
Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

14thAnnual International Conference on Industrial Engineering and Operations Management Dubai United Arab
Emirates (UAE), February 12-14, 2024

Publisher: IEOM Society International, USA
Published: February 12, 2024

DOI: 10.46254/AN14.20240528

A Digitalization Framework for Real-time Large-scale
Production Scheduling

Neha Kadu, Shankar Prawesh and Avijit Khanra
Department of Management Sciences,
Indian Institute of Technology, Kanpur

India
nkadu@iitk.ac.in

Naoyuki Fujiwara, Yuichi Koga and Yosuke Watanabe
 Digital Innovation Headquarters,

: 0360074 Mitsubishi Heavy Industries, Ltd., India

Abstract

In this work, we propose a novel framework for the development of real-time large-scale production scheduling. The
problem that we study originated from the Digital Innovation Headquarters division of Mitsubishi Heavy Industries,
Ltd. (MHI), which faced the challenge of developing a large-scale just-in-time (JIT) job-shop scheduling software that
could schedule up to a quarter million jobs and 6.2 million operations within an hour. We designed the algorithm for
scheduling and used list data structure for storing the resource availability. We used Ousterhout matrix as a benchmark,
which is popularly used for slot scheduling and shows that our approach significantly improves the runtime. Our study
highlights the implementation of data structures in Job-shop scheduling problems.

Keywords
Job-shop Scheduling, Digitalization, Frame work, Real-time Large-scale.

1.Introduction
Information and communication technologies (ICT) such as, Enterprise Resource Planning (ERP), Manufacturing
Execution Systems (MES), Electronic Data Interchange (EDI), and more recently Internet of Things (IoT) have
enabled us to collect detailed manufacturing, maintenance and operations related data from disparate sources such as
sensors, embedded software feeds, and human interventions (Mithas et al., 2022). This digital transformation of the
manufacturing ecosystem has greatly enabled the efficient use of input resources (Choi et al., 2022) and the adoption
of lean manufacturing practices (Shah & Ward, 2003). In particular, the digitalization of manufacturing and services
has generated various opportunities to improve the functioning of job shop scheduling problems (JSSP) to implement
just-in-time (JIT) production (Ashton James, 1989). And it is imperative for the shop floor managers to embrace this
digital transformation to develop the digital intelligence strategies to meet the objectives of lean manufacturing
(Mithas et al., 2022).

Recently, Digital Innovation Headquarters division of a Japanese multinational company1 faced the challenge of
developing a large-scale JIT job-shop scheduling platform that could schedule up to a quarter million jobs and 6.2
million operations within an hour. These jobs were generated from various manufacturing plants located at multiple
locations across the globe. Each job consists of a set of linearly ordered operations with a fixed precedence relation

1 The name has been anonymized for peer review.

1919

https://doi.org/10.46254/AN14.20240528

Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

among them. Overall, the objective was to develop a just-in-time schedule honoring different resources, time and
precedence constraints which vary substantially across each job.

This problem is unique and differs from a typical JSSP in many ways. First, because of its scale, i.e., despite a high
mix of jobs, we also have their high-volumes. Second, the definition of resource, which is not limited to a machine,
but can also refer a worker, land, or transportation. Because of this broader definition of resource, each resource can
exhibit different working shifts. Third, the scheduling horizon spans over a few years therefore, it necessitates
honoring the constraints related to working days, daily shifts, limited quantity of a resource, and release and due dates
of a job. In addition to the problem characteristics highlighted above, shop floor managers often make up for delays
by changing the order of operations, and they have limited time to spare for generating new schedules. Therefore, we
need a production planning approach that generates a valid schedule honoring all constraints in a short or real time.
All these challenges call for the use of carefully designed scheduling algorithms and data structure to process the data
generated from diverse sources.

Job-shop problem is an extensively researched area, and in a typical JSSP, n-jobs are processed on m-machines such
that each job has a specific precedence relation for processing its operations, each operation can be processed by only
one machine at a time, each machine can process only one operation at a time and preemption of operations is not
allowed (Pinedo 2012). JSSP can have different objectives such as minimization of makespan (time to finish the last
job), tardiness (lateness of a job) or lead time. It is a complex combinatorial optimization problem, and in general most
JSSP are NP-hard (Pinedo 2012). JSSP usually exhibits high-mix, low-volume characteristics i.e., each job follows a
substantially different path for the processing of its operations to manufacture the end product, and the quantity to be
produced is small. There are well established test instances (van Hoorn, 2018) exhibiting above characteristics of JSSP
and early efforts had been to develop good local search heuristics (Balas & Vazacopoulos, 1998; Vaessens et al., 1996)
to solve the selected test instances. Subsequently the use of machine learning (Ferreira et al., 2022; Zhang et al., 2019),
and more recently quantum computing (Kurowski et al., 2023) have also gained prominence.

Another class of heuristics that is popular in scheduling is dispatching rule (Ferreira et al., 2022). A dispatching rule
determines the priority of a job based on some characteristics of the job and the current state of the shop floor, and the
job/operation with highest priority is selected for servicing. Unlike the search heuristics, dispatching rules have much
less computational complexity, hence they are widely used in practice. In the prior research, dispatching rules and
their modifications have been used to schedule up to 105 operations (E. C. Teppan, 2018). Giffler and Thompson
algorithm is often used with dispatching rules to generate an active schedule (Sha & Hsu, 2006). However, it assumes
that the quantity of a resource is one, for a job a particular resource is used by only one of its operations, and a resource
is continuously available. Overall, all these studies lack the complexities of the large-scale real-life production
scheduling that we highlighted earlier and therefore their direct application is not useful in our context.

In service industry, such as restaurant the impact of just-in-time scheduling on workers while considering their work
shift has also received attention (Kamalahmadi et al. 2021). Especially, in the context of job-shop scheduling, Yau
and Shi (2009) considered working shift and bill of materials constraints in a much simplistic setup.

The Use of ICT technologies to implement and improve JIT practices has also been investigated in IS research. For
instance, by conducting a field study and using firm level data, Srinivasan et al. (1994) found that EDI technology
facilitates the coordination of JIT material flows between different trading parties. In other related studies Banker et
al. (2006) used dynamic capability theory to show that plant information systems have significant impact on
developing JIT production practices, whereas Rai et al. (2006) highlight the role of IT infrastructure integration within
and across its boundaries for physical flow integration.

The above discussion on extant research reveals that in general there is lack of a framework that helps us leverage the
data collected from different sources to develop a good schedule for large-scale JSSP in real-time. While discussing
the emerging challenges in operations management from AI and Industry 4.0 technologies Mithas et al. (2022) also
recognize this: “Mathematical models in OM (e.g., ..., and scheduling models) are built on underlying assumptions
that reflect the technological reality of the time when the model was created. As manufacturing and information
technologies evolve, these assumptions and model setups may need to be revised to make these models relevant in the
era of Industry 4.0 technologies.” In this context, the access to unique and detailed data for a job and its operations,
resources, and the other real-life constraints allows us to propose a digitalization framework for real-time large-scale
scheduling of high mix, high volume jobs. While presenting the solution, we highlight the major data preparation and

1920

Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

scheduling challenges that arise in this process and design a set of novel algorithms for calendar timestamp generation,
resource update and scheduling honoring shift breaks. Overall, this work makes the following major contributions to
the product digitalization, operations management, and algorithm design literature.
2. Objectives
1. To develop a novel real-time scheduling framework for JSSP honoring a resource’s calendar and its quantity. In

particular, our algorithm elegantly overcomes the computationally demanding task of finding a valid working
shift of a resource with limited quantity.

2. The scheduling framework that enables the seamless integration of large-scale scheduling algorithms with
shopfloor software for resource monitoring and job updates.

3. Finally, develop a framework that also provides the foundation for the application of AI/ML for the automation
of large-scale job shop scheduling using dispatching rules.

3. Problem Description
We now describe the unique characteristics of the JSSP studied here. A snapshot of the data used to determine different
scheduling constraints is mentioned in Figure 1. We use tuples to refer to a specific panel within the referenced figure2.
Each job that enters the shop floor is assigned a unique job-id and its release and due dates are noted. Figure (1,1)
shows the sample data entries for a job.

Each job can have multiple operations and each operation has the job specific unique id, see Figure (1,2) where each
row represents the operation specific details. In this figure column ‘operation’ shows all operations corresponding to
job 1. Operations within a job follow a predetermined order and the precedence constraints take the form of a chain.
The first and the last operations within a job are marked with ‘start’ and ‘finish’ flags, respectively. See column
‘position’ in Figure (1,2) which presents the processing order of the operations in job 1. The entry sequence of each
operation follows the processing sequence of operations in the job. For example, in job 1, the processing of operations
must follow the following sequence: 13 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) → 14 → 15 → 3 → 35 → 5 → 8 → 9 → 10 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠ℎ). The column
‘resource’ mentions the resource required to process the corresponding operation and ‘duration’ represents the
processing time in minutes. For illustration, consider operation 13 of job 1 which requires processing of 20 minutes
on resource 3.

While assigning an operation to the designated resource, we must consider its quantity and working shifts. For
instance, the quantity of resource 3 used by operation 10, is 12 and it uses calendar 1 (see Figure (1,3)). Note that in
some cases, the quantity of resources is entered as ∞, because the availability for these resources always exceeds the
requirement. Resources with quantity ∞ are marked as Type-1, whereas the resources with limited quantities are
marked as Type-2.

Each calendar, identified by its ID, has predetermined working days (Figure (1,4)) and can be used to determine the
time horizon for scheduling. Further, corresponding to each working day we can have different work shifts identified
by its shift ID (Figure (1,5)). We continue with the example of resource 3, which uses calendar 1, and on date 7 January
2021 it uses shift 1 whose time slots are: 8:00-12:00 and 13:00-17:00.

There are some resources without shift break, and their ‘start_time’ and ‘finish_time’ both are marked as 0:00.
Resources with limited quantity and without shift break are marked as Type-20, whereas resources with large
availability and without break are marked as Type-10. Type-10 resources are always available for processing and
typically, they are used for routine services such as transportation.

Some scheduling constraints are also illustrated in Figure 2. The successor operation in a job can only be processed
after completing the processing of current operation (Figure (2,1)). All operations are non-preemptive i.e., once the
processing of an operation has started, it must be completed before assigning another operation to the same resource.
On a resource, an operation cannot be processed during the shift break (Figure (2,2)). If the processing requirement
of an operation exceeds the time available in the current shift of the desired resource, then its processing must resume
after the shift break, and it continues until completion. Scheduling on a resource must use only working days available
for the resource (Figure (2,3)). For example, weekends and public holidays may not be used for some resources.

2 For example, tuple (1, 1) refers to Figure 1 and panel 1, respectively. Panel number is indicated at the bottom of each
panel.

1921

Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

Resource availability

resource quantity calendar

1 ∞ 1

2 ∞ 2

3 12 1

4 ∞ 1

5 1 1

6 ∞ 2

7 1 1

8 156 1

9 ∞ 1

10 62 1

11 … …

Working days

calendar date shift

1 1/5/2021 1

1 1/6/2021 1

1 1/7/2021 1

1 1/8/2021 1

… … …

2 1/5/2021 2

2 1/6/2021 2

2 1/7/2021 2

2 1/8/2021 2

… … …

Operation details

Job operation position resource duration

1 13 start 3 20

1 14 job 70 20

1 15 job 71 20

1 3 job 3 480

1 35 job 3 1

1 5 job 3 18

1 8 job 4 480

1 9 job 72 1

1 10 finish 3 1

2 … … … …

Shift duration

shift start_time finish_time

1 8:00 12:00

1 13:00 17:00

2 0:00 0:00

Job details

job release date due date

1 1/5/2021 12:30 1/30/2021 17:00

2 1/10/2021 9:00 1/30/2021 17:00

3 … …

(1)

(2)

(3) (4)

(5)

Figure 1. Production data on job processing and resource availability constraints

1922

Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

Note that unavailability of a resource due to shift break has a different characteristic than unavailability due to pre-
scheduled operation on the resource. We highlight this difference using a specialized example in Figure 3 which
presents a snapshot of two operations scheduled on Type-2 resource with quantity 1.

Suppose operation, op2, requires processing of thirty minutes on the resource and op1 has already been scheduled for
processing during the time interval of 11:30-11:40. The resource is only available for twenty minutes beginning at
11:10, therefore we cannot start processing op2 at 11:10. Whereas if the processing of op2 starts at 11:40, then again,
we encounter a shift break of one hour after twenty minutes. However, the remaining processing for op2 can be
finished after the break. We differentiate the unavailability of a resource due its available quantity becoming zero
during a time interval and due to the shift breaks using different flags in the timestamp generation algorithm that we
discuss in the following section.

4. Data Preparation and Scheduling Algorithms
Scheduling algorithms are usually designed to minimize objective(s) functions such as, makespan, lead time, tardiness
etc. In our context, we would like to generate just-in-time (JIT) schedule which minimizes earliness, tardiness, and
lead-time, i.e., to the extent possible a job should finish near its due date. However, as we highlight in Algorithm 3,
generating a valid schedule in our context gives rise to new challenges related to design and execution of data structure
used for storing and searching for valid timeslots on a resource with limited quantity. Therefore, we limit our
discussion to the set of algorithms used for job shops with shift and resource quantity constraints and defer the
discussion on selecting a good dispatching rule for JIT schedule for future work.

To store and access the information relating to resource availability, we design a timestamp generation algorithm
(Algorithm 1). As more and more operations are allocated on a limited resource, this algorithm updates the availability
of the resource using quantity, calendar, processing time, and shift details.

op1 op2
11:10 11:20 11:30 11:40 11:50 12:00 13:00 13:10 13:20 13:30

time

breakop2qu
an

tit
y

=
1

Operation1 Operation2

8:00 12:00 13:00 17:00 time

Lunch break

Resource

Mon Tue Wed Thu Fri Sat Sun Mon time

Resource

(1)

(2)

(3)

Figure 3. Unavailability of a resource due to limited quantity and shift break

Figure 2. Illustration of operation processing and resource shift constraints

1923

Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

Algorithm 1: Timestamp generation for a resource

Inpu

Input: Resource availability and working days data
Output: Timestamps for all resources
Step-1: 𝑇𝑇 ← current time for generating schedule
Step-2: if the resource is of Type-2

Set q ← ‘quantity’
 else

set q ← 1
 end if

Set c ← ‘calendar’ of the resource, Dc ← dates corresponding to the calendar ‘c’
Step-3: Set 𝑠𝑠𝑙𝑙 ← 0
Step-4: for each date in Dc

 Identify its shift: 𝑥𝑥 ← ‘𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑠𝑠’
 Identify all tuples (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑓𝑓𝑡𝑡𝑡𝑡, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠ℎ_𝑠𝑠𝑓𝑓𝑡𝑡𝑡𝑡) of 𝑥𝑥, do the following for each such pair

a. Set 𝑠𝑠𝑥𝑥𝑥𝑥 ← ‘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑓𝑓𝑡𝑡𝑡𝑡’ and 𝑠𝑠𝑥𝑥𝑥𝑥 ← ‘𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠ℎ_𝑠𝑠𝑓𝑓𝑡𝑡𝑡𝑡’
b. if 𝑠𝑠𝑥𝑥𝑥𝑥 > 𝑠𝑠𝑙𝑙

i. Add 𝑠𝑠𝑥𝑥𝑥𝑥 as a timestamp with 𝑞𝑞 as the availability
c. else if 𝑠𝑠𝑥𝑥𝑥𝑥 = 𝑠𝑠𝑙𝑙

i. Delete timestamp 𝑠𝑠𝑙𝑙 and its availability. Note that 𝑠𝑠𝑥𝑥𝑥𝑥 ≮ 𝑠𝑠𝑙𝑙
d. Add 𝑠𝑠𝑥𝑥𝑥𝑥 as a timestamp with −1 as its availability and set 𝑠𝑠𝑙𝑙 ← 𝑠𝑠𝑥𝑥𝑥𝑥

 end for
Step-5: Delete all timestamps < 𝑇𝑇 (if any)
Step-6: Identify the first timestamp, denoted by 𝑠𝑠1.
 if 𝑇𝑇 < 𝑠𝑠1
 if availability of 𝑠𝑠1 is −1
 Add 𝑇𝑇 as a timestamp with availability 𝑞𝑞
 else if: availability of 𝑠𝑠1 is 𝑞𝑞
 Add 𝑇𝑇 as a timestamp with availability −1
 end if
Step-7: Replace the last timestamp 𝑠𝑠𝑙𝑙 by 𝑠𝑠𝑙𝑙 + 100 years with its availability unchanged, i.e., -1

Step 1 in Algorithm 1 takes input from the user, the time (T), at which a new schedule is generated for the job shop.
Step 2 is used to note the quantity of limited resources. For those resources whose availability exceed the requirement
we only need flags to determine the beginning of a shift break, therefore we use 𝑞𝑞 = 1, and 𝑞𝑞 = −1 to denote the
beginning and break of a shift, respectively. Steps 3-4 are used to store working shifts corresponding to all working
days in Dc for the resource. The check in step 4.c is used to create timestamps for the resources without shift break.
Step 5 removes timestamps before 𝑇𝑇, and step 6 adds 𝑇𝑇 and its corresponding availability depending upon whether it
falls during a working shift or a shift break. Step 7 is used for protection against insufficient working days in calendar.
Algorithm 1 is run for each resource to update its availability beyond the scheduling time T. Let us denote the number
of days in calendar Dc as |Dc|. Then for a resource with 𝑏𝑏 shift breaks per day, initially we create |Dc|(2𝑏𝑏 + 2)
timestamps. The timestamps created for a resource must be stored to enable honouring shift constraints for scheduling.
We use a customized implementation of map data structure and Ousterhout matrix to update the resource usage and
to honour the shift constraints. We now discuss the scheduling framework using a dispatching rule.

Algorithm 2: Job prioritization using critical ratio

Input: an empty map Ω
Output: Complete Schedule, and resource usage update
Step-1: for each job:

a. Get 𝐽𝐽0, the set of unscheduled operations of the job. Operations in 𝐽𝐽0 appear from the first to the
last in accordance with the precedence relations.

1924

Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

b. Compute (𝑑𝑑 − �̃�𝑠) ∑ �𝑝𝑝𝑗𝑗�𝑗𝑗∈𝐽𝐽0⁄ where 𝑑𝑑 is due date and �̃�𝑠 = max{𝑠𝑠,𝑇𝑇}, where 𝑠𝑠 is release date of
the job and 𝑝𝑝𝑗𝑗 denotes the processing time of operation-𝑗𝑗 of the job.

c. Store the job id as key and the above metric as value in Ω.
 end for
Step-2: Sort pairs in Ω in the ascending order of the metric.
Step-3: for each element in Ω

a. Run Algorithm-3 with other relevant data files.
b. For each operation 𝑗𝑗 ∈ 𝐽𝐽0, run Algorithm-4 with inputs: current job, 𝑆𝑆𝑗𝑗 (output of Algorithm-

3), and other relevant data files.
 end for
Algorithm 2 uses critical ratio as dispatching rule to determine the priority of a job. Step 1 computes the critical ratio
of each job, and Step 2 sorts this metric. In Step 3, Algorithm 3 schedules operations of the current job, from first to
last, so that the job completes at the earliest, whereas Algorithm 4 updates the data files for resource usage.

Algorithm 3: Scheduling a job

Input: Relevant data files
Output: 𝑆𝑆𝑗𝑗, the schedule for each operation in the job
Step-1: Set: the release time of job-𝑓𝑓, 𝑥𝑥 ← 𝑠𝑠𝑖𝑖; 𝐽𝐽0 ← the unscheduled operations of job-𝑓𝑓
Step-2: Create list 𝑆𝑆𝑗𝑗 for each 𝑗𝑗 ∈ 𝐽𝐽0
Step-3 for each 𝑗𝑗 ∈ 𝐽𝐽0, do the following:

(i) Get its processing time p, and the resource requirements
(ii) if the resource is Type-1, do the following

(a) Find the smallest timestamp > 𝑥𝑥, denote it by 𝑠𝑠
(b) if availability of 𝑠𝑠, 𝑞𝑞𝑡𝑡 = −1,

 set 𝑢𝑢 ← 𝑥𝑥, 𝑣𝑣 ← min{𝑢𝑢 + 𝑝𝑝, 𝑠𝑠}
 else

set 𝑢𝑢 ← 𝑠𝑠, 𝑣𝑣 ← min{𝑢𝑢 + 𝑝𝑝, 𝑠𝑠+}, 𝑠𝑠+ is the next timestamp of 𝑠𝑠
(c) Add (𝑢𝑢, 𝑣𝑣) to 𝑆𝑆𝑗𝑗 and set 𝑝𝑝 ← 𝑝𝑝 − (𝑣𝑣 − 𝑢𝑢), 𝑥𝑥 ← 𝑣𝑣
(d) if 𝑝𝑝 > 0

 set 𝑢𝑢 ← 𝑣𝑣+, 𝑣𝑣 ← min{𝑢𝑢 + 𝑝𝑝,𝑢𝑢+}, resume from Step-3.(ii).(c)
end if

 end if
(iii) if the resource is Type-10

 add (𝑥𝑥, 𝑥𝑥 + 𝑝𝑝) to the list 𝑆𝑆𝑗𝑗 and set 𝑥𝑥 ← 𝑥𝑥 + 𝑝𝑝
end if

(iv) if the resource is Type-2 or 20, set 𝑝𝑝𝑅𝑅 ← 𝑝𝑝 and do the following
(a) Find the highest timestamp ≤ 𝑥𝑥, denote it by 𝑤𝑤
(b) if 𝑞𝑞𝑤𝑤 ≥ 1

 set 𝑢𝑢 ← 𝑥𝑥
 else

 Find 𝑠𝑠, the first timestamp after 𝑤𝑤 with availability ≥ 1. Set 𝑢𝑢 ← 𝑠𝑠, 𝑤𝑤 ←
𝑠𝑠

(c) Find the first timestamp after 𝑤𝑤 with availability < 1, denote it by 𝑠𝑠
(d) Set 𝑣𝑣 ← min{𝑢𝑢 + 𝑝𝑝𝑅𝑅 , 𝑠𝑠}, add (𝑢𝑢, 𝑣𝑣) to 𝑆𝑆𝑗𝑗. Set 𝑝𝑝𝑅𝑅 ← 𝑝𝑝𝑅𝑅 − (𝑣𝑣 − 𝑢𝑢), 𝑥𝑥 ← 𝑣𝑣
(e) if 𝑝𝑝𝑅𝑅 > 0

 if 𝑞𝑞𝑣𝑣 = −1 and 𝑞𝑞𝑣𝑣+ ≥ 1,
set 𝑢𝑢 ← 𝑣𝑣+, 𝑤𝑤 ← 𝑣𝑣+, resume from Step- 3.(iv).(c)

 else
clear 𝑆𝑆𝑗𝑗, set 𝑝𝑝𝑅𝑅 ← 𝑝𝑝, 𝑤𝑤 ← 𝑣𝑣, resume from Step-3.(iv).(b)

 end if
 Step-4: Set 𝑦𝑦 ← 𝑥𝑥 (completion time of the job)

1925

Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

Algorithm 3 schedules a job. For the Type-1 resource, the complexity of step-3.(ii).(a) is 𝑂𝑂(𝑠𝑠𝑠𝑠𝑐𝑐) for the list of
timestamps where 𝑠𝑠𝑠𝑠𝑐𝑐 = |Dc|(2𝑏𝑏 + 2), and O(.) refers to Big-O notation. The complexity of finding next greater
element (NGE) using stacks for a list of size, 𝑠𝑠𝑠𝑠𝑐𝑐 , is 𝑂𝑂(𝑠𝑠𝑠𝑠𝑐𝑐). Therefore, the complexity of step-3.(ii).(b) is 𝑂𝑂(𝑠𝑠𝑠𝑠𝑐𝑐). If
the shift length per day in hours for calendar ‘c’ is 𝑙𝑙𝑐𝑐, then step-3.(ii).(c-d) can be completed in at most �1 + �𝑝𝑝

𝑙𝑙𝑐𝑐
��

iterations. Therefore, the complexity of scheduling on Type-1 resource is 𝑂𝑂 �𝑝𝑝
𝑙𝑙𝑐𝑐
∗ 𝑠𝑠𝑠𝑠𝑐𝑐�. Whereas, for the Type-10

resource, the complexity of scheduling is of constant order.
For a Type-2 resource, its availability must be updated after scheduling an operation. Therefore, timestamps for a
resource does not remain constant at the initial value of 𝑠𝑠𝑠𝑠𝑐𝑐 rather it changes as more operations are scheduled on the
resource. We differentiate the updated timestamps from the initial 𝑠𝑠𝑠𝑠𝑐𝑐 using 𝑠𝑠𝑠𝑠𝑐𝑐∗, (𝑠𝑠𝑠𝑠𝑐𝑐 ≤ 𝑠𝑠𝑠𝑠𝑐𝑐∗ ≤ 𝑠𝑠𝑠𝑠𝑐𝑐 + 2𝑡𝑡∗), where
𝑡𝑡∗ is the number of operations to be scheduled on the resource. Step-3.(iv).(b-e) are executed in a loop and therefore
these steps dominate in determining the overall complexity.
For the ease of exposition, we present the worst-case analysis which helps us to show the polynomial dependence of
this algorithm on the number of current timestamps for a limited resource. Step-3.(iv).(b) has linear dependence on
𝑠𝑠𝑠𝑠𝑐𝑐∗, whereas Step-3.(iv).(c) has linear dependence on 𝑙𝑙𝑐𝑐. The minimum processing requirement for an operation is
one minute, therefore at most �𝑙𝑙𝑐𝑐

1
� searches are required. Therefore, the complexity of Step-3.(iv).(b-d) is 𝑂𝑂(𝑠𝑠𝑠𝑠𝑐𝑐∗).

As more and more operations are scheduled on a resource, the ‘else’ condition is repeatedly executed in Step-3.(iv).(e).
If the resource is extremely occupied for the given calendar dates, then 𝑝𝑝𝑅𝑅 > 0 will hold for almost all timestamps,
and hence the incomplete schedules for the operation are deleted and execution of Step-3.(iv).(e) is of order 𝑂𝑂(𝑠𝑠𝑠𝑠𝑐𝑐∗).
Therefore, the overall complexity of Step-3.(iv).(b-e) is a polynomial of degree two for the current timestamps, i.e.
𝑂𝑂�𝑠𝑠𝑠𝑠𝑐𝑐∗

2�. For a large-scale scheduling these steps govern the total computational requirements.
Algorithm 4: Updating the resource usage

Input: current job, 𝑆𝑆𝑗𝑗 (output of Algorithm-3), and other relevant data files.
Output: update resource availability

 Step-1: Get 𝑆𝑆𝑗𝑗, and the resource details of the operation 𝑗𝑗, i.e., resource ID, and resource type
 Step-2: if the resource is Type-2/20 do the following

(i) Get the first entry of 𝑆𝑆𝑗𝑗, and set 𝑠𝑠𝑆𝑆 ← (𝑢𝑢,), the first entry in tuple (𝑢𝑢, 𝑣𝑣)
(ii) Get the last entry of 𝑆𝑆𝑗𝑗, and set 𝑠𝑠𝐸𝐸 ← (, 𝑣𝑣), the second entry in tuple (𝑢𝑢, 𝑣𝑣)
(iii) Identify the highest timestamp ≤ 𝑠𝑠𝑆𝑆, denote it by 𝑠𝑠
(iv) if 𝑠𝑠𝑆𝑆 ≠ 𝑠𝑠
 add 𝑠𝑠𝑆𝑆 as a timestamp and set 𝑞𝑞𝑡𝑡𝑆𝑆 ← 𝑞𝑞𝑡𝑡
 end if
(v) Repeat Step 2.(iii-iv) for 𝑠𝑠𝐸𝐸
(vi) for all timestamps 𝑠𝑠 ∈ [𝑠𝑠𝑆𝑆, 𝑠𝑠𝐸𝐸),

 reset availability as: 𝑞𝑞𝑡𝑡 ← max{−1, 𝑞𝑞𝑡𝑡 − 1}
end for

(vii) if 𝑞𝑞𝑡𝑡𝑆𝑆 = 𝑞𝑞𝑡𝑡𝑆𝑆−, 𝑠𝑠𝑆𝑆− is the timestamp immediately before 𝑠𝑠𝑆𝑆
 Remove 𝑠𝑠𝑆𝑆 as a timestamp along with its availability

 end if
(viii) Repeat Step2.(vii) for 𝑠𝑠𝐸𝐸

 end if

Algorithm 4 updates availability of resources after scheduling a job. Step 1 in Algorithm 4 gets 𝑆𝑆𝑗𝑗, i.e., the schedule
of the operation 𝑗𝑗, the resource ID and its type. We do not need to update the quantity of Type-1/10 resources, but
scheduling on Type-2/20 resources entail that their availability must be updated. Steps 2.(i-v), insert new timestamps,
if required, for scheduling the operation. Step 2.(vi) updates the quantity of the resource after scheduling the operation.
Steps 2.(vii-viii) remove redundant entries corresponding to the resource availability. The complexity of step 2.(iii-
viii) is 𝑂𝑂(𝑠𝑠𝑠𝑠𝑐𝑐∗), hence the overall complexity of Algorithm 4 is 𝑂𝑂(𝑠𝑠𝑠𝑠𝑐𝑐∗).

We use map data structure to store the details of a limited resource. The resource ID is used as a key, and the
corresponding value is the list of timestamps generated using Algorithm 1. We also store the resource’s quantity
corresponding to its timestamp.

1926

Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

4.1 Ousterhout Matrix for Shift Scheduling
Ousterhout matrix is widely used for slot scheduling (Aggarwal & Sarangi, 2013). In this approach time is a discrete
quantity (rows) and it is divided into discrete quanta (columns) called slots. We adapt the concept of slot scheduling
to store the availability of a resource at different timeslots and use it as one of the benchmarks. Usually, an entry in
the matrix takes Boolean value indicating whether the resource is free or busy. However, in our case each resource
can have multiple quantities, therefore cell entries represent the available quantity of the resource or a shift break.

In our context, the processing request on a resource can be as small as one minute. Therefore, we design Ousterhout
matrix that shows resource availability for every minute. The calendar days span over almost two years, hence we
need approx. 2 × 365 × 24 × 60 ≈ 106 cells for each resource which consumes too much memory for the data
structure and results in programming error.

Therefore, we adapted the Ousterhout matrix for our context, and we call it Timestamp matrix (left panel, Figure 4).
Each row represents a resource, and a column represents the timestamps generated in Algorithm-1, and each cell stores
a timestamp. This matrix has 𝑓𝑓 + 𝑡𝑡 columns, where 𝑓𝑓 = 𝑠𝑠𝑠𝑠𝑐𝑐, i.e., the initial number of timestamps for a resource and
𝑡𝑡 is additional timestamps added during the execution of the algorithm. The cell values corresponding to additional
timestamps are initially ‘null’.

Since resources can have different quantities, we maintain another matrix of same dimension (right panel, Figure 4)
to store quantity corresponding to a timestamp. In order to update the resource availability at 𝑘𝑘𝑡𝑡ℎ position, the entries
of both the matrices beyond the column 𝑘𝑘 must be shifted to the adjacent cell as shown in Figure 4 (right panel). As
the number of timestamps are large, shifting the entire matrix is computationally expensive. The complexity analysis
of updating the Ousterhout matrix is mentioned in Technical Appendix3.

4.2 Dataset and Results
We use a subset of job shop instances to illustrate the main findings. The job shop instance that we study (Table 1)
here has 6000 and 100000 jobs and operations, respectively.

3 It has been omitted here due to lack of space.

Figure 4. Ousterhout matrix for storing resource timestamps (left panel) and quantity (right panel)

1927

Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

Table 1. Job Shop Instance Details

Attribute Values

Number of jobs 6000

Total number of operations4 100000

Resources with unlimited quantity 2200

Resources with limited quantity 600

Scheduling horizon 5 January 2015 - 31 December 2016
Working shifts per day 8:00 -12:00; 13:00-17:00

Initial number of timestamps for Type-2 resources ~2100
Maximum number of new timestamps added for a
limited resource after scheduling

~700

Operations requiring processing on a limited
resource

20,167

For the computational experiments, we used a computer with following specifications: Intel®, coreTM i7-6500U, CPU
@ 2.50 GHz and 8 GB RAM, Windows 10, 64 bits. The total runtime for the Ousterhout matrix and our scheduling
algorithms were 6 and 0.6 minutes, respectively. Our approach leads to almost 10 times reduction in runtime for this
test case. As we move towards scheduling millions of operations in real-time this gain will have significant
implications. As highlighted earlier, the major challenge in generating an implementable scheduling algorithm is
finding a free slot for scheduling on a limited resource quickly while honoring all constraints. We are developing a
new set of algorithms for this specific task to reduce the polynomial dependence of Algorithm 3 on the timestamps,
i.e., 𝑂𝑂�𝑠𝑠𝑠𝑠𝑐𝑐∗

2�, and intend to share these findings in near future.

4.3 Implications and Conclusion
In this research, we develop a set of algorithms for large-scale JSSP which considers many real-life constraints such
as, daily working shifts, release and due dates for a job, multiple quantity of a resource, and calendar dates.
Incorporating all these constraints in a real-time scheduling algorithm calls for developing a novel scheduling
framework that simplifies the process for finding the valid timeslot and updating the quantity of each limited resource.
We achieve it by developing algorithms for maintaining resource availability over the given time horizon, job
prioritization, scheduling, and resource update. We also highlight the role of careful selection of data structures for
storing and retrieving different information related to real-life scheduling. We selected Ousterhout Matrix as a
benchmark and show that our approach significantly improves the runtime significantly. These all are novel
contributions of this work, and our scheduling framework creates new opportunities for designing and selecting better
dispatching rules for real-time large-scale scheduling.

The importance of JIT scheduling is well recognized in manufacturing (Srinivasan et al., 1994). The advent of Industry
4.0, and the digitalization of manufacturing processes has enabled real-time interaction between digital and physical
resources through “smart connections”, and manufacturing and production related data collection from disparate
sources such as sensors, information and communication technologies, and monitoring instrumentation (Choi et al.,
2022). However, the opportunities created by the digitalization of manufacturing processes using these technologies
have not been leveraged to a large extent to improve the JIT manufacturing practices5. In this context, our research
makes a novel contribution by developing a scheduling framework for real-life large-scale JSSP.

In the current work we only use one dispatching rule, namely critical ratio, to demonstrate the promise of our
framework in generating real-time scheduling. However, production scheduling must be designed to respond to real-

4 We used 100,000 operations here and have planned to share the results for larger instances in the conference
presentation.
5 https://www.lean.org/the-lean-post/articles/why-lean-fails-in-job-shops-and-what-to-do-to-succeed/

1928

Proceedings of the International Conference on Industrial Engineering and Operations Management

IEOM Society International

time deviations in terms of new job arrivals, shop floor condition etc. In this context, machine learning and AI
techniques are increasingly used for job-shop scheduling (Choi et al., 2022). Our work could be extended to switch
the dispatching rules used for scheduling under different shop conditions. This selection can be made using a machine
learning model that identifies a best dispatching given shop, job, and external constraints such as, scheduling horizon,
due and release dates of a job (Parente et al., 2020). This is a direct extension of the current work, which we are
working on and plan to share these results soon.

The processing of an operation may require multiple resources, perhaps with different working shifts. Also, in real-
life a schedule must consider the interruptions due to maintenance or unavailability of a worker. These are also the
possible extensions that we are working on in the ongoing research.

References
Aggarwal, P., Sarangi, S. R., Lock-Free and Wait-Free Slot Scheduling Algorithms. 2013 IEEE 27th International

Symposium on Parallel and Distributed Processing, 961–972, 2013.
Ashton James, C. F., Time to Reform Job Shop Manufacturing. Harvard Business Review, 1989.
Banker RD, Bardhan IR, Chang H, Lin S., Plant information systems, manufacturing capabilities, and plant

performance. MIS Quarterly: 315–337, 2006.
Choi, T., Kumar, S., Yue, X., Chan, H., Disruptive Technologies and Operations Management in the Industry 4.0 Era

and Beyond. Production and Operations Management, 31(1), 9–31, 2022.
E. C. Teppan, Dispatching rules revisited - a large scale job shop scheduling experiment. IEEE Symposium Series on

Computational Intelligence: 561–568, 2018.
Ferreira, C., Figueira, G., Amorim, P., Effective and interpretable dispatching rules for dynamic job shops via guided

empirical learning. Omega, 111, 102643, 2022.
Yau H., Shi L., Nested partitions for the large-scale extended job shop scheduling problem. Annals of Operations

Research, 168, 23–39, 2009.
Kamalahmadi M, Yu Q, Zhou YP., Call to Duty: Just-in-Time Scheduling in a Restaurant Chain. Management Science

67(11):6751–6781, 2021.
Kurowski, K., Pecyna, T., Slysz, M., Różycki, R., Waligóra, G., Wȩglarz, J., Application of quantum approximate

optimization algorithm to job shop scheduling problem. European Journal of Operational Research, 310(2),
518–528, 2023.

Mithas, S., Chen, Z.-L., Saldanha, T. J., De Oliveira Silveira, A. , How will artificial intelligence and Industry 4.0
emerging technologies transform operations management? Production and Operations Management, 31(12),
4475–4487, 2022.

Parente, M., Figueira, G., Amorim, P., Marques, A., Production scheduling in the context of Industry 4.0: Review and
trends. International Journal of Production Research, 58(17), 5401–5431, 2020.

Pinedo ML., Scheduling: Theory, Algorithms and Systems (Springer, New York), 2012.
Rai A, Patnayakuni R, Seth N., Firm performance impacts of digitally enabled supply chain integration capabilities.

MIS Quarterly: 225–246, 2006.
Sha, D. Y., Hsu, C.-Y., A hybrid particle swarm optimization for job shop scheduling problem. Computers &

Industrial Engineering, 51(4), 791–808, 2006.
Shah, R., Ward, P. T., Lean manufacturing: Context, practice bundles, and performance. Journal of Operations

Management, 21(2), 129–149, 2003.
Srinivasan, K., Kekre, S., Mukhopadhyay, T., Impact of Electronic Data Interchange Technology on JIT Shipments.

Management Science, 40(10), 1291–1304, 1994.
Storer, R. H., Wu, S. D., Vaccari, R., New search spaces for sequencing problems with application to job shop

scheduling. Management Science, 38(10), 1495–1509, 1992.
Vaessens, R. J. M., Aarts, E. H. L., Lenstra, J. K., Job Shop Scheduling by Local Search. INFORMS Journal on

Computing, 8(3), 302–317, 1996.
van Hoorn, J. J., The Current state of bounds on benchmark instances of the job-shop scheduling problem. Journal

of Scheduling, 21(1), 127–128, 2018.
Zhang, J., Ding, G., Zou, Y., Qin, S., Fu, J., Review of job shop scheduling research and its new perspectives under

Industry 4.0. Journal of Intelligent Manufacturing, 30(4), 1809–1830, 2019.

1929

	Abstract
	1.Introduction
	2. Objectives
	3. Problem Description
	4. Data Preparation and Scheduling Algorithms
	4.1 Ousterhout Matrix for Shift Scheduling
	4.2 Dataset and Results
	4.3 Implications and Conclusion
	References

