
Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

A Branch and Bound Algorithm to Optimize Multi-
Objective Competitive Multi-Agent Scheduling with

Simultaneous Log-linear Position-based Learning and Time-
based Deterioration Effects

Tugba Danaci
Fatma Senses VS Business Administration Department

Member, Public University-Industry Collaboration Committee
Kirikkale University
Kirikkale, TURKIYE

DEDA Technology Investment Ltd
Ankara, TURKIYE

Abstract

Encompassing a subset of multi-objective scheduling challenges, the multi-agent scheduling problem involves various
agents, each entrusted with a unique set of tasks while striving to optimize their individual goals. Recent inquiries in
this field have predominantly spotlighted variable processing times, employing methods like the 𝜖𝜖-constraint approach
to optimize one agent's function without compromising the other’s limit. Our study takes an innovative approach,
delving into a two-agent single-machine scheduling problem influenced by concurrent learning and deterioration
effects. The primary aim is to minimize the overall weighted completion time for both agents, preventing any job
delays for the second agent. To address this, our research amalgamates the 𝜖𝜖-constraint and linear combination
approaches, presenting a unique proposition in the current research landscape. We introduce a two-stage methodology:
a heuristic method for near-optimal solutions followed by a branch-and-bound algorithm, integrating specialized
dominance rules to achieve optimal solutions.

Keywords
Multi-agent scheduling, Variable processing times, Learning effect, Deterioration effect, Branch-and-bound algorithm

1. Introduction
In classical scheduling problems, job processing times are assumed to remain constant and stable. However, in
practical situations, these processing times can fluctuate due to factors such as job repetitions or variations in resource
allocation. The literature categorizes variations in processing times into three primary groups: time-dependent
processing times, position-dependent processing times, and controllable processing times (Agnetis et al., 2014).

Time-dependent processing times are determined by when a job begins processing, while position-dependent
processing times are influenced by the job's starting position or row. Additionally, processing times can sometimes be
altered by adjusting the number of allocated resources, leading to jobs with controllable processing times. Time-
dependent processing times can further be classified into two subgroups: non-decreasing, where processing times
increase as jobs are delayed (referred to as jobs under deterioration effect), and non-increasing, where processing
times decrease with delays (referred to as jobs under shortening effect). Position-dependent processing times are
categorized into non-decreasing (jobs under aging effect) and non-increasing (jobs under learning effect) groups based
on worker experience. Furthermore, certain jobs, particularly those in project management, allow for variations in

14thAnnual International Conference on Industrial Engineering and Operations Management Dubai
United Arab Emirates (UAE), February 12-14, 2024

Publisher: IEOM Society International, USA
Published: February 12, 2024

DOI: 10.46254/AN14.20240064

274

https://doi.org/10.46254/AN14.20240064

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

processing times based on resource usage. For a mor detailed breakdown of job categorization based on varying

processing times, please refer to Figure 1.

Figure 1. Groups of Jobs with Variable Processing Times (Agnetis et al., 2014)

1.1 Objectives
In this study, our objective is to minimize the total weighted completion time in a single-machine scheduling problem
involving two competing agents, considering jobs affected by both learning and deterioration effects simultaneously,
while ensuring that the second agent does not encounter tardy jobs. The processing times of the jobs are influenced
by two concurrent factors: log-linear position-based learning and linear time-based deterioration. The deterioration
effect causes the processing time of a job to increase as it is scheduled later in the sequence, while the learning effect
results in a reduction of job processing times.

2. Literature Review
Multi-agent scheduling problem is a subset of multi-objective scheduling problems where each agent has a set of jobs,
and its objective is to optimize its own objective function. The literature on multi-agent scheduling problems can be
divided into two main groups based on the characteristics of the processing time of the jobs: problems with non-
variable processing times and problems with variable processing times. The paper of Agnetis and others (Agnetis et
al., 2000; Agnetis et al., 2001) and Baker & Smith (Baker et al., 2003) can be considered as pioneer studies for multi-
agent scheduling problems. In reviewing the literature studies, we examined papers that study the same objective
function as ours - minimizing the total weighted completion time.

The first group of the literature review includes the studies on jobs with non-variable processing times. Soltani and
others studied to minimize the total weighted completion time for the first agent while minimizing the maximum
lateness for the second agent (Soltani et al., 2010). They attempted to minimize the total weighted completion time
for the first agent with a threshold for the maximum latenss value of the second agent by proposing a two-step
methodology: simulated annealing and branch-and-bound algorithms. The same problem was also studied by Yin and
others (Yin et al., 2015). They proposed an algorithm consisting of the honeybee algorithm and the branch and bound

275

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

algorithm. Lee and Wang (2014) studied the problem with three agents. They tried to minimize the total weighted
completion time for the first agent with a threshold for the total completion time value of the second agent while the
maintenance process of the third agent should have been finished in a predefined time interval. They also proposed a
two-stage methodology. In the first stage, to obtain an initial solution, a local search and genetic algorithm were used.
In the second stage, they used branch and bound algorithms. Another paper belongs to Choi and Chung (2014). They
tried to minimize not only the total weighted completion time but also the weighted number of tardy jobs of the first
agent subject to the restriction of the weighted number of just-in-time jobs of the second agent. They studied the
complexity level of the problem.

The second group of the literature review includes the studies on jobs with variable processing times. The papers
closest to our problem in terms of objective functions studied the minimization of the total weighted completion time
for the first agent under the restriction that no tardy job is allowed for the second agent (Lee at al., 2010; Cheng et al.,
2011; Wu et al., 2013; Wu et al., 2014). The jobs of both agents are under the effect of linear deterioration in the study
by Lee and others (Lee at al., 2010) and under the effect of log-linear learning in the study by Wu and others (Wu et
al., 2013). In the study by Cheng and others (Cheng et al., 2011), the first agent's jobs are under the effect of log-linear
learning and the second agent's jobs are under the effect of log-linear aging, while in the study by Wu and others (Wu
et al., 2014), the first agent's jobs are under the effect of past-dependent learning and the second agent's jobs are under
the effect of past-dependent aging. Danaci and Toksari, on the other hand, studied with the jobs that are under the
simultaneous effect learning and deterioration (Danaci & Toksari, 2021).

Few articles have studied the total weighted completion time for both agents (Lee et al., 2009; Nong et al., 2011; Wu,
2014). In their study, Lee et al. studied jobs with non-variable processing times (Lee et al., 2009). They reduced the
problem to the multi-objective shortest path problem and developed a solution approach with polynomial time. In their
study, Nong et al. developed a global objective function by summing the objective functions of the two agents. They
showed the problem is NP-hard and developed two different approximation algorithms. In the study belonging to Wu,
jobs under the effect of past-sequence learning are studied with the constraint that the makespan of the second agent
must not exceed a certain upper bound (Wu, 2014). Zhang et al. studied scheduling with three agents on a single
machine in which the criteria of the three agents are to minimize the total weighted completion time, the weighted
number of tardy jobs, and the total weighted late work, respectively (Zhang et al., 2020). Since the problem was NP‐
hard, they studied the problem under the assumption that the jobs of the first agent have inversely agreeable processing
times and weights. The smaller the processing time of a job was, the greater its weight was. They presented a pseudo‐
polynomial‐time algorithm to find the Pareto frontier.

3. Methods
In this paper, we endeavor to minimize the total weighted completion time for both agents, taking into account jobs
affected by both learning and deterioration effects simultaneously, while ensuring that the second agent does not
encounter tardy jobs. To achieve this, we formulate a global objective function through weighted summation of each
agent's objective functions. Our solution approach comprises two stages. In the initial stage, we develop a heuristic to
generate an initial solution, with the objective function value serving as input for the second stage. In the second stage,
we employ a branch-and-bound algorithm enriched with multiple dominance rules and a lower bound to identify the
optimal solution. Finally, we conduct computational experiments to evaluate the performance of the proposed
algorithms.

4. Problem Description
The problem we are addressing is a single-machine scheduling problem involving two competing agents, denoted as
Agent A and Agent B. There is a total of + jobs, where "" jobs belong to Agent A, and "" jobs belong to Agent B.
All jobs become available for processing at time "t=0," and no interruptions are allowed during the scheduling process.
The processing times of the jobs are influenced by two concurrent factors: log-linear position-based learning and linear
time-based deterioration. As a result of the deterioration effect, the processing time of a job increases as it is scheduled
later in the sequence. Conversely, the learning effect leads to a reduction in the processing time of jobs.

The notations and variables used throughout this paper are as follows:

𝐽𝐽𝐴𝐴 The job set for agent A

276

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

𝐽𝐽𝐵𝐵 The job set for agent B
𝐽𝐽 = 𝐽𝐽𝐴𝐴 ∪ 𝐽𝐽𝐵𝐵 The set for the sum of jobs
𝑛𝑛𝐴𝐴 The number of jobs for agent A
𝑛𝑛𝐵𝐵 The number of jobs for agent B
𝑛𝑛 = 𝑛𝑛𝐴𝐴+𝑛𝑛𝐵𝐵 The total number of jobs
𝑝𝑝𝑗𝑗 Normal processing time for job j

𝑑𝑑𝑗𝑗 Due date for job j
𝑤𝑤𝑗𝑗
𝐴𝐴 Weight for job j of agent A

𝑤𝑤𝑗𝑗
𝐵𝐵 Weight for job j of agent B

𝑤𝑤𝐴𝐴 Weight for agent A
𝑤𝑤𝐵𝐵 Weight for agent B
𝛽𝛽 Deterioration coefficient (𝛽𝛽 ≥ 0)
𝛼𝛼 Learning coefficient (𝛼𝛼 ≤ 0)
r Position in the schedule
t Time when job j is started to be processed

𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼 The real processing time of job j is started to be processed in position r and time t
S The present schedule
𝐶𝐶𝑗𝑗
𝐴𝐴(𝑆𝑆) The completion time of the job j of agent A in the schedule S
𝐶𝐶𝑗𝑗
𝐵𝐵(𝑆𝑆) The completion time of the job j of agent B in the schedule S
𝑈𝑈𝑗𝑗(𝑆𝑆) It's 1 if the job j is tardy in the schedule S, it's 0 if the job j is not tardy
𝑂𝑂𝑂𝑂𝑂𝑂(𝑆𝑆) Objective Function Value in schedule S
𝑘𝑘 = 𝑘𝑘𝐴𝐴 + 𝑘𝑘𝐵𝐵 The number of assigned jobs to the node in branch and bound algorithm
𝑘𝑘𝐴𝐴 The number of unassigned jobs belonging to agent A to the node in BBA
𝑘𝑘𝐵𝐵 The number of unassigned jobs belonging to agent B to the node in BBA

𝐶𝐶[𝑟𝑟,𝑡𝑡]
^

 The completion time of the job when started to be processed in position r and time t
UB Upper bound value

The primary objective function explored in this paper aims to minimize the weighted combination of the total weighted
completion time of both agents while imposing the constraint that no jobs for Agent B are allowed to become tardy.
The specific problem under investigation can be formulated as follows:

1/𝐶𝐶𝑂𝑂; 𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼; ∑
𝑗𝑗=1

𝑛𝑛𝐵𝐵
𝑈𝑈𝑗𝑗𝐵𝐵(𝑆𝑆) = 0/𝑤𝑤𝐴𝐴 ∑

𝑗𝑗=1

𝑛𝑛𝐴𝐴
𝑤𝑤𝑗𝑗𝐴𝐴𝐶𝐶𝑗𝑗𝐴𝐴(𝑆𝑆) + 𝑤𝑤𝐵𝐵 ∑

𝑗𝑗=1

𝑛𝑛𝐵𝐵
𝑤𝑤𝑗𝑗𝐵𝐵𝐶𝐶𝑗𝑗𝐵𝐵(𝑆𝑆) where 𝑤𝑤𝑗𝑗

𝐴𝐴 + 𝑤𝑤𝑗𝑗
𝐵𝐵 = 1

It is worth noting that the problem at hand is NP-hard. In order to address this challenging problem, a methodology
centered around the branch and bound algorithm (BBA) has been devised. In the first phase of this methodology, a
heuristic approach has been formulated to generate an initial solution. The objective function value derived from this
initial solution is subsequently utilized as the upper bound for the branch and bound algorithm.

5. Heuristics for Initial Solution
As previously mentioned, the objective function value of the initial solution plays a pivotal role as the first upper
bound for the branch and bound algorithm. Consequently, the effectiveness and efficiency of the branch-and-bound
algorithm are closely tied to the quality of this initial solution. In this section, we will delve into the development and
implementation of heuristics aimed at generating a high-quality initial solution. The quality of this initial solution not
only impacts the overall efficiency of the algorithm but also significantly influences the algorithm's ability to converge
towards an optimal or near-optimal solution.

277

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

To obtain the initial solution, for each position in the schedule, the unassigned jobs are sorted by the WSPT rule with
respect to 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼/(𝑤𝑤𝑗𝑗𝐴𝐴𝑤𝑤𝐴𝐴) if 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐴𝐴 ∩ 𝐽𝐽 and 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼/(𝑤𝑤𝑗𝑗𝐵𝐵𝑤𝑤𝐵𝐵) if 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐵𝐵 ∩ 𝐽𝐽 .
The unassigned jobs of Agent B are sorted according to the EDD rule. The job with the weighted smallest processing
time is selected. If none of the unassigned jobs of agent B gets tardy; the selected job is assigned to the position.
Otherwise, the job belonging to Agent B with the smallest deadline is selected and assigned to the position. The
pseudocode of the heuristics developed to obtain the initial solution is shown in Algorithm 1 and the flowchart in
Figure 2.

Algorithm 1. Heuristics for Initial Solution

Input: 𝐽𝐽 = {𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑛𝑛} : set of all jobs
 𝑆𝑆 = {. . . }: partial schedule
 𝑡𝑡 = 0 : completion time
For (𝑟𝑟 ← 1to n) do
1. Set adjusted processing times for each job with respect to the following: If 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐴𝐴 ∩ 𝐽𝐽 then 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) =

�𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼/(𝑤𝑤𝑗𝑗𝐴𝐴𝑤𝑤𝐴𝐴); If 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐵𝐵 ∩ 𝐽𝐽 then 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼/(𝑤𝑤𝑗𝑗𝐵𝐵𝑤𝑤𝐵𝐵)

2. Select the job with min{pd(u)} value for 𝐽𝐽𝑢𝑢 ∈ 𝐽𝐽.

3. Calculate the real processing time 𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼 and completion time 𝐶𝐶[𝑟𝑟,𝑡𝑡]
∧ = 𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) + 𝑡𝑡 of 𝐽𝐽𝑢𝑢 as

assigned to position r in partial schedule S.
4. Check whether adding job 𝐽𝐽𝑢𝑢 to the partial schedule S would result in tardiness for any unscheduled jobs belonging

to Agent B by using Algorithm 2.
5. If 𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟 − 𝑜𝑜𝑜𝑜 − 𝑡𝑡𝑡𝑡𝑟𝑟𝑑𝑑𝑡𝑡 − 𝑗𝑗𝑜𝑜𝑛𝑛𝑗𝑗 = 0 , assign the job 𝐽𝐽𝑢𝑢 to 𝑟𝑟𝑡𝑡ℎ position in the partial schedule S and remove it from

the set of unscheduled jobs J. Proceed to step 9.
6. Else, select the job with the smallest due date from the set tardy-control = {𝑗𝑗 ∣ 𝑗𝑗 ∈ 𝐽𝐽𝐵𝐵 ∩ 𝐽𝐽, 𝑗𝑗 ∉ 𝑆𝑆} and remove it from

the set. Then, reapply Algorithm 2 to check the impact of this new assignment.
7. If the number of tardy jobs is reduced to zero after assigning the job with the smallest due date, assign that job to 𝑟𝑟𝑡𝑡ℎ

position in the partial schedule "S" and remove it from the set of unscheduled jobs "J." Proceed to step 9.
8. Else, the solution is INFEASIBLE.
9. Calculate the completion time of the partial schedule and update t.
10. 𝑟𝑟 = 𝑟𝑟 + 1

End
Output 𝑺𝑺 = �𝑱𝑱[1],𝑱𝑱[2], … , 𝑱𝑱[𝒏𝒏]�

Output 𝑈𝑈𝐵𝐵 = 𝑂𝑂𝑂𝑂𝑂𝑂(𝑆𝑆) = 𝑤𝑤𝐴𝐴 ∑
𝑗𝑗=1

𝑛𝑛𝐴𝐴
𝑤𝑤𝑗𝑗𝐴𝐴𝐶𝐶𝑗𝑗𝐴𝐴(𝑆𝑆) + 𝑤𝑤𝐵𝐵 ∑

𝑗𝑗=1

𝑛𝑛𝐵𝐵
𝑤𝑤𝑗𝑗𝐵𝐵𝐶𝐶𝑗𝑗𝐵𝐵(𝑆𝑆)

278

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Algorithm 2. Tardy control algorithm

Input: 𝐽𝐽 = {𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑛𝑛}
 𝑆𝑆 = {… , 𝐽𝐽[𝑟𝑟 − 2], 𝐽𝐽[𝑟𝑟 − 1]}
 tardy-control = {𝑗𝑗 ∣ 𝑗𝑗 ∈ 𝐽𝐽𝐵𝐵 ∩ 𝐽𝐽, 𝑗𝑗 ∉ 𝑆𝑆}
 number-of-tardy-jobs = 0

1. Sort the jobs in set “tardy-control” in ascending order based on their deadlines.
2. Schedule the jobs from the "tardy-control" set to the partial schedule 𝑆𝑆 right after the job 𝐽𝐽𝑢𝑢
For 𝑗𝑗 ∈ 𝑡𝑡𝑡𝑡𝑟𝑟𝑑𝑑𝑡𝑡 − 𝑐𝑐𝑜𝑜𝑛𝑛𝑡𝑡𝑟𝑟𝑜𝑜𝑐𝑐 ∩ 𝑆𝑆 do:

Calculate the real processing time 𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼 and completion time 𝐶𝐶[𝑟𝑟,𝑡𝑡]
∧ = 𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) + 𝑡𝑡 of job j

 if 𝐶𝐶𝑗𝑗(𝑆𝑆) > 𝑑𝑑𝑗𝑗 :
 𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟 − 𝑜𝑜𝑜𝑜 − 𝑡𝑡𝑡𝑡𝑟𝑟𝑑𝑑𝑡𝑡 − 𝑗𝑗𝑜𝑜𝑛𝑛𝑗𝑗 = +1
 Break

End
Output number_of_tardy_jobs

279

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

280

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Figure 2. Flowchart of the Proposed Initial Solution

6. The Branch and Bound Algorithm
In the branch-and-bound algorithm designed to address this scheduling problem known for its NP-hard complexity,
multiple pruning rules characterized by dominance properties have been incorporated to streamline the branching
procedure. These pruning rules serve to diminish the search space, facilitating a more efficient exploration of potential
solution candidates.

6.1 Pruning Rules
Here is an outline of the implemented pruning rules utilized within the algorithm:

• Pruning by Boundaries: This rule mandates that the calculated lower bound value of the partial schedule in a
node must be less than or equal to the best-known upper bound value. If this condition is not met, the node
undergoes pruning. The initial solution's objective function value serves as the initial upper bound value.
Detailed information on how to compute the lower bound for each node can be found in Section 6.2 and
Algorithm 4.

• Pruning by Feasibility: The problem's objective is to minimize the total weighted completion time for both

agents while ensuring that no tardy job occurs for the second agent. If any unassigned job of the second agent

281

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

becomes tardy due to the partial schedule in a node, the solution is deemed infeasible, leading to node pruning.
The tardiness verification for unassigned jobs is elaborated in Algorithm 2.

• Pruning by Optimality: Once all jobs belonging to the second agent have been assigned to a node, the optimal

schedule is achieved using the Weighted Shortest Processing Time (WSPT) rule. To allocate the remaining
unassigned jobs to the partial schedule, the jobs are sorted based on 𝒑𝒑𝒅𝒅𝒋𝒋(𝒓𝒓, 𝒕𝒕) = �𝒑𝒑𝒋𝒋 + 𝜷𝜷𝒕𝒕�𝒓𝒓𝜶𝜶/𝒘𝒘𝒋𝒋

𝑨𝑨 values. This
approach significantly reduces the number of nodes generated compared to conventional branching techniques,
thereby enhancing efficiency.

• Pruning by Dominance: Non-dominant nodes are pruned to further restrict the search space. The properties of

dominance are elucidated in greater detail in Section 6.3 and Algorithm 5.

These pruning rules serve as guiding principles for the branch-and-bound algorithm, directing it towards promising
solution paths while eliminating less promising branches early in the search process. This contributes to enhanced
algorithm efficiency and enables it to handle the inherent complexity of NP-hard problems, as demonstrated in the
paper.

The pseudo code of the branch and bound algorithm is given in Algorithm 3. Flowchart is given in Figure 3.

282

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Algorithm 3. Branch and Bound Algorithm

Input: 𝐽𝐽 = {𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑛𝑛}
 node-list = {Partial schedules obtained by branching nodes in branch and bound algorithm}
 UB = objective function vale of the schedule obtained by using Algorithm 1

For (𝑟𝑟 ← 1to n) do
For node in node-list do:

1. For each partial schedule, create the set of “unassigned-jobs”
2. For the unassigned job belongs to Agent B; create “unassigned-B-agent-jobs” set.
3. Sort jobs in “unassigned-B-agent-jobs” set by EDD rule

 if unassigned-jobs ⊂ 𝐽𝐽𝐴𝐴 :
1. Sort jobs by 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼/𝑤𝑤𝑗𝑗
2. Obtain schedule S that contain all the jobs by adding the jobs in “unassigned-jobs” set in the same order.

Calculate OFV (S).
 if OFV(S) <= UB:

1. Equal UB to OFV(S)
2. Add schedule S to “feasible-solutions” set.

 Else:
 For each job in “unassigned-jobs” do:

1. Add the job to the partial schedule S in the node.
2. Calculate lower bound value of S with Algorithm 4.

 If LB <= UB
 Check if any of the unassigned jobs belongs to agent B gets tardy by using Algorithm 2.

 If number_of_tardy_jobs = 0:
 Apply Algorithm 5 to check if the partial schedule S is dominant.

 If S is dominant in node-list:
 Add S to the node-list.

 If s(S/J) = 0:
 Equal LB to UB

 Add schedule S to “feasible-solutions” set.
 Else Prune the node
 Else Prune the node
 Else Prune the node

 End
 Output node-list
 End

End
Output feasible-solutions

1.Sort schedules in “feasible-solutions” set in ascending order of objective function values.
2.Add schedule or schedules with the smallest objective function value to the "optimal-solution" set.

End
Output optimal-solution

283

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Figure 3. Pruning Rules

284

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

6.2 Calculation of Lower Bound
The efficiency of the branch-and-bound algorithm relies significantly on the accurate calculation of a lower bound for
the partial sequence. Let's consider a partial schedule denoted as "S," where the order of the first "k" jobs is already
determined, leaving "(n - k)" jobs unassigned to the partial schedule within the current node. The completion time for
the partial schedule S is represented by 𝑪𝑪[𝒌𝒌] .

If there were not a tardiness constraint on Agent B’s jobs; the optimal schedule would be obtained by the WSPT
method with the real processing times of the jobs are calculated for each position because of simultaneous effect of
learning and deterioration. In other words, the objective function of the problem studied in this paper is always larger
than or equivalent to the problem with no tardiness constraint.

The pseudo code for calculating the lower bound value is given in Algorithm 4.

Algorithm 4. Calculation of Lower Bound

𝐶𝐶[𝑘𝑘] : the completion time of partial schedule S
For (𝑟𝑟 ← 1to𝑛𝑛 − 𝑘𝑘) do:
1. Calculate adjusted processing times for each unassigned job with respect to the following: If 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐴𝐴 ∩ 𝐽𝐽

then 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝐶𝐶[𝑘𝑘+𝑟𝑟−1]�(𝑟𝑟 + 𝑘𝑘)𝛼𝛼/(𝑤𝑤𝑗𝑗𝐴𝐴𝑤𝑤𝐴𝐴) ; If 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐵𝐵 ∩ 𝐽𝐽 then 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 +
𝛽𝛽𝐶𝐶[𝑘𝑘+𝑟𝑟−1]�(𝑟𝑟 + 𝑘𝑘)𝛼𝛼/(𝑤𝑤𝑗𝑗𝐵𝐵𝑤𝑤𝐵𝐵)

2. Assign the job with minimum value 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) to the position (𝑘𝑘 + 𝑟𝑟) of partial schedule S and remove the
job from “unassigned -jobs” set.

3. Calculate the completion time for the job with 𝐶𝐶[𝑘𝑘+𝑟𝑟] = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝐶𝐶[𝑘𝑘+𝑟𝑟−1]�(𝑟𝑟 + 𝑘𝑘)𝛼𝛼 + 𝐶𝐶[𝑘𝑘+𝑟𝑟−1]
4. r = r +1

Calculate lower bound:

 𝐿𝐿𝐵𝐵 = 𝑤𝑤𝐴𝐴 ∑
𝑗𝑗=1

𝑘𝑘
𝑤𝑤[𝑘𝑘]
𝐴𝐴 𝐶𝐶[𝑘𝑘]

𝐴𝐴 + 𝑤𝑤𝐵𝐵 ∑
𝑗𝑗=1

𝑘𝑘
𝑤𝑤[𝑘𝑘]
𝐵𝐵 𝐶𝐶[𝑘𝑘]

𝐵𝐵 + 𝑤𝑤𝐴𝐴 ∑
𝑟𝑟=1

𝑛𝑛−𝑘𝑘−𝑘𝑘𝐵𝐵
𝑤𝑤[𝑟𝑟]
𝐴𝐴 𝐶𝐶[𝑟𝑟]

𝐴𝐴 + 𝑤𝑤𝐵𝐵 ∑
𝑟𝑟=1

𝑘𝑘𝐵𝐵
𝑤𝑤[𝑟𝑟]
𝐵𝐵 𝐶𝐶[𝑟𝑟]

𝐵𝐵

End

Output 𝐿𝐿𝐵𝐵 = 𝑤𝑤𝐴𝐴 ∑
𝑗𝑗=1

𝑘𝑘
𝑤𝑤[𝑘𝑘]
𝐴𝐴 𝐶𝐶[𝑘𝑘]

𝐴𝐴 + 𝑤𝑤𝐵𝐵 ∑
𝑗𝑗=1

𝑘𝑘
𝑤𝑤[𝑘𝑘]
𝐵𝐵 𝐶𝐶[𝑘𝑘]

𝐵𝐵 + 𝑤𝑤𝐴𝐴 ∑
𝑟𝑟=1

𝑛𝑛−𝑘𝑘−𝑘𝑘𝐵𝐵
𝑤𝑤[𝑟𝑟]
𝐴𝐴 𝐶𝐶[𝑟𝑟]

𝐴𝐴 + 𝑤𝑤𝐵𝐵 ∑
𝑟𝑟=1

𝑘𝑘𝐵𝐵
𝑤𝑤[𝑟𝑟]
𝐵𝐵 𝐶𝐶[𝑟𝑟]

𝐵𝐵

6.3 Dominance Rules
In the context of dominance rules within the branch-and-bound algorithm, let's consider two partial schedules, denoted
as S and S', with the only difference being the exchange of two adjacent jobs, i and j, in pairs. In partial schedule S,
job i is processed at the 𝒓𝒓𝒕𝒕𝒕𝒕 position while job j is processed at the (𝒓𝒓 + 𝟏𝟏)𝒕𝒕𝒕𝒕 position. We denote "t" as the
completion time of the job scheduled at the (𝒓𝒓 − 𝟏𝟏)𝒕𝒕𝒕𝒕 position.
According to the dominance rules, new job assignments continue on the node with the dominant partial schedule and
the node with the non-dominant schedule is pruned. Since the jobs are simultaneously under the effects of learning

285

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

and deterioration; 2 parameters determine the dominance: the objective function value of partial schedule and the
completion time of the last job scheduled in the partial schedule.

Partial schedule S is considered dominant over S ’if any of the conditions listed below are met:

• 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺) < 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺′) and 𝑪𝑪𝒋𝒋(𝑺𝑺) < 𝑪𝑪𝒊𝒊(𝑺𝑺′)
• 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺) < 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺′) and 𝑪𝑪𝒋𝒋(𝑺𝑺) = 𝑪𝑪𝒊𝒊(𝑺𝑺′)
• 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺) = 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺′) and 𝑪𝑪𝒋𝒋(𝑺𝑺) < 𝑪𝑪𝒊𝒊(𝑺𝑺′)

In other combinations of conditions where these criteria are not satisfied, it may be challenging to definitively
determine which partial schedule is dominant. However, when one schedule is dominant over the other, the branch-
and-bound algorithm prioritizes further exploration and assignment of new jobs within the dominant schedule,
ultimately contributing to the search for an optimal solution.

Algorithm 5. Dominance Rules

Input: 𝑆𝑆 = �… , 𝐽𝐽[𝑟𝑟−2], 𝐽𝐽[𝑟𝑟−1], 𝐽𝐽𝑖𝑖,[𝑟𝑟]�
 𝑆𝑆′ = �… , 𝐽𝐽[𝑟𝑟−2], 𝐽𝐽[𝑟𝑟−1], 𝐽𝐽𝑗𝑗,[𝑟𝑟], 𝐽𝐽𝑗𝑗,[𝑟𝑟+1]�
 node-list = {Partial schedules obtained by branching nodes in branch and bound algorithm}

For 𝐽𝐽𝑗𝑗 do:

 1. Add job 𝐽𝐽𝑗𝑗 to partial schedule S, position (r+1)
 2. Get 𝑆𝑆 = �… , 𝐽𝐽[𝑟𝑟−2], 𝐽𝐽[𝑟𝑟−1], 𝐽𝐽𝑖𝑖,[𝑟𝑟], 𝐽𝐽𝑗𝑗,[𝑟𝑟+1]�
 If 𝑆𝑆′ in node_list:
 Check if S dominates 𝑆𝑆′ by using propositions from 1-6
 If partial schedule S is dominant to 𝑆𝑆′
 1. Add partial schedule S to node-list set.
 2. Remove partial schedules S’ from node_list set
 Elif partial schedule 𝑆𝑆′ is dominant:
 1. Do not add partial schedule S to node-list set.
 Else:
 1. Add partial schedule S to node-list set.
 Else:
 1. Add partial schedule S to node-list set.
End
Output node-list

7. Computational results
Experiments were conducted using various parameter combinations and different sample sizes to evaluate the
performance of the developed algorithms.

Experimental Environment:
The algorithms were implemented in JetBrains PyCharm Professional 2021.3.2, and experiments were conducted on
a personal computer equipped with a 3.2 GHz 6-Core Intel Core i7-8700 processor and 16 GB of memory. The
operating system used for these experiments was Windows 10 Pro 21H1.

Data Generation:
Job processing times and due dates were generated randomly, with processing times drawn from a uniform distribution
over the integers (0,100) and due dates from the interval [1, 5].

286

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Experimental Setup:
The experiments encompassed various parameter combinations and sample sizes. The total number of jobs assigned
to the agents was set at 5, 10, and 15. Two deterioration coefficients (𝛽𝛽) (0.1 and 0.2) and three learning coefficients
(α)(70%, 80%, and 90%) were considered. This resulted in a total of 30 distinct parameter combinations. Each
combination was tested five times, yielding a total of 90 experiments.

The experiments provided three primary metrics for evaluation: nodes-ratio, the error-percentage, and the CPU-time.

The nodes-ratio metric indicates the extent to which the developed algorithm reduces the number of generated nodes
compared to the classical branching method. It is calculated using Equation 10 where TN and TN* are denoted as the
nodes generated by the classical branch-and-bound algorithm and the total nodes generated by the proposed algorithm,
respectively:

 𝑁𝑁𝑜𝑜𝑑𝑑𝑛𝑛𝑗𝑗 − 𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑜𝑜 = 𝑇𝑇𝑁𝑁∗/𝑇𝑇𝑁𝑁

The error percentage quantifies the percentage difference between the total weighted completion time of the initial
solution and the solution obtained by the branch-and-bound algorithm. Calculation involves Equation 11 where 𝑂𝑂𝑂𝑂𝑂𝑂
and 𝑂𝑂𝑂𝑂𝑂𝑂∗ are denoted as the total weighted completion time of the initial solution and the branch-and-bound algorithm
solution, respectively:

𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟 − 𝑝𝑝𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛 = (𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑂𝑂𝑂𝑂∗)/𝑂𝑂𝑂𝑂𝑂𝑂

CPU time represents the duration in seconds required for processing the developed algorithm. Note that CPU times
are influenced not only by the algorithm's efficiency but also by the coding implementation.

The efficiency of the proposed methodology hinges on several critical factors, including the total number of jobs, the
learning coefficient, and the deterioration coefficient. These factors collectively shape the performance of the
algorithm and its ability to provide optimal solutions. The assessment of the methodology's effectiveness for different
parameter values is summarized in Table 1.

A comprehensive analysis of the relationships between these parameters and key results, such as processing time and
the number of nodes, reveals notable trends. Specifically, as the total number of jobs increases, both processing time
and the error percentage exhibit a corresponding increase. These relationships are visually represented in Figure 5and
Figure 6. On the other hand, although the number of nodes increases as the number of jobs increases, the value of the
nodes-ratio decreases as shown in Figure 4.

Table 1. Performance Indicators for Proposed Algorithms for the Second Problem

α β

Total number of jobs (n)

 5 10 15

Node – ratio (%)

70% 0,2 2,974359 0,0113198 2,34E-06

70% 0,1 3,025641 0,0100709 6,88E-06

80% 0,2 3,025641 0,0076175 2,96E-07

80% 0,1 3,2820513 0,0078 2,75E-06

90% 0,2 2,5128205 0,0045519 7,47E-08

90% 0,1 2,5128205 0,0069951 4,09E-07

MEAN 2,8888889 0,0080592 2,12E-06

287

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Error Percentage

70% 0,2 0,0252641 0,0559249 0,0623773

70% 0,1 0,0321291 0,0428 0,0428416

80% 0,2 0,0121311 0,0420808 0,0584301

80% 0,1 0,0139486 0,0251013 0,0244233

90% 0,2 0,0036245 0,0560238 0,0497368

90% 0,1 0,0054943 0,0145459 0,028879

MEAN 0,015432 0,0394128 0,047204

CPU time

70% 0,2 0,03019 9,5659109 2300,0308

70% 0,1 0,034335 7,757144 5326,2117

80% 0,2 0,027825 4,272038 346,22927

80% 0,1 0,0476699 4,802578 2728,5332

90% 0,2 0,0176551 2,3049759 79,404798

90% 0,1 0,0305834 5,205898 411,402

MEAN 0,0313764 5,6514242 1863,4005

When considering higher values of the learning effect coupled with lower values of the deterioration effect, an
interesting set of consequences emerges. Specifically, as the learning effect becomes more pronounced and the
deterioration effect diminishes, the processing times of jobs are expected to shorten. Consequently, this results in an
expansion of slack time within the scheduling framework. Additionally, the number of jobs that can be accommodated
and processed during these slack-time intervals is poised to increase, CPU time tends to increase, reflecting the
algorithm's increased computational demands, while the node ratio also increases, indicating a less efficient use of
computational resources.

Conversely, when dealing with lower values of the learning effect combined with higher values of the deterioration
effect, a different set of outcomes unfolds. In this scenario, as the learning effect diminishes and the deterioration
effect intensifies, job processing times tend to lengthen. Consequently, the available slack time is reduced, limiting
the number of jobs that can be accommodated and processed during these constrained intervals. As a result, CPU time
and node ratio tend to decrease.

These observations underscore the intricate relationship between the learning and deterioration effects on job
processing times and their significant impact on various performance metrics, offering valuable insights for optimizing
the scheduling algorithm under different conditions.

288

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Figure 4. Relation Between Total Number of Jobs and Nodes Ratio

Figure 5. Relation Between Total Number of Jobs and CPU time

289

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Figure 6. Relation Between Total Number of Jobs and Error Percentage

8. Conclusion
This paper presented a methodology designed to address the challenging multi-agent scheduling problem involving
jobs subject to the simultaneous influence of learning and deterioration effects. The primary objective of this problem
was to minimize the total weighted completion time for all agents while enforcing the constraint that no tardy jobs
were permissible for the second agent.

The proposed methodology was structured into two key phases: an initial heuristic for generating an initial solution
and a subsequent branch-and-bound algorithm for refining and optimizing the solution further. To enhance the
efficiency of the branch-and-bound algorithm and reduce its computational complexity, a set of dominance rules and
pruning rules were introduced.

The computational results showcased the effectiveness of the branch-and-bound algorithm, particularly when coupled
with the initial heuristic solution. Notably, this approach demonstrated commendable performance in terms of the
number of nodes generated and execution time across a range of experiments. The methodology was rigorously tested
with up to 15 jobs, revealing that its success was notably influenced by factors such as a smaller learning coefficient,
a larger deterioration coefficient, and reduced slack time intervals for jobs belonging to agent B.

In summary, this study offers a promising methodology for tackling complex multi-agent scheduling problems
characterized by the simultaneous influence of learning and deterioration effects. The proposed approach, combining
heuristic and branch-and-bound techniques, provides a robust foundation for efficiently solving such problems, with
its performance particularly favorable under certain parameter conditions.

290

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

References
 Agnetis, A., Mirchandani, P. B., Pacciarelli, D., and Pacifici, A., Nondominated schedules for a job-shop with two

competing users. Comput. Math. Organ. Theory, 191-217, 2000.
Agnetis, A., Mirchandani, P. B., Pacciarelli, D., and Pacifici, A., Scheduling problems with two competing users.

UniversitaÁ di Roma “Tor Vergata,'' Centro Vito Volterra, Working Paper No. 452, 2001.
Baker, K. R. and Smith, J. C., A multiple-criterion model for machine scheduling. Journal of Scheduling, 6(1): 7-16,

2003.
Cheng, T. C. E., Chung, Y. H., Liao, S. C., and Lee, W. C., Two-agent single-machine scheduling with release times

to minimize the total weighted completion time. Computers and Operations Research, 40: 353-361, 2013.
Cheng, T. C. E., Wu, W. H., Cheng, S. R., & Wu, C. C., Two-agent scheduling with position-based deteriorating jobs

and learning effects. Applied Mathematics and Computation, 217(21), 8804–8824, 2011.
Choi, B. C. and Chung, J., Two-agent single-machine scheduling problem with just-in-time jobs. Theoretical

Computer Science, 543: 37–45, 2014.
Danacı, T., Toksari, M.D., “A branch-and-bound algorithm for two-competing-agent single-machine scheduling

problem with jobs under simultaneous effects of learning and deterioration to minimize total weighted completion
time with no-tardy jobs”, International Journal of Industrial Engineering, Vol. 28 No. 6, 2021.

Lee, K., Choi, B. C., Leung, J. Y. T., and Pinedo, M. L., Approximation algorithms for multi-agent scheduling to
minimize total weighted completion time. Information Processing Letters, 109(16): 913–917, 2009.

Lee, W. C. and Wang, J. Y., A scheduling problem with three competing agents. Computers and Operations Research,
51: 208–217, 2014.

Lee, W.C., Wang, W.J., Shiau, Y.R., & Wu, C.C., A single-machine scheduling problem with two-agent and
deteriorating jobs. Applied Mathematical Modelling, 34, 3098–3107, 2010.

Nong, Q. Q., Cheng, T. C. E., & Ng, C. T., Two-agent scheduling to minimize the total cost. European Journal of
Operational Research, 215(1), 39–44, 2011.

Soltani, R., Jolai, F., and Zandieh, M., Two robust meta-heuristics for scheduling multiple job classes on a single
machine with multiple criteria. Expert Systems with Applications, 37(8): 5951–5959, 2010.

Wu, C.C., Lee, W.C., & Liou, M.J., Single-machine scheduling with two competing agents and learning
consideration. Information Sciences, 251, 136–149, 2013.

Wu, W. H., Cheng, S. R., Wu, C. C., & Yin, Y., Ant colony algorithms for a two- agent scheduling with sum-of
processing times-based learning and deteriorating considerations. Journal of Intelligent Manufacturing, 23(5),
1985–1993, 2012.

Wu, W.H., Solving a two-agent single-machine earning scheduling problem. International Journal of Computer
Integrated Manufacturing, 27, 20-35, 2014.

Yin, Y., Wu, W. H., Cheng, T. C. E., Wu, C. C., and Wu, W. H., A honey-bees optimization algorithm for a two-agent
single-machine scheduling problem with ready times. Applied Mathematical Modelling, 39: 2587–2601, 2015.

Zhang, Y., Yuan, J., Ng, C., and Cheng, T. C., Pareto-optimization of three-agent scheduling to minimize the total
weighted completion time, weighted number of tardy jobs, and total weighted late work. Naval Research
Logistics, 68: 378-393, 2020.

Biography
Tugba Danaci is an accomplished industrial engineer and production management consultant with a diverse
educational background. She pursued a double major in Management Engineering and Mechanical Engineering,
specializing in System Dynamics and Control during her undergraduate studies at Istanbul Technical University. Her
academic journey continued with a Master of Science in Strategic Management in Defense Technologies and
culminated in a Ph.D. in Industrial Engineering from Cleveland State University and Erciyes University. Alongside
her academic studies, she has held various consulting and managerial roles within companies operating in the defense
industry. Her focus includes the implementation of AS/EN 9100 Rev D quality management systems, digitalization
and optimization of production processes, their migration to cloud platforms, bespoke software development tailored
to specific company needs, and spearheading projects ensuring compliance with NATO and National standards for
facility security.

291

	1. Introduction
	In classical scheduling problems, job processing times are assumed to remain constant and stable. However, in practical situations, these processing times can fluctuate due to factors such as job repetitions or variations in resource allocation. The l...
	1.1 Objectives
	In this study, our objective is to minimize the total weighted completion time in a single-machine scheduling problem involving two competing agents, considering jobs affected by both learning and deterioration effects simultaneously, while ensuring t...
	2. Literature Review
	Multi-agent scheduling problem is a subset of multi-objective scheduling problems where each agent has a set of jobs, and its objective is to optimize its own objective function. The literature on multi-agent scheduling problems can be divided into t...
	The first group of the literature review includes the studies on jobs with non-variable processing times. Soltani and others studied to minimize the total weighted completion time for the first agent while minimizing the maximum lateness for the secon...
	The second group of the literature review includes the studies on jobs with variable processing times. The papers closest to our problem in terms of objective functions studied the minimization of the total weighted completion time for the first agent...
	Few articles have studied the total weighted completion time for both agents (Lee et al., 2009; Nong et al., 2011; Wu, 2014). In their study, Lee et al. studied jobs with non-variable processing times (Lee et al., 2009). They reduced the problem to th...
	3. Methods
	In this paper, we endeavor to minimize the total weighted completion time for both agents, taking into account jobs affected by both learning and deterioration effects simultaneously, while ensuring that the second agent does not encounter tardy jobs....
	4. Problem Description
	The problem we are addressing is a single-machine scheduling problem involving two competing agents, denoted as Agent A and Agent B. There is a total of + jobs, where "" jobs belong to Agent A, and "" jobs belong to Agent B. All jobs become availabl...
	The primary objective function explored in this paper aims to minimize the weighted combination of the total weighted completion time of both agents while imposing the constraint that no jobs for Agent B are allowed to become tardy. The specific probl...
	5. Heuristics for Initial Solution
	6. The Branch and Bound Algorithm
	6.1 Pruning Rules
	Here is an outline of the implemented pruning rules utilized within the algorithm:
	• Pruning by Boundaries: This rule mandates that the calculated lower bound value of the partial schedule in a node must be less than or equal to the best-known upper bound value. If this condition is not met, the node undergoes pruning. The initial s...
	• Pruning by Feasibility: The problem's objective is to minimize the total weighted completion time for both agents while ensuring that no tardy job occurs for the second agent. If any unassigned job of the second agent becomes tardy due to the partia...
	• Pruning by Optimality: Once all jobs belonging to the second agent have been assigned to a node, the optimal schedule is achieved using the Weighted Shortest Processing Time (WSPT) rule. To allocate the remaining unassigned jobs to the partial sched...
	• Pruning by Dominance: Non-dominant nodes are pruned to further restrict the search space. The properties of dominance are elucidated in greater detail in Section 6.3 and Algorithm 5.
	These pruning rules serve as guiding principles for the branch-and-bound algorithm, directing it towards promising solution paths while eliminating less promising branches early in the search process. This contributes to enhanced algorithm efficiency ...
	The pseudo code of the branch and bound algorithm is given in Algorithm 3. Flowchart is given in Figure 3.
	6.2 Calculation of Lower Bound
	The efficiency of the branch-and-bound algorithm relies significantly on the accurate calculation of a lower bound for the partial sequence. Let's consider a partial schedule denoted as "S," where the order of the first "k" jobs is already determined,...
	If there were not a tardiness constraint on Agent B’s jobs; the optimal schedule would be obtained by the WSPT method with the real processing times of the jobs are calculated for each position because of simultaneous effect of learning and deteriorat...
	The pseudo code for calculating the lower bound value is given in Algorithm 4.
	6.3 Dominance Rules
	In the context of dominance rules within the branch-and-bound algorithm, let's consider two partial schedules, denoted as S and S', with the only difference being the exchange of two adjacent jobs, i and j, in pairs. In partial schedule S, job i is pr...
	According to the dominance rules, new job assignments continue on the node with the dominant partial schedule and the node with the non-dominant schedule is pruned. Since the jobs are simultaneously under the effects of learning and deterioration; 2 p...
	Partial schedule S is considered dominant over S’ if any of the conditions listed below are met:
	• 𝑶𝑭𝑽,𝑺.<𝑶𝑭𝑽,,𝑺-′.. and ,𝑪-𝒋.,𝑺.<,𝑪-𝒊.,,𝑺-′..
	• 𝑶𝑭𝑽,𝑺.<𝑶𝑭𝑽,,𝑺-′.. and ,𝑪-𝒋.,𝑺.=,𝑪-𝒊.,,𝑺-′..
	• 𝑶𝑭𝑽,𝑺.=𝑶𝑭𝑽,,𝑺-′.. and ,𝑪-𝒋.,𝑺.<,𝑪-𝒊.,,𝑺-′..
	In other combinations of conditions where these criteria are not satisfied, it may be challenging to definitively determine which partial schedule is dominant. However, when one schedule is dominant over the other, the branch-and-bound algorithm prior...
	7. Computational results
	8. Conclusion
	This paper presented a methodology designed to address the challenging multi-agent scheduling problem involving jobs subject to the simultaneous influence of learning and deterioration effects. The primary objective of this problem was to minimize the...
	The proposed methodology was structured into two key phases: an initial heuristic for generating an initial solution and a subsequent branch-and-bound algorithm for refining and optimizing the solution further. To enhance the efficiency of the branch-...
	The computational results showcased the effectiveness of the branch-and-bound algorithm, particularly when coupled with the initial heuristic solution. Notably, this approach demonstrated commendable performance in terms of the number of nodes generat...
	In summary, this study offers a promising methodology for tackling complex multi-agent scheduling problems characterized by the simultaneous influence of learning and deterioration effects. The proposed approach, combining heuristic and branch-and-bou...
	Biography

