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Abstract 

Manufacturing companies face many challenges when trying to meet the market and their clients’ demands. Building 
and operating highly automated lines is not a straightforward task, especially when the bottle format is unique, and 
the line is being built from the ground up to accommodate the new format. In this study, downtime data and Overall 
Equipment Efficiency (OEE) analysis was used to determine the effectiveness of a newly built mayonnaise bottling 
line during the ramp-up period and the main reasons behind low OEE, a lengthy ramp-up period, and high downtime. 
Two pieces of machinery were the most significant contributors to downtime, a newly bought labeler, whose factory 
acceptance test (FAT) was never performed, and an old, repurposed drop packer, that was previously being used for 
a much larger packaging format. It was found that the two machines had the same MTTF (mean time to failure) value. 
A model was built to predict the likelihood of attainment loss using a Monte Carlo simulation after performing a 
goodness of fit analysis on the time-to-failure (TTF) and time-to-repair (TTR) data available. From this model, the 
availability of the line was determined, and the effect of the two equipment was shown to be strong on the overall 
performance of the line. 

Keywords 
OEE, Automation, Risk Analysis, Bottling, Manufacturing. 

1. Introduction
The food and beverage industry is the second largest industry in all of Canada accounting for 17% of total sales in 
manufacturing (Government of Canada 2023). This sector has been growing consistently over the years and 
contributes significantly to the country’s GDP (Wunsch 2021). This growth, combined with the increasing complexity 
and customization of customer demand, is adding pressure on designing and efficiently operating highly automated 
production lines. Automation reduces the number of operators needed on the line, and is mostly applied for 
monotonous, repetitive, and complex tasks (Zennaro et al. 2018). In addition to these challenges, food manufacturing 
companies in Canada must meet SQF requirements, which is the Food Safety Code of Manufacturing, and are assigned 
a rating based on compliance and a yearly Audit Score (The SQF Institute 2017). This will virtually determine the 
market share of a manufacturing company by strengthening (or weakening) its competitiveness and reputation. 
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The gold standard in today’s industry for measuring manufacturing productivity is OEE (Overall Equipment 
Efficiency). OEE takes into consideration three factors: Availability, Performance, and Quality. A 100% OEE means 
there is no downtime, no waste, and the process is running as fast as possible. Seiichi Nakajima, the Japanese pioneer 
who defined OEE, asserted that OEE above 85% is ideal and is considered world-class (Nakajima 1988). Although 
this can be achieved, it is highly difficult and challenging, and only about 5% of manufacturing organizations have 
reached this level. This number is based on data from more than 50 countries (Devonshire 2022). 
 
The subject of this paper is to analyze a Mayo bottling line at a food manufacturing company operating in Ontario 
during the ramp-up period, detect the main causes behind a low OEE, and propose solutions to eliminate waste and 
increase effectiveness. In this case, the mayonnaise bottling line, which will be referred to in this study as Mayo Line, 
is a completely new line being commissioned by the engineering department and handed over to the operations 
department. This study will highlight the major causes of downtime on the line, as well as evaluate the selection of 
the machines in terms of sophistication, newness, and compatibility with the other equipment on the line and with the 
product itself. A statistical analysis will also be performed to determine the failure modes of the most critical machines, 
and a model will be created to quantify the risk of affecting the line performance when using these machines. 
 
After determining the major causes of a low OEE using a Pareto diagram, these causes will be analyzed using root 
cause methods. Then, solutions to resolve these issues will be presented. Section 1 of this paper will be dedicated to a 
literature review of OEE and general causes of inefficiency on a production line in normal production. Section 2 will 
detail the methods used for data collection and analysis. Section 3 will be around the case study itself. The entire 
process will be laid out workstation by workstation. In this particular case, the line being studied is still in a transition 
phase where two new machines have not been installed yet, and one hasn’t been commissioned. These processes were 
replaced by other machines or methods in the interim. This study focus on the current, temporary phase of the project. 
 
1.1 Objectives 
In this research paper, the main goal is to analyze the performance of a mayonnaise bottling line in a manufacturing 
company in Toronto, and determine the main causes of downtime and low performance during the ramp-up period. 
These finding will then be used to determine whether the performance of the least efficient equipment can be predicted 
and avoided in future line designs and planning. Based on these findings, recommendations will be made as to what 
could be improved in terms of management and design decision when conceptualizing, building, and commissioning 
a new production line. 
 
Different methods will be used to reach each objective, and these will be explained in the following Methodology 
section. A flow chart is used to illustrate all the detailed objectives of this papers, as well as the structure of the study. 
Each goal will be reached by using certain tools and methods, whose results will lead to the attainment of the next 
goal. Figure 1 below represents the mentioned flow chart. 
 
The tools and methods will be explained in detail in the following section. 
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Figure 1. Objectives and Research Process Flow 
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2. Literature Review 
The goal of the TPM concept is to eliminate breakdowns and defects originating from equipment. This will result in 
a significant increase in productivity and quality, eliminate waste, and reduce production costs (Muchiri and Pintelon 
2008). A tool to measure this metric is OEE, which combines three factors: quality, availability, and performance. 
Using this tool helps identify the major areas of improvement and where capital and effort should be expended to 
improve productivity. A root cause analysis is essential when it comes to improving OEE, combined with a benefit-
to-cost analysis to put a dollar value on the impact of investments. 
 
In addition, classical OEE measurements, despite being the main tool to assess a production line or a piece of 
equipment, has its limitations. Flaws and limitations in the measurement instruments, the uncertainty and complexity 
of a production line, the failure to capture all the stops on the line and their durations, are some factors that cause 
fluctuations in OEE values and even inaccurate values. These factors might mislead managers into taking action based 
on wrong data as mentioned in a paper on the subject matter by Soltanali et al. (Soltanali et al. 2021). This study, like 
many others, proposed the implementation of the fuzzy theory to tackle the OEE uncertainties in measurements. For 
this study, the classical method is used, and imperfections will not be accounted for since it is not the focus of this 
analysis.  
 
There is little to no statistical data on OEE in the literature that provides industry averages based on sector, but it is 
commonly agreed upon that a typical OEE ranges between 40 to 60%, with 85% being the ideal goal (Nakajima 1988). 
 
There are many reasons behind low OEE values for equipment in manufacturing companies. The Six Big Losses is 
one way to categorize the causes of lost efficiency and it falls under the TPM umbrella. Equipment failure and setup 
and adjustments fall under availability losses. These losses include equipment breakdown, which would then need 
operator and/or maintenance intervention to recover the availability of the equipment. Setup and adjustments include 
change over times, recalibrating the machines, prepping the equipment at the beginning of the first shift, etc... 
Performance losses could be idling and minor stops, which is different than availability stops. The downtime caused 
by these reasons is often called “micro-downtime”. This can include label roll change on a labeling machine for 
example, or changing the packaging material on any packaging equipment. They usually tend to be resolved by 
operators and do not need maintenance intervention, and are typically below 15 minutes (Zennaro et al. 2018). 
Reduced speed is simply running a machine at a lower speed than its maximum capability. Finally, quality losses 
occur when the product is defective and is rejected, therefore generating waste, both in time and material. 
 
Many studies can be found in the literature that seek to find the principal cause behind OEE loss. For example, a case 
study on a beverage bottling company in Italy found that the main cause behind low OEE was Micro-downtime, 
accounting for 57% of the total loss in efficiency (Zennaro et al. 2018). Another study conducted in a cement factory 
showed that Reduced Speed Loss was the major contributor to low OEE (Muthalib et al. 2020). Table 1 below shows 
a summary of reviewed research in the literature with their respective methodologies and findings, covering the topics 
of OEE measurement, OEE improvement, and simulation models. 
 
There are six papers that show the use of different methods to find the main causes behind OEE loss (Tsarouhas P. H. 
2013; Rodrigues and Cabral 2017; Chundhoo et al. 2018; Tsarouhas P. 2019; Dewi et al. 2020; Muthalib et al. 2020). 
All of the causes fall under Availability and Performance loss, with some of them showing the significance of micro-
downtime, which falls under Performance, and is another subset of the “minor stops” cause. Many of these studies do 
not explicitly show how the data was collected or recorded, and some fail to mention the shortcomings of the data 
collection methods, the accuracy of the OEE results, and whether studying a single machine can adequately represent 
an entire line. 
 
Subsequently, two more papers were reviewed that cover the topic of OEE measurement (De Carlo et al. 2014; 
Pekarcíková et al. 2023). Comparing the traditional OEE measurement tools and simulation tools showed that the 
latter is a powerful tool that can represent the effectiveness of an entire line more accurately, although being a much 
more demanding tool in terms of data collection. 
 
Additionally, three papers cover the topic of OEE improvements (Chundhoo et al. 2018; Fadhlurrahman et al. 2020; 
Garcia-Garcia et al. 2022). All of them used traditional OEE analysis for results and only one implemented a 
simulation model. These papers reinforce the use of TPM and lean manufacturing to improve effectiveness, as well 
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as proving that determining the critical machine and resolving its losses can greatly improve the overall line 
performance. 
 
During line commissioning and ramp-up, the reasons behind low OEE might be completely different. The Ramp-up 
period, as defined in the literature, starts right after product development is complete, and just before full-scale 
production is achieved (Terwiesch and E. Bohn 2001). A more accurate timeline for the ramp-up period would be the 
time between the first “wet run” on the line (as in, the first time bottles are filled with product) and the beginning of 
the plateau period where production is consistently achieving attainment. This definition of the ramp-up period will 
be used in this study. 
 
3. Methods 
Figure 1 showed the objectives and the means to attain them. In this section, the methods and tools used to reach 
these objectives will be discussed. 

(1) Define the ramp-up period. 
(2) Collect Data on attainment and downtime – VorneXL. 
(3) Analyze the data to highlight major causes of inefficiency – diagrams, charts, reports. 
(4) Perform Root Cause Analysis to attribute the inefficiencies to principles causes beyond the six big 

losses – Fishbone Diagram 
(5) Perform Statistical Analysis on the two most critical machinery to understand failure patterns – 

MINITAB software. 
(6) Perform risk analysis – Monte Carlo Simulation. 
(7) Provide solutions and recommendations to improve line performance during ramp-up. 

 
Data Analysis 
In addition to the analysis performed by VorneXL, a more in-depth analysis will be performed to fill the gaps and 
provide insights. The software only provides data over a selected period of time and provide charts to visualize the 
results. 
 
Statistical Analysis 
MINITAB software will be used to determine the best fit for TTF and TTR data, as well as calculating the MTTF and 
comparing the results of the two machines. This will help determine the failure pattern of the most critical equipment 
behind most of the downtime on the line. The best probability distribution fit will be determined based on the AD 
index. These results will then be used in the risk analysis portion of this research. 
 
Risk Analysis - Monte Carlo Simulation 
To be able to reasonably predict whether a piece of machinery will cause a significant amount of downtime, a Monte 
Carlo simulation has to be run based on the probability distribution of the TTF and TTR data on the machines. To do 
that, MINITAB Workspace will be used for this simulation. 
 
TTF, TTR, and Availability 
Other important factors in this framework are the Time-to-Failure (TTF) and Time-to-Repair (TTR). They are used to 
determine the type of failure and how effective the maintenance practices at the facility are. In this paper, these factors 
are used to analyze the failure of the 2 most critical machines. 
 
TTF is the time between two consecutive failures of an equipment, and TTR is the time it takes to repair the machine, 
or in other words, how long the machine was unavailable. The mean time-to-failure and the mean time-to-repair are 
powerful indicators of machine performance, and can be used to calculate the availability. 
 
Goodness of Fit, Anderson-Darling Index in Statistical Analysis 
A set of data can be attributed to a known probability distribution by performing what is called a Goodness of Fit test 
using statistical tools. Basically, we want to be able to predict the outcome of a certain set of data, in this case, the 
performance of certain equipment. 
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The Anderson-Darling Index was used for this analysis. This index measures the distance between the hypothesized 
function F, and the empirical data, Fn. 
 
The best fit is the one which has the lowest “Distance” to the hypothesized function, hence the lowest AD Index. 
The confidence interval we want to use here is 95%, meaning that the p-value, which is the probability of getting a 
value at least as extreme as the null hypothesis, should be less than 0.05. In this case, the AD index is selected to 
determine the best fit. 
 
Weibull and Lognormal Distributions 
The Weibull distribution was introduced by Waloddi Weibull, a Swedish engineer, in 1937. It is frequently used in 
survival and reliability analysis (Clement and Lasky 2020). This 3-parameter Weibull distribution is characterized by 
3 factors: the shape factor β, the scale factor, and the threshold factor. The shape parameter describes the distribution 
of the data, and can indicate the type of failure: infant-mortality, wear-out, or random. 
 
Monte Carlo Simulation 
The principle of Monte Carlo Simulation is basically to draw random samples from a set of data and observing the 
behavior, or plotting the behavior (Mooney 1997). This simulation helps managers and decision makers predict the 
outcome of a certain process where random variables may occur, and base decisions depending on their risk appetite, 
or aversion. There are many software applications developed to run Monte Carlo simulations, one of them is 
MINITAB Workspace. 
 
4. Data Collection 
The manufacturer has implemented a widely used production monitoring system called VorneXL. The software 
collects data from the equipment using sensors, and operators can scan downtime reasons using a handheld barcode 
scanner. The software then creates reports, diagrams, and insights from these inputs. The data for the new Mayo line 
will be based on this implementation. 
 
The data collected on the equipment is a scanned reason, or a description of the problem, each with a corresponding 
date and time stamp, along with the duration of the downtime caused by this problem. These reasons are categorized 
based on the six big losses. 
 
In addition, production data is collected for every finished product produced for each shift, which is by definition the 
attainment. The software shows the number of bottles produced and packed. 
 
5. Results and Discussion 
5.1 Numerical Results 
Figure 2 below shows the variation of the attainment starting at the time the line first launched and over a period of 
65 days (between May 29 and August 1st), which is 39 production days with actual data recorded. The ramp-up period 
should start at the official launch date, in this case May 29, and end at the time when production is hitting attainment 
consistently. According to the data, the ramp-up period could be roughly estimated as being between May 29 and July 
13, ending when attainment reached beyond the target for five days. 
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Figure 2. Attainment Over a Period of 65 Days 
 
Table 1 below shows the downtime on the line per equipment. The Labeler and the Drop Packer are responsible for 
67% of the downtime during the entire period. The downtime of the Labeler shown here also includes the downtime 
on the Steam Tunnel since they act as one system: if there is a missed sleeve on the Labeler, a jam-up will happen 
downstream in the steam tunnel.  
 

Table 1. Contribution to Downtime per Machine 
 

Machine Total Downtime (hrs) Contribution Machine State 

Labeler / Steam Tunnel 20.23 37% New 

Drop Packer / Case Former 16.46 30% Old 

Capper 7.56 14% Existing, Fairly New 

Checkweigher 5.91 11% New 

Filler 3.54 7% Existing, Fairly New 

Cap Sorter 0.40 1% New 

TOTAL 54.10 
 

 

 
TTF (time to failure) and TTR (time to repair) data are calculated and analyzed using Minitab software. A goodness 
of fit test was performed on both parameters and both machines. The TTF and TTR were not based on one single 
cause of downtime, but for total downtime per equipment. The data are shown in Table 2 and Table 3. 
 
Based on the AD index (the lowest value), the best for the TTF data on the Labeler is a 3-Parameter Weibull 
distribution. On the other hand, the best fit on the TTF data for the Drop Packer is a Lognormal distribution shown 
chosen based on the lowest AD index. 
 

Table 2. TTF Statistical Data for the Labeler and Drop Packer 
 

 N N* Mean StDev Median Minimum Maximum Skewness Kurtosis 

Labeler/Steam 
Tunnel 

695 0 61.8201 73.4323 33 0 450 2.24175 6.11202 

Drop Packer 234 0 55.6838 72.9886 28 1 399 2.25033 5.38802 
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Table 3. TTR Statistical Data for the Labeler and Drop Packer 

 
 N N* Mean StDev Median Minimum Maximum Skewness Kurtosis 

Labeler/Steam 
Tunnel 

232 0 3.73714 8.63706 1.59536 0.0336347 85.1783 7.24508 62.6549 

Drop Packer 234 0 4.00769 6.85154 1.96303 0.0362225 56.0257 4.32882 22.8054 
 
The 𝛽𝛽 value (shape) for the 3-parameter Weibull is less than 1 (0.86789), which indicates that the failure for the 
Labeler is decreasing. This is typical for early-life failure. Also, this can indicate defective parts (defective mandrel in 
this case, or bad design). This type of failure pattern indicates infant mortality (Clement and Lasky 2020). 
 
Also, calculating the MTTF for both machines based on their respective distributions, we get MTTF=61.82 minutes 
and MTTF=61.3 minutes for the Labeler and Drop Packer respectively. Table 4 and Table 5 show the MTTF values 
for both the Labeler and the Drop Packer as outputted by MINITAB. 
 
Following a similar approach, it was found that the TTR for the Labeler and the Drop Packer follow a Lognormal 
distribution based on the AD index. 
 

Table 4. TTF for the Labeler 
 

  Standard 
Error 

95% Normal CI 
Distribution Mean Lower Upper 
Weibull 61.636 4.5965 53.2547 71.337 
Lognormal 71.921 8.3189 57.3324 90.222 
Exponential 61.888 4.0631 54.4154 70.387 
Loglogistic 110.598 22.3895 74.3758 164.462 
3-Parameter Weibull 61.817 4.8358 53.0298 72.060 
3-Parameter Lognormal 69.448 8.0488 53.6722 85.223 
2-Parameter Exponential 61.888 4.0148 54.4988 70.279 
3-Parameter Loglogistic 131.625 37.8833 74.8772 231.379 
Smallest Extreme Value 40.867 8.9538 23.3181 58.416 
Normal 61.888 4.8147 52.4512 71.325 
Logistic 48.979 3.8904 41.3541 56.604 

 
Table 5. TTF for the Drop Packer 

 
  Standard 

Error 
95% Normal CI 

Distribution Mean Lower Upper 
Weibull 55.042 4.3757 47.1002 64.322 
Lognormal 61.296 7.1735 48.7323 77.099 
Exponential 55.684 3.6402 48.9873 63.296 
Loglogistic 94.27 20.3864 61.7014 144.029 
3-Parameter Weibull 55.222 4.6159 46.8776 65.053 
3-Parameter Lognormal 62.494 7.8477 48.8595 79.933 
2-Parameter Exponential 55.684 3.5901 49.0737 63.184 
3-Parameter Loglogistic 128.139 43.4822 65.8927 249.187 
Smallest Extreme Value 36.6 8.654 19.638 53.561 
Normal 55.042 4.3757 47.1002 64.322 
Logistic 61.296 7.1735 48.7323 77.099 
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It is significant that the MTTF values for a new machine and an old, worn-down machine are comparable. One reason 
that might have contributed to this is the fact that in many cases, when the labeler breaks down, or misfires, issues 
arise downstream. A misfire at the labeler can cause fallen bottles to go through the steam tunnel. The bottles then 
jam up and stay inside the steam tunnel enough time for them to bloat and become misshapen. If the bottles continue 
downstream to the drop packer, they will jam up inside and cause another breakdown. In fact, bloated bottles are 
considered defective, and should be disposed of. Solving this problem meant resolving the bloated bottle issue, which 
was caused by the misfire at the labeler. 
 
This could lead to the conclusion that the condition and performance of upstream equipment can affect the 
performance of the equipment downstream, regardless of their condition. Nevertheless, it would not be accurate to 
attribute the downtime on the drop packer entirely to issues with the labeler. A good practice in dealing with this type 
of issue is to analyze the line from the bottom up, because in this particular case, loose caps caused by issues on the 
capping machine might have driven the number of misfires at the labeler by a big margin. 
 
5.2 Graphical Results 
Figure 3 below shows the probability distribution as outputted by the software. There is 10.93% chance that the 
Labeler would not be available enough to produce the required attainment goal. 
 

 

 
Figure 3. Availability Probability Distribution for the Labeler 

 
Similarly, the same calculations were made for the drop packer, and this time the full 203 minutes are accounted for. 
Figure 4 below shows that the availability of the drop packer will be below 68% 15.21% of the time. 

 

 
 

Figure 4. Availability Probability Distribution for the Drop Packer 
 
5.3 Proposed Improvements 
Before making the decision to bring a new piece of equipment without doing the FAT, a thorough risk analysis must 
be performed, as well as related losses in terms of possible line downtime and equipment shipment delay. Also, 
repurposing old machines should not only be limited to purchasing change parts for the new bottle format, but a 
machine audit and IO check (input/output, which is used to make sure the logic is working correctly) must be 
performed, possibly before even making the decision to use it on another line. This is because in certain cases, certain 
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parts become obsolete, and the OEM does not support it anymore. Some parts could be redesigned by the OEM, simply 
because of bad historical performance, and would be recommended to be changed before using the machine again. 
 
Although this study was done after the fact, it could be used as a reference or as framework to analyze a line before 
assembly and procurement. Old repurposed drop packing machines and new labelling machines are most likely to be 
the most problematic when running a unique bottle format. 
When making decisions or machine selection, careful analysis must be made to reduce the ramp-up period duration. 
Short-term solutions and rushing the delivery of machinery is an aggressively high-risk method that would reduce the 
chances of achieving the production goal over a long period of time (in this case, at least 65 days). 
 
6. Conclusion 
Line performance during the ramp-up period can determine a product launch failure or success, and it is a critical 
period where all the equipment have to be brought up to speed to reach a steady output that can be reasonably 
maintained. It is quite different than line performance during normal operation and can point to issues in line design 
and shortcomings in the planning and commissioning processes of an organization. 
 
A thorough risk analysis must be performed before making decisions related to new and old equipment, and this study 
showed that risk can be reasonably quantified based on historical data of the same type of machinery in the market. 
 
The engineering management process in line design and commissioning is not straightforward but rather very complex 
where many contributing factors come into play. This places managers and designers under the constant pressure of 
handling uncertainty, but scientific approaches can help in quantifying it and reduce this potentially devastating aspect 
of all engineering projects. 
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