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Abstract 

 
This study focuses on the problem of multi-order fulfillment and consolidation in e-Commerce retail (MOFCP). We 
examine a retailer that operates an online channel and a network of stores or warehouses. In this context, the term” 
store” is broadly used to refer to an individual physical store or a local warehouse. Customers can place orders 
containing multiple items through on-line platforms. The goal is to find the locations that fulfill each order and a 
consolidation point of each order such that the total transportation costs are minimized. To capture the economy of 
scale of the transportation costs, we model the transportation costs through piece-wise linear cost functions. We 
propose an integer programming IP formulation enhanced by valid inequalities, as well as a nested Variable 
Neighborhood Search heuristic. Through preliminary numerical experiments, we show that the heuristic has 1.58% 
and 2.98% overall average increase in costs compared to the MILP for the case of tight inventory to demand ratio 
(𝑘𝑘 = 1) and suplus inventory to demand (𝑘𝑘 = 1.5) respectively. The overall average running time is about 2 times 
faster for tight inventory and about 5 times slower than the IP when inventory is surplus. 
 
Keywords 
Order consolidation, e-commerce, Nested VNS, multi order, heuristic. 
 
1. Introduction 
The emergence of mobile Internet and e-Commerce has had a major impact on consumer behaviour, leading to a 
preference for online shopping and providing online retailers with the opportunity to increase sales (Nguyen et al., 
2018). This shift has resulted in the global e-Commerce market reaching an estimated 5 trillion US dollars in 2022 
and is projected to continue to grow in the coming years (Statista, 2023). This increase in online sales requires 
eCommerce retailers (e-tailers) to respond effectively to customer demands. To meet this demand, online retailers are 
expanding their logistic network (Hubner et al., 2016), which has led to more complex fulfilment operations and an¨ 
increase in logistic costs (Handfield et al., 2013). To reduce these costs, e-tailers are implementing strategies such as 
reducing the frequency of delivery by the last mile and employing omnichannel approaches. 
 
E-tailers are challenged to maintain high service quality while reducing fulfillment expenses. When customers place 
orders online, their goal is to design the most cost-effective fulfilment plans, considering operational constraints and 
customer expectations (Acimovic / Graves, 2017). The time between order placement and delivery in online settings, 

14thAnnual International Conference on Industrial Engineering and Operations Management 
Dubai, United Arab Emirates (UAE), February 12-14, 2024 

Publisher: IEOM Society International, USA 
Published: February 12, 2024 

DOI: 10.46254/AN14.20240294 
 

 

mailto:maher.maalouf@ku.ac.ae
mailto:andrei.sleptchenko@ku.ac.ae
https://doi.org/10.46254/AN14.20240294


 Proceedings of the 14th Annual International Conference on Industrial Engineering and Operations Management 
Dubai, United Arab Emirates (UAE), February 12-14, 2024 
 

© IEOM Society International 

known as the window of decision opportunity (Torabi et al., 2015), allows e-tailers to optimize the fulfillment process 
and make informed decisions through different fulfilment strategies such as order consolidation. Consolidation-based 
fulfilment is a logistics strategy that aims to minimize transportation costs by aggregating multiple orders and their 
corresponding items into a single, larger shipment, thereby achieving economies of scale in transport (Dror / Hartman, 
2007). This approach holds substantial promise for cost reduction and improved service levels, particularly for orders 
comprising multiple items. 
 
In this study, we focus on the problem of multi-order fulfilment and consolidation in e-Commerce retail (MOFCP). 
We examine a retailer that operates an online channel and a network of stores or warehouses. In this context, the term” 
store” is broadly used to refer to an individual physical store, a local warehouse, or a cluster of such facilities in 
proximity. Customers can place orders containing multiple items through on-line platforms, such as a website. The 
goal is to find the locations that fulfil each order and a consolidation point of each order such that the total 
transportation costs are minimized. To capture the economy of scale of the transportation costs, we model the 
transportation costs through piece-wise linear cost functions. MOFCP generalizes the one order fulfilment and 
consolidation problem, which was proven to be NP-Hard in Akyuz et al. (2022). 
 
Contribution For MOFCP, we propose a mixed integer programming formulation enhanced by valid inequalities, as 
well as a nested Variable Neighbourhood Search heuristic. Via numerical experiments, we show that the heuristic 
gives close to optimal solutions with an average cost increase of 2.28 % and the overall average running time is about 
3 times slower. 
 
2. Literature Review 
This work is closely related to two research streams in the literature: online order fulfilment, which studies from which 
store to fulfil orders, and order consolidation, which studies how to combine several orders. 
 
An efficient policy for fulfilling orders is crucial in e-commerce retail to reduce costs and satisfy customer needs. 
Various optimization strategies for fulfilment have been explored. Acimovic / Graves (2015) created a heuristic based 
on linear programming (LP) aimed at single item orders. This heuristic aims to minimize outbound shipping costs by 
considering not only immediate costs, but also future expected shipping expenses. They found that their approach 
could cut outbound shipping costs by 1% compared to a short-sighted heuristic. The complexity of the fulfilment 
optimization increases when multi-item orders are allowed due to availability of items across locations. Torabi et al. 
(2015) studied the effects of combined decisions on both fulfilment and transshipment for multi-item orders, proposing 
a Mixed Integer Programming (MIP) and a Bender decomposition to tackle this problem. Hubner¨ et al. (2016) 
described various fulfilment and distribution options available to fulfil online orders. Ishfaq / Bajwa (2019) argue that 
utilizing retail stores for order fulfilment could be more advantageous than relying solely on direct warehouse 
shipments. Additional fulfilment strategies for order fulfilment include the simultaneous optimization of order 
allocation and routing, as demonstrated by Li et al. (2019). They addressed this problem using an adaptive large 
neighborhood search combined with a greedy heuristic. Furthermore, Jiang et al. (2022) developed an integrated 
approach for order fulfillment and vehicle routing for online retailers, considering specific delivery time windows and 
synchronization constraints, and solved it using an adaptive large neighbourhood search heuristic. 
 
The subject of shipment consolidation and its potential for cost reduction has been a significant focus of logistics 
research. Studies in this area have focused predominantly on coordinating replenishment and delivery decisions 
(Nguyen et al., 2014), encompassing the management of material flows from one or multiple vendors to single or 
multiple retailers. Such consolidation typically involves a small number of customers with large freight per order, and 
they use long-distance vehicles for transportation (Capar, 2013). The logistics sector has thoroughly investigated the 
cost benefits of shipment consolidation, focusing on the trade-off between fixed shipping costs and the costs associated 
with inventory storage. Zhang et al. (2019) have empirically demonstrated that consolidating orders can lead to cost 
savings, as opposed to splitting them. Wei et al. (2021) found that shipment consolidation is beneficial for retailers 
operating in multiple channels. Shan / Tian (2022) tackled a combined optimization challenge involving both order 
splitting and consolidation in the context of online supermarket retail, using an enhanced Bender decomposition 
method. 
 
In our study, we build upon the work of Akyuz et al. (2022), expanding their model to address the issue of multi-item¨ 
orders while incorporating a capacity limit for inventory available at each store. This addition introduces a new level 
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of complexity to the problem. To address this, we propose a nested variable neighborhood search (VNS) strategy that 
utilizes linear programming (LP) relaxation solution to find an initial solution. 
 
3. Method  
3.1. Mathematical model 
The Multi-Order Fulfilment Consolidation Problem (MOFCP) can be formulated as follows. Consider a graph G = 
(R,A), where the set R of nodes represents the stores, and the set A represents the transshipment arcs between the stores 
in R. The retailer has a set of I items stored at stores in R. Each item i ∈ I have a weight ai. At each store r ∈ R, an 
inventory 𝐶𝐶𝑖𝑖𝑟𝑟  of item i is held. Note that some stores may not hold any inventory (𝐶𝐶𝑖𝑖𝑟𝑟 = 0) and only serve as possible 
consolidation points. An online order that contains multiple items can be fulfilled from different stores. The items in 
each order should be consolidated in one of the stores, not necessarily in a store that fulfils those items in the order. 
Given a set O of orders containing a set of distinct items in I, one has to find a fulfilment plan and a consolidation 
point for each order such that the total transportation and consolidation costs are minimized. We assume that the 
transportation costs between two stores r and q depend on the weight transported on the arc (r,q) and are given by a 
piecewise-linear, non-decreasing concave transportation function 𝑓𝑓𝑟𝑟𝑟𝑟(. ). The assumption that the cost function is 
concave and non-decreasing models that the incremental costs are lower for higher weights. Moreover, for each order 
o, 𝑐𝑐𝑟𝑟𝑟𝑟  is the cost to deliver order o from store r ∈ R to the customer. 
 
Next, we present an integer program formulation for MOFCP that extends the formulation for one order presented in 
Akyuz et al. (2022). To formulate the problem as an MIP, we introduce the following variables: 
 
 𝑥𝑥𝑟𝑟𝑟𝑟𝑖𝑖 = �1 if item 𝑖𝑖 of order 𝑜𝑜 is consolidated at store 𝑟𝑟 ∈  𝑅𝑅𝑖𝑖 from inventory at 𝑟𝑟 

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
 

 
 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 =  �1  if item 𝑖𝑖 of order 𝑜𝑜 is transshipped on arc (𝑟𝑟, 𝑞𝑞)

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
 

 
 𝑦𝑦𝑟𝑟𝑟𝑟 =  �1 if store 𝑟𝑟 is chosen as the consolidation point for an order 

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
 

 
 
The MOFCP can be formulated as an Integer Program as follows: 

(𝑃𝑃) 𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝑓𝑓𝑟𝑟𝑟𝑟(��𝑎𝑎𝑖𝑖𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑖𝑖∈𝐼𝐼 

)
𝑟𝑟∈𝑂𝑂

+ �𝑐𝑐𝑟𝑟𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟
𝑟𝑟∈𝑅𝑅 

                                                                    (1) 

 
𝑒𝑒. 𝑜𝑜.�𝑦𝑦𝑟𝑟𝑟𝑟

𝑟𝑟∈𝑅𝑅

=  1                                                                                                              𝑜𝑜 ∈ 𝑂𝑂     (2) 

 
� 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

(𝑟𝑟,𝑟𝑟)∈𝐴𝐴:𝑟𝑟∈𝑅𝑅𝑖𝑖

= 𝑦𝑦𝑟𝑟𝑟𝑟                                                                              𝑜𝑜 ∈ 𝑂𝑂, 𝑖𝑖 ∈ 𝐼𝐼, 𝑟𝑟 ∉ 𝑅𝑅𝑖𝑖       (3) 

 
𝑥𝑥𝑟𝑟𝑟𝑟𝑖𝑖 + � 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

(𝑟𝑟,𝑟𝑟)∈𝐴𝐴:𝑟𝑟∈𝑅𝑅𝑖𝑖

= 𝑦𝑦𝑟𝑟𝑟𝑟                                                                     𝑜𝑜 ∈ 𝑂𝑂, 𝑖𝑖 ∈ 𝐼𝐼, 𝑟𝑟 ∈ 𝑅𝑅𝑖𝑖     (4) 

 
�𝑥𝑥𝑟𝑟𝑟𝑟𝑖𝑖
𝑟𝑟∈𝑂𝑂

+  � � 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑟𝑟:(𝑟𝑟,𝑟𝑟)∈𝐴𝐴

 
𝑟𝑟∈𝑂𝑂

≤ 𝐶𝐶𝑖𝑖𝑟𝑟                                                                         𝑖𝑖 ∈ 𝐼𝐼, 𝑟𝑟 ∈ 𝑅𝑅𝑖𝑖    (5) 

 
𝑥𝑥𝑟𝑟𝑟𝑟𝑖𝑖 ∈ {0,1}                                                                                                 𝑜𝑜 ∈ 𝑂𝑂, 𝑖𝑖 ∈ 𝐼𝐼, 𝑟𝑟 ∈ 𝑅𝑅𝑖𝑖     (6) 

 
𝑧𝑧𝑟𝑟𝑟𝑟𝑖𝑖 ∈ {0,1}                                                                                 𝑜𝑜 ∈ 𝑂𝑂, 𝑖𝑖 ∈ 𝐼𝐼, 𝑟𝑟 ∈ 𝑅𝑅𝑖𝑖, 𝑞𝑞 ∈ 𝑅𝑅        (7) 

 
𝑦𝑦𝑟𝑟𝑟𝑟 ∈ {0,1}                                                                                                               𝑟𝑟 ∈ 𝑅𝑅, 𝑜𝑜 ∈ 𝑂𝑂   (8)  
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The objective function consists of the cost of transhipping items between stores and the cost of delivery from the 
consolidation points. Recall that the transshipment costs on each arc (𝑟𝑟, 𝑞𝑞) are given by the function 𝑓𝑓𝑟𝑟𝑟𝑟(𝑒𝑒𝑟𝑟𝑟𝑟), where 
𝑒𝑒𝑟𝑟𝑟𝑟  is the weight transhipped on arc (𝑟𝑟, 𝑞𝑞). In our problem, 𝑒𝑒𝑟𝑟𝑟𝑟 =  ∑ ∑ 𝑎𝑎𝑖𝑖𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖∈𝐼𝐼𝑟𝑟∈𝑂𝑂 . Constraints (2) ensure that a 
single store is selected as consolidation for each order. Constraints (3) guarantee that if r is a consolidation point for 
order o, an item 𝑖𝑖 ∈  𝑜𝑜 must be fulfilled from another store 𝑞𝑞: (𝑞𝑞, 𝑟𝑟) ∈  𝐴𝐴. At the same time, if r is not a consolidation 
point for o, i.e., 𝑦𝑦𝑟𝑟𝑟𝑟  = 0, no items in o are transhipped to 𝑟𝑟 �𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = 0,∀ (𝑟𝑟, 𝑞𝑞) ∈ 𝐴𝐴� 𝑎𝑎𝑚𝑚𝑎𝑎 𝑖𝑖 ∈ 𝐼𝐼). Constraints (4) ensure 
that if 𝑟𝑟 ∈  𝑅𝑅𝑖𝑖   for some item i ∈ I, and r is the consolidation point for o, i.e.,  𝑦𝑦𝑟𝑟𝑟𝑟 = 1, then an item i may be chosen 
either from the inventory at r or from trans-shipments to r. If r is not the consolidation point for o, 𝑦𝑦𝑟𝑟𝑟𝑟 = 0, no item 𝑖𝑖 
is chosen for consolidation from the inventory at r, and no item is transhipped to r. Note, however, that this does not 
restrict items 𝑖𝑖 to be transhipped from store r, on arcs 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 . Finally, constraint (5) ensures that for each item i, the 
amount consolidated at r and shipped from r does not exceed the inventory. 
 
3.2 Linearizing the cost function 
In order to linearize the objective function, we follow the approach employed in Akyuz et al. (2022). Assume that for 
each arc (𝑟𝑟, 𝑞𝑞) ∈ 𝐴𝐴, the weight levels are given by 𝑏𝑏𝑟𝑟𝑟𝑟0 < 𝑏𝑏𝑟𝑟𝑟𝑟1 < ⋯ < 𝑏𝑏𝑟𝑟𝑟𝑟𝐿𝐿 . We assume that 𝑏𝑏𝑟𝑟𝑟𝑟0 = 0 and 𝑏𝑏𝑟𝑟𝑟𝑟𝐿𝐿  is equal to 
the maximum possible flow on arc (𝑟𝑟, 𝑞𝑞) (e.g., the total weight of all items that can traverse arc (𝑟𝑟, 𝑞𝑞). The cost of 
sending a unit flow on arc (𝑟𝑟, 𝑞𝑞) at level 𝑙𝑙  is 𝑐𝑐𝑟𝑟𝑟𝑟𝑙𝑙 . Clearly, when the weight 𝑒𝑒𝑟𝑟𝑟𝑟𝑙𝑙 ∈ [𝑏𝑏𝑟𝑟𝑟𝑟𝑙𝑙−1, 𝑏𝑏𝑟𝑟𝑟𝑟𝑙𝑙 ], the total cost will 
accumulate over the lower weight levels. The fixed cost of sending the flow over the arc (𝑟𝑟, 𝑞𝑞) at the level l will be 
denoted by 𝐾𝐾𝑟𝑟𝑟𝑟𝑙𝑙  and defined by 

 𝐾𝐾𝑟𝑟𝑟𝑟𝑙𝑙 =  �𝐾𝐾𝑟𝑟𝑟𝑟
𝑙𝑙−1 + �𝑏𝑏𝑟𝑟𝑟𝑟𝑙𝑙 − 𝑏𝑏𝑟𝑟𝑟𝑟𝑙𝑙−2�𝑐𝑐𝑟𝑟𝑟𝑟𝑙𝑙−1                     𝑙𝑙 > 1

𝜂𝜂                                                        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
                                                                 (9) 

where η is the fixed cost of sending for the first weight level. 
To model the function 𝑓𝑓𝑟𝑟𝑟𝑟, we introduce the binary variable 𝑣𝑣𝑟𝑟𝑟𝑟𝑙𝑙  to indicate that the weight level l is chosen for the 
arc (𝑟𝑟, 𝑞𝑞) and the continuous variable 𝑒𝑒𝑟𝑟𝑟𝑟𝑙𝑙  to indicate the flow on the arc (𝑟𝑟, 𝑞𝑞). 
For each arc (𝑟𝑟, 𝑞𝑞) ∈ 𝐴𝐴, the function 𝑓𝑓𝑟𝑟𝑟𝑟  is now given by: 

𝑓𝑓𝑟𝑟𝑟𝑟 ��𝑒𝑒𝑟𝑟𝑟𝑟

𝐿𝐿

𝑙𝑙=0

� =  �(𝐾𝐾𝑟𝑟𝑟𝑟𝑙𝑙 𝑣𝑣𝑟𝑟𝑟𝑟𝑙𝑙 + 𝑐𝑐𝑟𝑟𝑟𝑟𝑙𝑙 𝑒𝑒𝑟𝑟𝑟𝑟𝑙𝑙 ) 
𝐿𝐿

𝑙𝑙=0

                                                                                                           (10) 

The objective function of (𝑃𝑃) becomes. 

𝑚𝑚𝑖𝑖𝑚𝑚 � ��𝐾𝐾𝑟𝑟𝑞𝑞𝑙𝑙 𝑣𝑣𝑟𝑟𝑞𝑞𝑙𝑙 + 𝑐𝑐𝑟𝑟𝑞𝑞𝑙𝑙 𝑒𝑒𝑟𝑟𝑞𝑞
𝑙𝑙 �

𝑙𝑙∈𝐿𝐿

+ ��𝑐𝑐𝑞𝑞𝑜𝑜𝑦𝑦𝑞𝑞𝑜𝑜
𝑜𝑜∈𝑂𝑂𝑞𝑞∈𝑅𝑅(𝑟𝑟,𝑞𝑞)∈𝐴𝐴

                                                                                      (11) 

In order to model the dependence of the cost on the weight transhipped in each arc and the choice of a weight level, 
the following constraints are added to (P): 

   ��𝑎𝑎𝑖𝑖𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = 𝑒𝑒𝑟𝑟𝑟𝑟
𝑖𝑖∈𝐼𝐼𝑟𝑟∈𝑂𝑂

                                                                                                                            (𝑟𝑟, 𝑞𝑞) ∈ 𝐴𝐴  (12) 

𝑒𝑒𝑟𝑟𝑟𝑟 ≤ 𝑏𝑏𝑟𝑟𝑟𝑟𝑙𝑙 𝑣𝑣𝑟𝑟𝑟𝑟𝑙𝑙                                                                                                                                 𝑙𝑙 ∈ 𝐿𝐿, (𝑟𝑟, 𝑞𝑞) ∈ 𝐴𝐴    (13) 
𝑒𝑒𝑟𝑟𝑟𝑟 ≥ 𝑏𝑏𝑟𝑟𝑟𝑟𝑙𝑙−1𝑣𝑣𝑟𝑟𝑟𝑟𝑙𝑙                                                                                                                                𝑙𝑙 ∈ 𝐿𝐿, (𝑟𝑟, 𝑞𝑞) ∈ 𝐴𝐴   (14) 

    �𝑣𝑣𝑟𝑟𝑟𝑟𝑙𝑙 ≤ 1
𝑙𝑙

                                                                                                                                                (𝑟𝑟, 𝑞𝑞) ∈ 𝐴𝐴    (15)       

𝑒𝑒𝑟𝑟𝑟𝑟 ≥ 0                                                                                                                                                    (𝑟𝑟, 𝑞𝑞) ∈ 𝐴𝐴   (16) 
 𝑣𝑣𝑟𝑟𝑟𝑟𝑙𝑙 ∈ {0,1}                                                                                                                                 𝑙𝑙 ∈ 𝐿𝐿, (𝑟𝑟, 𝑞𝑞) ∈ 𝐴𝐴    (17) 

 
Constraints (12) set the total weight carried on an arc equal to the continuous auxiliary variable 𝑒𝑒𝑟𝑟𝑟𝑟. Constraints (13) 
-( 14) ensure that 𝑒𝑒𝑟𝑟𝑟𝑟   is placed in the corresponding weight level. To ensure that at most one range is selected for 
each arc, constraints (15) are used. If no range is selected for the arc (𝑟𝑟, 𝑞𝑞), this corresponds to the situation in which 
no items are carried on this arc. Finally, constraints (16) and (17) captures the range of v and w. 
Remark The following inequalities are valid for P: 

� � 𝑣𝑣𝑟𝑟𝑟𝑟𝑙𝑙 ≤ |𝑂𝑂𝑟𝑟| −�𝑦𝑦𝑟𝑟𝑟𝑟
𝑟𝑟∈𝑂𝑂

 𝑟𝑟 ∈ 𝑅𝑅
𝑟𝑟∈𝑅𝑅\{𝑟𝑟}𝑙𝑙∈𝐿𝐿
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where Or is the set of orders that have at least one item in common with r. This inequality follows from the fact that, 
in an optimal solution, each store r is the consolidation point of ∑ 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟∈𝑂𝑂   items and at most |𝑂𝑂𝑟𝑟| − 𝑦𝑦𝑟𝑟𝑟𝑟  are transhipped 
from r to other stores. 
Note that even for one single order and one given consolidation point, selecting the optimal set of stores to fulfill the 
order reduces to a set-cover problem, which is also NP-Hard (Akyuz et al. (2022)). Furthermore, numerical¨ 
experiments have indicated that obtaining optimal solutions of (P) for large instances is computationally intractable. 
Therefore, we propose a Variable Neighborhood Search (VNS) algorithm that is faster to implement and produces 
reasonable solutions. 
 
4. Solution Method 
4.1 Nested Variable Neighborhood Search Heuristic (NVNS) 
The general framework of the Nested Variable Neighborhood Search Heuristic is presented in Algorithm 1. The 
algorithm sequentially changes the consolidation points and uses 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = 3 neighborhood structures to optimize the 
stores for a given set of consolidation points. Each neighborhood focuses on different aspects of the solution. 
The algorithm starts with an initial feasible solution 𝑒𝑒 =  (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) containing the consolidation points CO for the set 
of orders O and the set of stores SO to serve these orders. 
 
To find an initial solution (Line 1), we solve the linear programming relaxation (LP) of P. Let  (�́�𝑥, �́�𝑦, �́�𝑧) be the optimal 
solution to this (LP). For each order o, we choose the store r that achieves max {𝑦𝑦𝑟𝑟𝑟𝑟́  } as the consolidation point. Let 
CO be the set of consolidation points obtained. For each order o, let 𝐼𝐼𝑟𝑟  be the set of items in o,𝐼𝐼𝑟𝑟𝑟𝑟  be the set of items 
in o, available at store 𝑟𝑟 and 𝐼𝐼𝑟𝑟𝑛𝑛𝑛𝑛 be the set of items in o for which no delivery store has been decided. Initially, 
 
𝐼𝐼𝑟𝑟𝑛𝑛𝑛𝑛 = 𝐼𝐼𝑟𝑟. For each order o, we assume that the corresponding consolidation point will deliver any available items that 
are contained in Io. While 𝐼𝐼𝑟𝑟𝑛𝑛𝑛𝑛  ≠ ∅, we proceed as follows. For each store r ∈ R, we calculate the costs of transporting 
𝐼𝐼𝑟𝑟,𝑟𝑟 ∩ 𝐼𝐼𝑟𝑟𝑛𝑛𝑛𝑛 over the arc (𝑟𝑟, 𝑞𝑞), while taking into account the previous transport decisions on (𝑟𝑟, 𝑞𝑞). The store r∗ with 
minimum average cost on (𝑟𝑟, 𝑞𝑞) is added to the set of stores that deliver items in o. The items delivered by r∗ are 
excluded from 𝐼𝐼𝑟𝑟𝑛𝑛𝑛𝑛, and the weight and number of items on arc (𝑟𝑟, 𝑞𝑞) are updated. 
 
After the initial solution is constructed, at each iteration, the algorithm explores different sets of consolidation points 
until certain termination criteria are met (Lines 5-28 in Algorithm 1). For each new set of consolidation points, the set 
of delivery stores are improved by exploring several neighborhoods (Lines 12-20 in Algorithm 1). If no improvement 
is obtained in any of the neighborhoods, a Shake procedure is employed (Lines 21-26 in Algorithm 1). Next, we 
explain in more detail the components of this algorithm. Throughout the algorithm, f(.) will denote the objective value. 
New sets of consolidation points are constructed as follows. For each order o, let 𝐶𝐶𝑂𝑂𝑟𝑟  be the consolidation point for o 
in the current solution. Every store 𝑟𝑟 ∈  𝑅𝑅 \ {𝐶𝐶𝑂𝑂𝑟𝑟} is considered as a possible consolidation point for o. The stores are 
sorted in decreasing order of the number of available inventory and in case of ties, the number of overlapping items 
with o, is considered. The items in o that were initially delivered to 𝐶𝐶𝑂𝑂𝑟𝑟 will be delivered to r in the new solution. The 
stores that deliver items to 𝑟𝑟 are chosen in a greedy manner: the closest stores to r where items in o are available will 
be chosen for delivery (Lines 9-10 in Algorithm 1). 
 
For each new set of consolidation points, the algorithm tries to improve the delivery stores by exploring three 
neighborhoods: Store Swap, Add Store, and Item Exchange Neighborhood. 
 
4.2 Store Swap Neighborhood 
For a feasible solution s, the neighborhood N1(s) explores the solutions that can be generated from s by exchanging 
the stores that deliver an item 𝑖𝑖 between two different orders. The consolidation points of the respective orders are not 
considered for exchanges. Clearly, if all the orders contain disjoint items, this neighborhood is empty. The algorithm 
for the construction of N1(s) is given in Algorithm 2. 
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Algorithm 1 NVNS (s, N)) 

 
1: Construct an initial solution s 
2: CO: set of consolidation points in s 
3: No improvement ← True 
4: iter ← 1 
5: while No Improvement OR iter < maxiter do 
6: for o ∈ O do 
7: COo : consolidation point of o 
8: Select r ∈ R \ COo 
9: Construct s1 by assigning r as the new consolidation point of o 
10: s′ ← Greedy store selection(𝑒𝑒1, 𝑟𝑟) 
11: l ← 1 
12: while 1 ≤  𝑙𝑙 ≤  𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚   do 
13: s′′ ← First Improvement(𝑒𝑒′,𝑁𝑁𝑙𝑙) 
14: if f(s′′) < f(s) then 
15: s ← s′′ 
16: l ← 2 
17: else 
18: l ← l + 1 
19:       s ← Shake(s”) 
20: end if 
21: end while 
22: if f(s′) < f(s) then 
23: s ← s′ 
24: No Improvement← False 
25: else 
26: s ← Shake(s′) 
27: end if 
28: iter ← iter + 1 
29: end for 
30: end while 
31: return s 

 
 
4.3 Add Store Neighborhood 
The neighborhood N2(s) of a feasible solution s is found by adding a new store to serve items consolidated at a specific 
consolidation point. N2(s) contains solutions constructed as follows. For a consolidation point c, let 𝑂𝑂𝑐𝑐  be the set of 
orders consolidated at 𝑐𝑐, 𝑅𝑅(𝑂𝑂𝑐𝑐) the set of stores that have items contained in 𝑂𝑂𝑐𝑐  and 𝑅𝑅𝑐𝑐  the set of stores used by orders 
in Oc. A new solution is obtained by adding to 𝑅𝑅𝑐𝑐  a store 𝑟𝑟 ∈  𝑅𝑅(𝑂𝑂𝑐𝑐) \ 𝑅𝑅𝑐𝑐 . All the items in 𝑂𝑂𝑐𝑐   available at the new 
store will be delivered from the new store and items that cannot be delivered form new store, are sent from other stores 
close to the consolidation. The inventory at r, the added stores and the stores that no longer deliver items are updated 
accordingly. 
 
When considering the first improvement in the neighborhood of add stores, for a consolidation point c, stores are 
considered in decreasing order of their distance to c. 
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Algorithm 2 Store swap neighborhood N1(s) 
 

1: Input: 
2:        Incumbent solution s 
3:        ri,o(s): store delivering item i in order o in solution s, for i ∈ I,o ∈ O 
4:       CO(o): consolidation point of order o for o ∈ O 
5: Output: N3(s) 
6: for (o1,o2) ∈ O × O do 
7:        for i ∈ o1 ∩ o2 do  
8: s′ ← s 
9:              if ri,o1 ̸= ri,o2 and ri,o1 ̸= CO(o1) and ri,o2 ̸= CO(o2) then 
10:                  ri,o1(s′) ← ri,o2(s) 
11:                  ri,o2(s′) ← ri,o1(s) 
12:                  N3(s) ← N3(s) ∪ {s′} 
13:            end if 
14:       end for 
15: end for 
 
 
4.4 Item Exchange Neighborhood 
The role of this neighborhood is to improve the delivery assignment among stores selected to deliver to the same 
consolidation centre. For a feasible solution s, the neighborhood N3(s) contains solutions s′ obtained from s by changing 
the store from which an item is delivered to another store that delivers to the same consolidation centre. More precisely, 
let c be a consolidation centre, 𝑅𝑅𝑐𝑐   be the set of stores that deliver items to c in the present solution, and 𝐼𝐼𝑐𝑐  the set of 
items delivered at c, which are contained in more than two stores in 𝑅𝑅𝑐𝑐  . A new solution is obtained by changing the 
store that delivers an item 𝑖𝑖 ∈ 𝐼𝐼𝑐𝑐  to another store in 𝑅𝑅𝑐𝑐  that contains that item. 
 
4.5 Shake 
The shake operator is utilized to introduce diversity in the search process and prevent being trapped in local optima. 
After exploring the neighborhood sequentially and not finding a better solution, we applied the shake operator. This 
transforms the NVNS into a multi-start search process. By reassigning a subset of orders from the given set to randomly 
selected stores, the shake operator generates a new solution s. We implemented two shake operators. One for the outer 
loop that randomly select new consolidation point for randomly selected orders. The shake for the inner loop select 
randomly new set of stores to serve randomly selected orders. Specifically, the set of stores currently serving subset 

𝑂𝑂𝑠𝑠𝑟𝑟  is denoted as 𝑅𝑅(𝑂𝑂𝑠𝑠𝑟𝑟), and the set of potential stores that can serve 𝑂𝑂𝑠𝑠𝑟𝑟  is denoted as 𝑆𝑆(𝑂𝑂𝑠𝑠𝑟𝑟). A new solution is 
obtained by replacing the stores in 𝑅𝑅(𝑂𝑂𝑠𝑠𝑟𝑟) with randomly selected stores from 𝑆𝑆(𝑂𝑂𝑠𝑠𝑟𝑟). 
 
5. Numerical experiments 
In the numerical experiments, we consider a set of stores R with |R| ∈ {15,25,40}. Each location may store items or 
only serve as a consolidation point. The stores contain a set of items I with |I| ∈ {3,5}. The total number of orders 
considered O varies in |O| ∈ {3,5}. The number of items in each order is randomly generated in {1, . . . , |𝐼𝐼|}. Each item 
is allocated to a random set of |𝑅𝑅|

2
 stores. The available inventory at each chosen store is generated as follows; let di be 

the total demand for each item 𝑖𝑖 in the set O. For each 𝑖𝑖 ∈  𝐼𝐼, we install the inventory 𝐶𝐶𝑖𝑖  =  𝑘𝑘𝑎𝑎𝑖𝑖   on the network, where 
k is a factor that controls the inventory-to-demand ratio. Then we choose p = min {𝑘𝑘𝑎𝑎𝑖𝑖 , |𝑅𝑅𝑖𝑖|} locations/stores with 
item 𝑖𝑖 at random from the stores that contain item 𝑖𝑖 and install {𝐶𝐶𝑖𝑖𝑟𝑟 = 𝑘𝑘𝑛𝑛𝑖𝑖

|𝑅𝑅𝑖𝑖|
} of item 𝑖𝑖 in each r in these locations. The 

remaining amount of 𝑖𝑖 is assigned to the subset of the selected stores according to the initial installation sequence. The 
values of k are set from {1,1.5}. The weight ai of each item 𝑖𝑖 ∈ 𝐼𝐼 is uniformly generated between [2,15]. The locations 
from where orders are generated are randomly located in a 2D square coordinate of [0,1000]2. 
 
In total, we ran 24 combinations of parameters, and, for each combination, we generated 5 random instances. All 
experiments were run on an Intel(R) Xeon® 2.40GHz CPU using Gurobi solver version 11.0.0. The time limit for the 
MIP was set at 30 min. 
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6. Numerical Results 
In the subsequent analysis, we examine the results obtained after solving models P and NV NS for different scenarios 
that cover varying numbers of stores, orders, and items configurations. Firstly, we examine the effect of the inventory 
to demand ratio (𝑘𝑘) on the fulfillment and consolidation costs as shown in Figure 1. The results shows that the average 
cost is higher when 𝑘𝑘 = 1 as compared to 𝑘𝑘 = 1.5. The relative percentage increase on average is 71% for all the 
stores, orders and items combinations. The high cost for 𝑘𝑘 = 1 is due to the limited options to consolidate items and 
the high chances of fulfilling them from a farther store which will result in high transshipment cost.   
 
Figure 2. presents the result of the relative percentage increase in the average costs obtained by the NVNS algorithm. 
This percentage increase is calculated using the expression 𝑂𝑂𝑂𝑂𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑂𝑂𝑂𝑂𝑗𝑗𝑃𝑃

𝑂𝑂𝑂𝑂𝑗𝑗𝑃𝑃
, where 𝑂𝑂𝑏𝑏𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  and 𝑂𝑂𝑏𝑏𝑗𝑗𝑃𝑃   represent the 

objective values obtained from the models NVNS and P, respectively. These results are presented for various levels of 
the capacity ratio k as discussed in the preceding section. Furthermore, we present the ratio of the average 
computational times for NVNS relative to P. 
 
The NVNS shows an overall increase in the average cost of 1.56% compared to P for k = 1. As the inventory to demand 
ratio increases (k = 1.5) the relative percentage increase in cost compared to P increases to 2.98%. Furthermore, the 
average running time of NVNS, relative to P, is still a bit slower for the case of  𝑘𝑘 = 1.5  which takes about 5 times 
more than 𝑃𝑃. On the other hand, the NVNS is approximately 2 times faster than the IP for 𝑘𝑘 = 1. 
 

 
 

Figure 1. Fulfilment and Consolidation Costs for Various Combinations of Nr. of Stores, Nr. Orders and Nr. Items 
for inventory to demand ratio of k = 1 and 𝑘𝑘 = 1.5. 

 
The reasons for the decrease in NVNS performance as more inventory is introduced into the network may be due to 
several factors, one of which might be the complexity of the solution space. NVNS, being a heuristic, relies on local 
search and neighborhood structures to find improved solutions. In the scenario where the capacity constraint is tight 
(k = 1), the problem becomes the effective use of limited resources, which might lead to straightforward decisions in 
the NVNS search process. On the other hand, when there is more inventory (k = 1.5) it is more about optimizing among 
many feasible options, which is more challenging and requires more robust neighborhood structures. 
 
The Nested Variable Neighborhood Search (NVNS) algorithm gives an overall average relative cost increase of 1.88% 
for 15 stores, 2.64% for 25 stores, and 2.30% for 40 stores. It shows a decline in performance with more orders: the 
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average relative cost increase is 1.36% for 3 orders and 3.19% for 5 orders. Additionally, the performance varies with 
the number of items, exhibiting an average relative increase of 1.43% for 3 items and 3.39% for 5 items. The overall 
running time of the NVNS is on average 3 times slower indicating that the implementation still requires further 
improvement. 
 
7. Conclusion 
This study proposes a mat-heuristics approach to solve the fulfillment and consolidation problem of a retailer with an 
online platform and a network of physical stores. The retailer needs to decide for a given set of orders the consolidation 
points and the stores serve the orders. We formulated the problem as a capacitated multi-order mixed-integer linear 
programming (MILP) with piecewise linear costs. We propose a nested variable neighborhood search approach to 
solve the problem and compare the result with the solution of a MILP solver. The performance of the NVNS was 
examined for different values of the parameter that controls the inventory-to-demand ratio. Compared to the MILP 
solver, the NVNS gave a relative percentage increase in cost as 1.56% and 2.98% for the inventory to demand ratio k 
= 1 and 1.5, respectively. Overall, the NVNS shows an average increase of 2.28% in cost compared to the IP. While 
The performance of the NVNS is within acceptable limit in terms of it relative percentage increase in cost to the 
optimal cost of the IP, its computational time is still a bit higher than the IP. Since this study is a work in progress, we 
hope to refine the implementation and make the algorithm robust for large scale implementation. In this study, we 
have considered the case of more items that overlap between stores in the network. We hope to consider scenarios 
where there is limited overlap among stores. 
 
 

 
Figure 2. The Relative Percentage Difference of NVNS to P For Various Combinations of Nr. of Stores, Nr. Orders 

and Nr. Items for inventory to demand ratio of k = 1 and 𝑘𝑘 = 1.5. 
. 
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