustness, especially in response to unforeseen events and 
short-notice orders. Poudel et al. (2023) compared decentralized and centralized approaches for multi-robot 
cooperative AM scheduling, demonstrating the decentralized approach's scalability and robustness with the help of 
Monte Carlo analysis. 
 
Having explored the existing body of work in this field, it's now imperative to turn our attention to the current research 
gaps and the focal points that this study will address: 

• Regional emphasis in 3DP task allocation: Despite the common use of the MILP method in 3DP task 
planning, a notable research gap is the limited exploration and application in emerging markets such as the 
greater Cairo region in Egypt. This research aims to fill this gap by applying real 3DP shop data and providing 
tailored insights into the specific challenges and opportunities in this dynamic area, enhancing our 
understanding of 3DP logistics in the Cairo region. 

• Monte Carlo and scenario simulation analysis for precision quantitative analysis: This study pioneered 
the use of Monte Carlo simulation to generate extensive number of customer instances in various sub-
scenarios, which considers the distribution of customers' geographical locations and demands, allowing for 
a comprehensive and accurate quantitative analysis of decentralized and centralized 3DP in terms of 
distribution distances, and determining the superiority and inferiority of both scenarios. The Monte Carlo 
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simulation thus adds complexity to the MILP method and reflects real world variability and unpredictability. 
While the sub-scenarios provide different demand and customer size combinations, which aids stakeholders 
in demand allocation and efficient use of 3DP decentralized networks vs central manufacturing hubs. 

 
3. Methods 
Methods and models for studying decentralized 3DP in the greater Cairo region are introduced in this part, focusing 
on data collection and preprocessing from local 3DP shops. A mathematical model of decentralized 3DP scenario is 
established and optimized. Additionally, hypothetical centralized 3DP scenario is modeled, and Monte Carlo 
simulations are conducted for comparative analysis. 
 
3.1 Data Collection and Preprocessing of 3D Printing Shops in Greater Cairo Region 
In the initial phase, data regarding the 3DP shops in the region needed to be collected. We thus capitalize on the data 
collected by (Abdelhalem. 2023) where geographical coordinates of these shops are gathered from Google Map and 
the capacity of each shop is determined through telephone interviews, supplemented with reasonable normalized 
estimation, we use the data represented in Table 1 and Figure 2 as the bases of this investigation. 
 

Table 1. Location and capacity of 3DP shops in greater Cairo region (Abdelhalem. 2023) 
 

Shop ID Latitude (°) Longitude (°) Capacity (working hour/day) 
Shop 0 30.0868804 31.029722 75 
Shop 1 29.9699753 30.9405735 100 
Shop 2 29.9949791 30.9627998 200 
Shop 3 29.9522349 30.8898337 40 
Shop 4 30.0444196 31.2357116 75 

… … … … 
Shop 42 30.1382419 31.7034685 50 
Shop 43 30.1936185 31.4699352 200 
Shop 44 30.0815411 31.243058 40 

 

 

Figure 2. Geographic distribution of 3DP shops of greater Cairo region in OpenStreetMap (OpenStreetMap 
contributors. 2023) 

The summary of the 3DP shops is listed as below: 
• The number of 3DP shops is 45. 
• The capacity 𝐶𝐶𝑖𝑖  of 3DP shop 𝑖𝑖 is distributed in this range: 𝐶𝐶𝑖𝑖 ∈ [40, 225]. 
• The total capacity 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is 4610 working hours. 

 



Proceedings of the International Conference on Industrial Engineering and Operations Management 
 

© IEOM Society International 

3.2 Mathematical Modeling of Decentralized 3D printing Scenario 
The mathematical modeling process for this problem involves defining the key components, decision variables, 
objective function, and constraints. The aim is to find the optimal set of 3DP shops to fulfill demand of customers 
while optimizing the delivery distance. The parameters are listed below in Table 2. 

Table 2. Parameters and variables in mathematical modeling of the decentralized 3DP scenario 

Symbol Meaning Unit 
𝑀𝑀 Number of 3DP shops / 
𝑁𝑁 Set of 3DP shops, indexed by 𝑖𝑖 , 𝑖𝑖 = 0,1,2,3, … ,𝑀𝑀 − 1. / 
𝑄𝑄 Number of customers / 
𝐺𝐺 Set of customers and in this case, indexed by 𝑗𝑗, 𝑗𝑗 = 0,1,2,3, … ,𝑄𝑄 − 1. / 
𝐶𝐶𝑖𝑖 Capacity of 3DP shop 𝑖𝑖, represents its ability to fulfill customer demand working hour (integer) 
𝐷𝐷𝑗𝑗 Demand of customer 𝑗𝑗 working hour (integer) 
𝐷𝐷𝑖𝑖𝑗𝑗 Demand assigned to 3DP shop 𝑖𝑖 by customer 𝑗𝑗. working hour (integer) 
𝑥𝑥𝑖𝑖𝑗𝑗 Binary decision variables / 
𝑑𝑑𝑖𝑖𝑗𝑗 Shortest single-point delivery distance from 3DP shop 𝑖𝑖 to customer 𝑗𝑗. Kilometers (km) 
𝑇𝑇𝐷𝐷𝐷𝐷 Total Delivery Distance Kilometers (km) 

 
𝐷𝐷𝑗𝑗  , 𝐷𝐷𝑖𝑖𝑗𝑗  and 𝐶𝐶𝑖𝑖 are defined using a common unit of measurement as working hour. This choice, rooted in the common 
industrial practice, intuitively represents 3D printer operating time and real-world customer demand in this 3D printing 
specific problem. Integer values align with practical 3D printing scenarios, where working hours are discrete units, 
simplifying modeling and problem-solving. Maintaining equal-sized working hours for capacity and demand enables 
direct comparison and evaluation in a unified unit, streamlining problem formulation and analysis. Binary decision 
variables 𝑥𝑥𝑖𝑖𝑗𝑗  indicates whether 3DP shop 𝑖𝑖 is selected (𝑥𝑥𝑖𝑖𝑗𝑗 = 1) or not (𝑥𝑥𝑖𝑖𝑗𝑗 = 0) by customer 𝑗𝑗. If 𝐷𝐷𝑖𝑖𝑗𝑗  is non-zero, the 
corresponding 𝑥𝑥𝑖𝑖𝑗𝑗   is set to 1, indicating the shop selection. The assignment of 𝑥𝑥𝑖𝑖𝑗𝑗   is employed for the convenient 
calculation of 𝑇𝑇𝐷𝐷𝐷𝐷. When the shop is selected, entire single-point distance 𝑑𝑑𝑖𝑖𝑗𝑗  must be included in the total objective 
function calculation, multiplied by a coefficient of 1 (i.e. corresponding 𝑥𝑥𝑖𝑖𝑗𝑗). The model thus integrates integer and 
continuous variables and thus is a Mixed Integer Linear Programming. 
 
Considering the characteristics of decentralized 3D printing scenario and customer satisfaction, the constraints are 
listed below in equation (1) and (2): 

• Consideration of customer satisfaction, ensure that each customer’s demand is 100% satisfied.  
For every customer 𝑗𝑗 : 

�𝐷𝐷𝑖𝑖𝑗𝑗 ⋅ 𝑥𝑥𝑖𝑖𝑗𝑗

𝑀𝑀−1

𝑖𝑖=0

= 𝐷𝐷𝑗𝑗 (1) 

• Due to the limited capacity of the decentralized 3DP stores, their capacity need to be ensured not to be 
exceeded. For every 3DP shop 𝑖𝑖 : 

�𝐷𝐷𝑖𝑖𝑗𝑗 ⋅ 𝑥𝑥𝑖𝑖𝑗𝑗

𝑄𝑄−1

𝑗𝑗=0

⩽ 𝐶𝐶𝑖𝑖 (2) 

The objective function is to optimize the Total Delivery Distance (𝑇𝑇𝐷𝐷𝐷𝐷) in equation (3): 

𝑇𝑇𝐷𝐷𝐷𝐷 = � � 𝑑𝑑𝑖𝑖𝑗𝑗 ⋅ 𝑥𝑥𝑖𝑖𝑗𝑗

𝑀𝑀−1

𝑖𝑖=0

𝑄𝑄−1

𝑗𝑗=0

(3) 

The meaning of equation (3) is: First, calculate the distance from one customer to their chosen printing shops and then 
sum the required delivery distances for individual customers. This objective function 𝑇𝑇𝐷𝐷𝐷𝐷  as the object to be 
optimized. Due to 3DP, customers typically transmit design files to print shops online, so only the one-way delivery 
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distance from the shop to the customer after production is considered. Considering real-word situation, the shortest 
single-point delivery distance 𝑑𝑑𝑖𝑖𝑗𝑗  is calculated using the shortest driving distance from Open-Source Routing Machine 
(OSRM) API (Luxen et al. 2011) from OpenStreetMap (OpenStreetMap contributors. 2023).   
 
The assumption essential for problem solvability: Total demand is not larger than total capacity (cf. equation (4)). 

�𝐶𝐶𝑖𝑖

𝑀𝑀−1

𝑖𝑖=0

⩾ �𝐷𝐷𝑗𝑗

𝑄𝑄−1

𝑗𝑗=0

(4) 

3.3 Optimization based on CBC Solver in PuLP of Decentralized 3D Printing Scenario  
The PuLP library (Mitchell et al. 2011) in Python is chosen to be imported as an optimization tool in this MILP 
problem. The CBC (Coin-OR Branch and Cut) solver is selected for the conduction of optimization of the MILP 
problem. CBC is an open-source optimization solver that is part of the COIN-OR project. It is designed for solving 
MILP problems. CBC combines branch-and-bound with cutting-plane methods to efficiently find optimal solutions to 
complex optimization problems, making it a valuable tool in operations research and mathematical optimization 
(Matthew et al. 2020). 
 
CBC optimization process involves reading the problem's input file in MPS (Mathematical Programming System) 
format, initializing the problem, obtaining an initial solution, and evaluating integer infeasibility. Main optimization 
iterations follow, employing various algorithms like branching and cut generation. Mini branch and bound iterations 
further enhance the solution. CBC continues optimization attempts until no better solutions are found, eventually 
providing a final integer solution. Statistical information, including iteration count and CPU time, is reported. Key 
algorithms include initial relaxation linear programming solve, branching, cutting plane method, and pruning to 
improve solution quality. The result from optimization process is the optimized total delivery distance 𝑇𝑇𝐷𝐷𝐷𝐷𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑  
in the decentralized 3DP scenario. 
 
3.4 Modeling of Hypothetical Centralized 3D Printing Factory Scenario 
Firstly, the selection of locations for centralized 3DP manufacturing facilities is considered, considering the practical 
circumstances in the Cairo region. Two centralized 3DP facilities are situated at (cf. Figure 3): 

• Location A - (29.927122°, 30.887749°) in 6th of October City  
• Location B – (30.152666°, 31.402938°) in Craftsmen City. 

 

 

Figure 3. Location A and B in greater Cairo region (Google Map 2023) 

The decision to assume facilities in these two specific areas is also underpinned by various factors. Location A is 
positioned at the heart of an industrial zone, where numerous automotive manufacturing industries are concentrated. 
Location B is surrounded by a substantial presence of manufacturing industries as well as being a hub for craftsmen. 
The presence of a thriving industrial sector indicates a robust demand for 3DP services, underlining the strategic 
importance of these locations. Both Location A and Location B have excellent road infrastructure, with the added 
advantage that Location B is situated next to an airport. This accessibility is crucial for ensuring timely delivery of 
3D-printed items to meet market demands. 
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The mathematical modeling for the centralized 3DP facilities scenario is as follows: 

• Assumption: The production capacity of a single facility exceeds total demand of the customers 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . i.e.: 

𝐶𝐶𝐴𝐴 > 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ 𝐶𝐶𝐵𝐵 > 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (5) 

Here 𝐶𝐶𝐴𝐴 and 𝐶𝐶𝐵𝐵  is the production capacity of the central manufacturing facility A and B, respectively. The 
assumption that the production capacity is more than demand is rooted in the idea that these hypothetical 
production facilities can thus be later assumed as large 3dP hubs or any other type of mass production facilities. 
 
• Minimum total delivery distance of the centralized scenario 𝑇𝑇𝐷𝐷𝐷𝐷min𝑑𝑑𝑜𝑜𝑑𝑑  : 

𝑇𝑇𝐷𝐷𝐷𝐷min𝑑𝑑𝑜𝑜𝑑𝑑 = � min�𝑑𝑑𝐴𝐴𝑗𝑗 ,𝑑𝑑𝐵𝐵𝑗𝑗�
𝑄𝑄−1

𝑗𝑗=0

(6) 

The purpose of equation (6) is to calculate the minimum total delivery distance for the centralized scenario. It 
compares the shortest single point delivery distances 𝑑𝑑𝐴𝐴𝑗𝑗  and 𝑑𝑑𝐵𝐵𝑗𝑗  between positions A and B for each customer 
𝑗𝑗 and selecting the shorter of the two distances, then adds up all the shortest distances. 

 
3.5 Monte Carlo Simulation for Comparative Statistical Analysis between Hypothetical Centralized 
and Decentralized 3D Printing Factory Scenario 
Monte Carlo simulations are used here to model different situations and evaluate their performance, focusing on total 
delivery distance. The simulations assume uniform distributions for variables of customer locations and demands. 
Through repetitive simulations, a diverse range of real-world situations is considered, providing insights into the 
logistics performance of decentralized and centralized 3DP models. Initially, the model’s validity and computational 
performance was initially assessed by running a small data sample. The specific steps are shown in Figure 4 and 
explained as follows: 

1. Initialization: The process begins by initializing the Monte Carlo simulation. This involves defining the 
number of iterations for the simulation loop 𝐿𝐿. In this paper, 𝐿𝐿 = 10000. 

2. Random generation of customer data: In each iteration, customer locations and their respective demand 
values are randomly generated following a uniform distribution. 

3. 𝑇𝑇𝐷𝐷𝐷𝐷  calculation: The core of the Monte Carlo simulation lies in the calculation of the Total Delivery 
Distance (𝑇𝑇𝐷𝐷𝐷𝐷) under the conditions of the MILP model. During each iteration, 𝑇𝑇𝐷𝐷𝐷𝐷𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑  and 𝑇𝑇𝐷𝐷𝐷𝐷min𝑑𝑑𝑜𝑜𝑑𝑑  
are calculated. 

4. Data recording: For each iteration, the results of 𝑇𝑇𝐷𝐷𝐷𝐷𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑  and 𝑇𝑇𝐷𝐷𝐷𝐷min𝑑𝑑𝑜𝑜𝑑𝑑  are recorded.  
5. Data output: Once all iterations are complete, the recorded 𝑇𝑇𝐷𝐷𝐷𝐷 values are output.  
6. These steps are implemented and applied across the proposed sub-scenarios in the following section and 

represented in Table 3. 
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Figure 4. Monte Carlo simulation algorithm flowchart for comparison of centralized and decentralized scenario 

4. Results and Discussion 
The outcomes of applying the MILP-based generalized method to real-world conditions in greater Cairo region in 
Egypt are presented in this section. Additionally, the results of the qualitative and quantitative assessments of delivery 
distance of de- and centralized scenarios from Monte Carlo simulations, will also be showcased and analyzed. Bearing 
in mind the real situation, customers are randomly distributed within the following geographical boundaries: 

• Minimum Latitude: 29.87000000° - Maximum Latitude: 30.25000000° 
• Minimum Longitude: 30.830000°  - Maximum Longitude: 31.8100000° 

In addition to this:  
• CBC MILP solver version is: 2.10.3. 
• No time limit set for CBC MILP solver. 

 
These sub-scenarios in Table 3 are designed to validate the performance of the algorithm and for qualitative and 
quantitative analysis based on Monte Carlo simulation. 

 
Table 3. Parameters of Sub-scenarios 

 
Sub-scenarios Customer demand range 

(working hour/day) 
Number of 
customers 

Sub-scenario 1: Large number of customers - Low individual demand  1 - 39 100 
Sub-scenario 2: Medium number of customers - Medium individual demand 40 - 225 30 
Sub-scenario 3: Low number of customers - Large individual demand 226 - 500 10 
Sub-scenario 4: Sparse number of customers - Intensive individual demand 501 -1000 6 
 
4.1 Result of Generalized Demand Allocation Method  
The focus of this section is to demonstrate the store-customer allocation in the Cairo area and to validate the 
effectiveness of the algorithm, thus laying the groundwork for the use of Monte Carlo simulation in conjunction with 
this algorithm in the following section (Table 4). 
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Table 4. Example of customer demand and location of sub-scenario 2 in greater Cairo region 
 

Customer Location (°) Demand (working hour/day) Customer Location (°) Demand (working hour/day) 
Customer 0 (30.1908803,31.5727953) 178 Customer 15 (30.0512637,31.6780037) 88 
Customer 1 (30.0298172,31.0837384) 92 Customer 16 (29.9689871,31.6189273) 87 
Customer 2 (30.0642844,31.2268355) 194 Customer 17 (30.0785057,30.8437609) 48 
Customer 3 (30.1678435,31.1272465) 180 Customer 18 (30.1434878,31.2208471) 196 
Customer 4 (30.0511068,31.4017144) 190 Customer 19 (30.1834411,31.4847901) 208 
Customer 5 (30.2150829,31.3245931) 113 Customer 20 (29.8704343,31.3137063) 106 
Customer 6 (29.9770984,31.5706881) 153 Customer 21 (30.1996891,31.0690327) 161 
Customer 7 (30.1049802,31.0754962) 63 Customer 22 (29.9935777,31.6830618) 57 
Customer 8 (30.2157036,31.7931298) 192 Customer 23 (29.9426055,31.3861605) 62 
Customer 9 (30.1778825,31.7141226) 138 Customer 24 (29.9606741,31.7781894) 213 

Customer 10 (29.9878561,31.5452351) 121 Customer 25 (30.1752082,31.2690102) 73 
Customer 11 (30.2115585,31.5003043) 187 Customer 26 (29.9005694,31.1436535) 78 
Customer 12 (30.0494142,30.9286872) 101 Customer 27 (30.0630174,31.7441771) 49 
Customer 13 (30.0349853,31.4286692) 114 Customer 28 (29.9114420,31.3702419) 60 
Customer 14 (30.2169442,31.7772742) 87 Customer 29 (30.1384933,31.3664921) 219 

                   
Table 5. Example of the result of shop-customer assignment of sub-scenario 2 in greater Cairo region 
 

Print 
Shop 

Capacity 
(working hour/day) 

Occupancy 
Rate 

Contributions from Customers Print Shop Capacity 
(working hour/day) 

Occupancy 
Rate 

Contributions from Customers 

Shop 0 75 100.00% [(7, 63), (21, 12)] Shop 23 75 100.00% [(29, 75)] 
Shop 1 100 0.00% [] Shop 24 50 100.00% [(5, 46), (29, 4)] 
Shop 2 200 49.50% [(12, 99)] Shop 25 175 100.00% [(8, 175)] 
Shop 3 40 0.00% [] Shop 26 200 84.00% [(8, 17), (19, 151)] 
Shop 4 75 100.00% [(2, 75)] Shop 27 100 100.00% [(18, 64), (29, 36)] 
Shop 5 50 0.00% [] Shop 28 175 100.00% [(0, 175)] 
Shop 6 90 100.00% [(1, 90)] Shop 29 90 100.00% [(9, 85), (15, 5)] 
Shop 7 100 100.00% [(6, 31), (23, 62), (24, 7)] Shop 30 100 0.00% [] 
Shop 8 40 100.00% [(15, 40)] Shop 31 90 73.33% [(20, 66)] 
Shop 9 200 100.00% [(24, 200)] Shop 32 100 100.00% [(20, 40), (28, 60)] 
Shop 10 90 100.00% [(3, 90)] Shop 33 40 0.00% [] 
Shop 11 40 100.00% [(18, 40)] Shop 34 200 100.00% [(1, 2), (21, 120), (26, 78)] 
Shop 12 200 100.00% [(10, 53), (15, 3), (16, 87), (22, 57)] Shop 35 100 100.00% [(2, 48), (18, 52)] 
Shop 13 50 100.00% [(12, 2), (17, 48)] Shop 36 90 100.00% [(3, 61), (21, 29)] 
Shop 14 50 100.00% [(25, 50)] Shop 37 100 100.00% [(2, 71), (3, 29)] 
Shop 15 225 0.00% [] Shop 38 100 100.00% [(6, 32), (10, 68)] 
Shop 16 90 100.00% [(0, 3), (11, 30), (19, 57)] Shop 39 40 100.00% [(15, 40)] 
Shop 17 50 0.00% [] Shop 40 100 100.00% [(4, 94), (24, 6)] 
Shop 18 100 100.00% [(13, 100)] Shop 41 90 100.00% [(5, 67), (25, 23)] 
Shop 19 90 100.00% [(6, 90)] Shop 42 50 100.00% [(14, 1), (27, 49)] 
Shop 20 40 0.00% [] Shop 43 200 100.00% [(9, 53), (11, 61), (14, 86)] 
Shop 21 200 100.00% [(11, 96), (29, 104)] Shop 44 40 100.00% [(18, 40)] 
Shop 22 110 100.00% [(4, 96), (13, 14)]     

 

 
 

Figure 5. Example of sub-scenario 2 in greater Cairo region in OpenStreetMap (OpenStreetMap contributors. 2023) 
 
Considering space limitations, only the example output of the sub-scenario 2 is presented. In the example, 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is 
3808 working hours, which is 82.60% of 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑇𝑇𝐷𝐷𝐷𝐷 is 723.226𝑘𝑘𝑘𝑘 (cf. Figure 5, Table 4 and 5). This case illustrates 
that, when the total customer demand is below the overall 3DP capacity, each customer's needs can be fully satisfied 
at a 100% rate. As indicated in Table 5, a 3DP shop can serve multiple clients, such as Shop 0, which took 63 and 12 
working hours from Customer 7 and 21, respectively. Moreover, a single customer's demand can be optimized and 
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Figure 6. Distribution of ratio in 4 sub-scenarios in greater Cairo region 

distributed across various printing shops, as seen with Customer 0, whose demand was assigned to Shop 16 and 28. 
Achieving complete customer satisfaction can significantly enhance overall satisfaction with the 3D printing shop. 
 
4.2 Result and Analysis of Comparative Statistical Analysis between Decentralized and Centralized 
Scenario based on Monte Carlo Simulation 
The focus of this section is to provide result and comprehensive quantitative and qualitative analysis between 
decentralized and centralized 3DP scenario in term of total delivery distance from massive random customer situations 
between various sub-scenarios, which are derived from the application of Monte Carlo simulation. 
 
The target subject of the analysis is the distribution of the ratio 𝑟𝑟 (cf. equation (7)) and 𝑇𝑇𝐷𝐷𝐷𝐷������𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜  (cf. equation(8)):  

𝑟𝑟 =
𝑇𝑇𝐷𝐷𝐷𝐷𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑

𝑇𝑇𝐷𝐷𝐷𝐷𝑜𝑜𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑 (7) 

The results of distribution of the ratio 𝑟𝑟 are shown in Figure 6(a)(b)(c)(d). The p-value from the Shapiro-Wilk test 
(Shapiro et al. 1965) is compared to the significance level (alpha), set at 0.05. If p < alpha, indicating a deviation of 
ratio 𝑟𝑟  from normal distribution, Kernel Density Estimation (KDE) (Parzen. 1962) is applied. If 𝑟𝑟  conforms to 
normality criteria, fitting is performed using the normal distribution's probability density function (Patel et al. 1996). 
 

             
                                         (a) Sub-scenario 1                                                                        (b) Sub-scenario 2 

            
                                      (c) Sub-scenario 3                                                                           (d) Sub-scenario 4 
 
 
The result of key parameters from Monte Carlo simulation is shown in Table 6: 

 
Table 6. Results of key parameters from Monte Carlo simulation in 4 sub-scenarios in greater Cairo region. 

 
Key parameters Sub-scenario 1 Sub-scenario 2 Sub-scenario 3 Sub-scenario 4 

𝑇𝑇𝐷𝐷𝐷𝐷������𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜 1356.94𝑘𝑘𝑘𝑘 361.61𝑘𝑘𝑘𝑘 89.32𝑘𝑘𝑘𝑘 58.71𝑘𝑘𝑘𝑘 
Percentage of cases where 𝑇𝑇𝐷𝐷𝐷𝐷𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑 > 𝑇𝑇𝐷𝐷𝐷𝐷min

𝑑𝑑𝑜𝑜𝑑𝑑  0.00% 0.00% 0.19% 1.76% 
Minimum ratio 𝑟𝑟min 31.23% 28.72% 25.16% 17.79% 
Mean ratio �̅�𝑟 38.83% 45.63% 60.06% 56.10% 
Maximum ratio 𝑟𝑟max 46.77% 65.93% 132.00% 209.73% 
10th percentile of ratio 𝑟𝑟10 36.13% 40.11% 47.20% 39.89% 
90th percentile of ratio 𝑟𝑟90 41.51% 51.19% 73.21% 74.19% 
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Here is the definition of the parameters: 𝑇𝑇𝐷𝐷𝐷𝐷������𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑  is mean value of 𝑇𝑇𝐷𝐷𝐷𝐷𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑 . 𝑇𝑇𝐷𝐷𝐷𝐷������min𝑑𝑑𝑜𝑜𝑑𝑑  is mean value of 
𝑇𝑇𝐷𝐷𝐷𝐷min𝑑𝑑𝑜𝑜𝑑𝑑 . 𝑇𝑇𝐷𝐷𝐷𝐷������𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜is mean value of saving total delivery distance between decentralized and centralized scenario. 

𝑇𝑇𝐷𝐷𝐷𝐷������𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜 = 𝑇𝑇𝐷𝐷𝐷𝐷������min𝑑𝑑𝑜𝑜𝑑𝑑 − 𝑇𝑇𝐷𝐷𝐷𝐷������𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑 (8) 

Analyzing Table 6, several noteworthy quantitative results exist: 
• In sub-scenario 1, it showcases an average delivery distance reduction of 61.17%, offering substantial savings 

of approximately 1356.94 𝑘𝑘𝑘𝑘 on average. 
• In sub-scenario 2, the decentralized system also demonstrates remarkable performance, achieving an average 

distance reduction of 54.37%. Even in the worst-case situation, the decentralized approach covers 65.93% of 
the distance required in a centralized system. 

• In sub-scenario 3 and 4, the decentralized system remains advantageous. Even in worst-case sub scenario 4, 
where decentralized distance is 109.73% greater, still saves an average delivery distance of 58.71𝑘𝑘𝑘𝑘. 

As Figure 7, 8, 9 shown above, the following qualitative conclusions can be drawn based quantitative data: 
• For situations with low individual demand but a large number of customers (decentralized customer 

distributed situation), decentralized 3DP shops perform the best, as supported by the data in sub-scenario 1. 
• As demand increases and the number of customers decreases, the mean value of saving total delivery distance 

between decentralized and centralized scenario decreases and saving ratio indicates a downward trend in 
general. 

• Decentralized 3DP is effective in reducing delivery distances in the majority of cases when compared to 
central printing factories. 

• In extreme cases where customers are concentrated, such as in scenarios with high demand but few 
customers, central 3DP factories have an advantage in terms of total delivery distance. 

• In scenarios with centralized customer distribution, particular attention must be given to each individual case. 
This is because the range of variability of the ratio can be substantial, resulting in extreme differences in total 
delivery distances between centralized and decentralized scenario under similar circumstances. 

 
In summary, the utilization of Monte Carlo simulations and the focus on the region set the stage for uncovering 
practical and innovative solutions to optimize logistic networks and enhance the efficiency of 3DP logistics. Besides 
that, the robustness of the MILP-based algorithm has also been demonstrated in a large number of Monte Carlo 
simulations, as infeasible situations are not encountered. While the 4 sub-scenarios offer a viewing lens for decision 
makers to understand when to use the centralized hubs for manufacturing in contrast to capitalizing on the current 
decentralized network of available 3DPs.  
 
5. Conclusion  
In conclusion, this paper capitalizes on the idea that 3D printing (3DP) can offer decentralized manufacturing, which 
is particularly beneficial for emerging countries and urban city logistics planning. This concept is explored by 
employing a mature Mixed Integer Linear Programming (MILP) model to optimize delivery distances for customer 
demand allocation to real decentralized 3DP shops across Cairo, providing a real case study. This allocation is then 

Figure 5. Summary of mean saving total 
delivery distance in 4 sub-scenarios in 

Cairo region 

Figure 8. Summary of mean saving 
percent of total delivery distance in 4 

sub-scenarios in Cairo region 

Figure 9. Summary of ratio in 4 sub-
scenarios in greater Cairo region 
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compared to the allocation of each customer to the nearest of two hubs, utilizing Monte Carlo simulation to simulate 
real-world variability and disruptions in customer locations and demand size. 
 
Taking into consideration the shortest distances traveled, calculated by the Open-Source Routing Machine (OSRM), 
for a realistic logistics study, this approach incorporates real geographical conditions and the road network in Cairo, 
Egypt. Furthermore, four sub-scenarios are proposed to offer a deeper view and statistical analysis, providing 
information that helps policymakers and stakeholders decide when to use the current network of 3DP in contrast to 
manufacturing in central hubs. Thus, the study enriches the theory and knowledge through this combination of tools 
and its application to the real case of Cairo. 
 
The results, demonstrated through extensive testing and optimal solution, show a significant leaning towards 
decentralized manufacturing in the case of Cairo, hence achieving a substantial reduction in delivery distances. This 
reduction is especially pronounced in scenarios with a large customer base and low individual demand. Only in a very 
small percentage of the cases, where the number of customers is really low but individual demand is quite high 
(ranging between 500 to 1000 hours of demand), resembling an extreme case (for example, cases of supply chain 
disruptions, where the customers are institutions requiring massively produced parts), and while on average it is still 
better to use the 3DP network, stakeholders should take extra care for each individual case, as the tests show the 
decision can flip towards centralized manufacturing the more the number of customer decline and individual demand 
surge. 
 
Our findings also bear significant practical implications, especially for the rapidly flourishing 3DP industry in Egypt. 
With the current state of 3DP facilities and relevant capacities, we expect a future where local manufacturing through 
nearby shops combined with last-mile delivery logistics is very promising. This study also serves as a guide for local 
businesses and policymakers to optimize and utilize, as well as foster the 3DP industry as it contributes to the local 
industry ecosystem and serves as a cushion for supply chain disruptions. Moreover, it contributes to environmental 
sustainability through reduced travel distance and the associated carbon footprint. 
 
However, limitations exist, such as region-specific conclusions, idealized parameters, and insufficient consideration 
of 3DP specific variables and constraints as scheduling tasks, types of 3DP material and technology used. A hybrid 
system could also be devised to shift customers demand allocation to hubs when the 3DP facilities’ capacity is reached, 
altering between two systems. A more nuanced customer demand could thus be modeled as well. We also recommend 
the expansion of the model to include other variables such as carbon footprint, transportation costs, constraining the 
hub’s capacity, and proposing other hub locations.  
 
Finally, we suggest the replicability of our study by capitalizing on alternate algorithms on the same data set from 
Cairo, Egypt. Additionally, apply the established model and analysis parameters to different cities and datasets to 
enhance the findings as well as reaching a more generalized conclusion.  
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