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Abstract 

Encompassing a subset of multi-objective scheduling challenges, the multi-agent scheduling problem involves various 
agents, each entrusted with a unique set of tasks while striving to optimize their individual goals. Recent inquiries in 
this field have predominantly spotlighted variable processing times, employing methods like the 𝜖𝜖-constraint approach 
to optimize one agent's function without compromising the other’s limit. Our study takes an innovative approach, 
delving into a two-agent single-machine scheduling problem influenced by concurrent learning and deterioration 
effects. The primary aim is to minimize the overall weighted completion time for both agents, preventing any job 
delays for the second agent. To address this, our research amalgamates the 𝜖𝜖-constraint and linear combination 
approaches, presenting a unique proposition in the current research landscape. We introduce a two-stage methodology: 
a heuristic method for near-optimal solutions followed by a branch-and-bound algorithm, integrating specialized 
dominance rules to achieve optimal solutions. 
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1. Introduction
In classical scheduling problems, job processing times are assumed to remain constant and stable. However, in 
practical situations, these processing times can fluctuate due to factors such as job repetitions or variations in resource 
allocation. The literature categorizes variations in processing times into three primary groups: time-dependent 
processing times, position-dependent processing times, and controllable processing times (Agnetis et al., 2014). 

Time-dependent processing times are determined by when a job begins processing, while position-dependent 
processing times are influenced by the job's starting position or row. Additionally, processing times can sometimes be 
altered by adjusting the number of allocated resources, leading to jobs with controllable processing times. Time-
dependent processing times can further be classified into two subgroups: non-decreasing, where processing times 
increase as jobs are delayed (referred to as jobs under deterioration effect), and non-increasing, where processing 
times decrease with delays (referred to as jobs under shortening effect). Position-dependent processing times are 
categorized into non-decreasing (jobs under aging effect) and non-increasing (jobs under learning effect) groups based 
on worker experience. Furthermore, certain jobs, particularly those in project management, allow for variations in 
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processing times based on resource usage. For a mor  detailed breakdown of job categorization based on varying 

processing times, please refer to Figure 1. 

Figure 1. Groups of Jobs with Variable Processing Times (Agnetis et al., 2014) 

1.1 Objectives 
In this study, our objective is to minimize the total weighted completion time in a single-machine scheduling problem 
involving two competing agents, considering jobs affected by both learning and deterioration effects simultaneously, 
while ensuring that the second agent does not encounter tardy jobs. The processing times of the jobs are influenced 
by two concurrent factors: log-linear position-based learning and linear time-based deterioration. The deterioration 
effect causes the processing time of a job to increase as it is scheduled later in the sequence, while the learning effect 
results in a reduction of job processing times. 

2. Literature Review
Multi-agent scheduling problem is a subset of multi-objective scheduling problems where each agent has a set of jobs, 
and its objective is to optimize its own objective function.  The literature on multi-agent scheduling problems can be 
divided into two main groups based on the characteristics of the processing time of the jobs: problems with non-
variable processing times and problems with variable processing times. The paper of Agnetis and others (Agnetis et 
al., 2000; Agnetis et al., 2001) and Baker & Smith (Baker et al., 2003) can be considered as pioneer studies for multi-
agent scheduling problems. In reviewing the literature studies, we examined papers that study the same objective 
function as ours - minimizing the total weighted completion time.  

The first group of the literature review includes the studies on jobs with non-variable processing times. Soltani and 
others studied to minimize the total weighted completion time for the first agent while minimizing the maximum 
lateness for the second agent (Soltani et al., 2010). They attempted to minimize the total weighted completion time 
for the first agent with a threshold for the maximum latenss value of the second agent by proposing a two-step 
methodology: simulated annealing and branch-and-bound algorithms. The same problem was also studied by Yin and 
others (Yin et al., 2015).  They proposed an algorithm consisting of the honeybee algorithm and the branch and bound 
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algorithm. Lee and Wang (2014) studied the problem with three agents. They tried to minimize the total weighted 
completion time for the first agent with a threshold for the total completion time value of the second agent while the 
maintenance process of the third agent should have been finished in a predefined time interval. They also proposed a 
two-stage methodology. In the first stage, to obtain an initial solution, a local search and genetic algorithm were used. 
In the second stage, they used branch and bound algorithms. Another paper belongs to Choi and Chung (2014). They 
tried to minimize not only the total weighted completion time but also the weighted number of tardy jobs of the first 
agent subject to the restriction of the weighted number of just-in-time jobs of the second agent. They studied the 
complexity level of the problem. 
 
The second group of the literature review includes the studies on jobs with variable processing times. The papers 
closest to our problem in terms of objective functions studied the minimization of the total weighted completion time 
for the first agent under the restriction that no tardy job is allowed for the second agent (Lee at al., 2010; Cheng et al., 
2011; Wu et al., 2013; Wu et al., 2014). The jobs of both agents are under the effect of linear deterioration in the study 
by Lee and others (Lee at al., 2010) and under the effect of log-linear learning in the study by Wu and others (Wu et 
al., 2013). In the study by Cheng and others (Cheng et al., 2011), the first agent's jobs are under the effect of log-linear 
learning and the second agent's jobs are under the effect of log-linear aging, while in the study by Wu and others (Wu 
et al., 2014), the first agent's jobs are under the effect of past-dependent learning and the second agent's jobs are under 
the effect of past-dependent aging. Danaci and Toksari, on the other hand, studied with the jobs that are under the 
simultaneous effect learning and deterioration (Danaci & Toksari, 2021).  
 
Few articles have studied the total weighted completion time for both agents (Lee et al., 2009; Nong et al., 2011; Wu, 
2014). In their study, Lee et al. studied jobs with non-variable processing times (Lee et al., 2009). They reduced the 
problem to the multi-objective shortest path problem and developed a solution approach with polynomial time. In their 
study, Nong et al. developed a global objective function by summing the objective functions of the two agents. They 
showed the problem is NP-hard and developed two different approximation algorithms. In the study belonging to Wu, 
jobs under the effect of past-sequence learning are studied with the constraint that the makespan of the second agent 
must not exceed a certain upper bound (Wu, 2014). Zhang et al. studied scheduling with three agents on a single 
machine in which the criteria of the three agents are to minimize the total weighted completion time, the weighted 
number of tardy jobs, and the total weighted late work, respectively (Zhang et al., 2020). Since the problem was NP‐
hard, they studied the problem under the assumption that the jobs of the first agent have inversely agreeable processing 
times and weights. The smaller the processing time of a job was, the greater its weight was. They presented a pseudo‐
polynomial‐time algorithm to find the Pareto frontier.  
 
3. Methods  
In this paper, we endeavor to minimize the total weighted completion time for both agents, taking into account jobs 
affected by both learning and deterioration effects simultaneously, while ensuring that the second agent does not 
encounter tardy jobs. To achieve this, we formulate a global objective function through weighted summation of each 
agent's objective functions. Our solution approach comprises two stages. In the initial stage, we develop a heuristic to 
generate an initial solution, with the objective function value serving as input for the second stage. In the second stage, 
we employ a branch-and-bound algorithm enriched with multiple dominance rules and a lower bound to identify the 
optimal solution. Finally, we conduct computational experiments to evaluate the performance of the proposed 
algorithms. 
 
4.  Problem Description  
The problem we are addressing is a single-machine scheduling problem involving two competing agents, denoted as 
Agent A and Agent B.  There is a total of +  jobs, where "" jobs belong to Agent A, and "" jobs belong to Agent B. 
All jobs become available for processing at time "t=0," and no interruptions are allowed during the scheduling process.  
The processing times of the jobs are influenced by two concurrent factors: log-linear position-based learning and linear 
time-based deterioration. As a result of the deterioration effect, the processing time of a job increases as it is scheduled 
later in the sequence. Conversely, the learning effect leads to a reduction in the processing time of jobs. 
 
 
The notations and variables used throughout this paper are as follows:  
 

𝐽𝐽𝐴𝐴 The job set for agent A 
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𝐽𝐽𝐵𝐵 The job set for agent B 
𝐽𝐽 = 𝐽𝐽𝐴𝐴 ∪ 𝐽𝐽𝐵𝐵 The set for the sum of jobs 
𝑛𝑛𝐴𝐴 The number of jobs for agent A 
𝑛𝑛𝐵𝐵 The number of jobs for agent B 
𝑛𝑛 = 𝑛𝑛𝐴𝐴+𝑛𝑛𝐵𝐵 The total number of jobs 
𝑝𝑝𝑗𝑗 Normal processing time for job j 

𝑑𝑑𝑗𝑗 Due date for job j 
𝑤𝑤𝑗𝑗
𝐴𝐴 Weight for job j of agent A 

𝑤𝑤𝑗𝑗
𝐵𝐵 Weight for job j of agent B 

𝑤𝑤𝐴𝐴 Weight for agent A 
𝑤𝑤𝐵𝐵 Weight for agent B 
𝛽𝛽 Deterioration coefficient (𝛽𝛽 ≥ 0) 
𝛼𝛼 Learning coefficient (𝛼𝛼 ≤ 0) 
r Position in the schedule 
t Time when job j is started to be processed 

𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼 The real processing time of job j is started to be processed in position r and time t 
S The present schedule 
𝐶𝐶𝑗𝑗
𝐴𝐴(𝑆𝑆) The completion time of the job j of agent A in the schedule S 
𝐶𝐶𝑗𝑗
𝐵𝐵(𝑆𝑆) The completion time of the job j of agent B in the schedule S 
𝑈𝑈𝑗𝑗(𝑆𝑆) It's 1 if the job j is tardy in the schedule S, it's 0 if the job j is not tardy 
𝑂𝑂𝑂𝑂𝑂𝑂(𝑆𝑆) Objective Function Value in schedule S 
𝑘𝑘 = 𝑘𝑘𝐴𝐴 + 𝑘𝑘𝐵𝐵 The number of assigned jobs to the node in branch and bound algorithm 
𝑘𝑘𝐴𝐴 The number of unassigned jobs belonging to agent A to the node in BBA 
𝑘𝑘𝐵𝐵 The number of unassigned jobs belonging to agent B to the node in BBA 

𝐶𝐶[𝑟𝑟,𝑡𝑡]
^

 The completion time of the job when started to be processed in position r and time t 
UB Upper bound value 

 
 
The primary objective function explored in this paper aims to minimize the weighted combination of the total weighted 
completion time of both agents while imposing the constraint that no jobs for Agent B are allowed to become tardy. 
The specific problem under investigation can be formulated as follows: 

 

1/𝐶𝐶𝑂𝑂; 𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼; ∑
𝑗𝑗=1

𝑛𝑛𝐵𝐵
𝑈𝑈𝑗𝑗𝐵𝐵(𝑆𝑆) = 0/𝑤𝑤𝐴𝐴 ∑

𝑗𝑗=1

𝑛𝑛𝐴𝐴
𝑤𝑤𝑗𝑗𝐴𝐴𝐶𝐶𝑗𝑗𝐴𝐴(𝑆𝑆) + 𝑤𝑤𝐵𝐵 ∑

𝑗𝑗=1

𝑛𝑛𝐵𝐵
𝑤𝑤𝑗𝑗𝐵𝐵𝐶𝐶𝑗𝑗𝐵𝐵(𝑆𝑆)   where 𝑤𝑤𝑗𝑗

𝐴𝐴 + 𝑤𝑤𝑗𝑗
𝐵𝐵 = 1 

It is worth noting that the problem at hand is NP-hard. In order to address this challenging problem, a methodology 
centered around the branch and bound algorithm (BBA) has been devised. In the first phase of this methodology, a 
heuristic approach has been formulated to generate an initial solution. The objective function value derived from this 
initial solution is subsequently utilized as the upper bound for the branch and bound algorithm.   
 
5. Heuristics for Initial Solution 
As previously mentioned, the objective function value of the initial solution plays a pivotal role as the first upper 
bound for the branch and bound algorithm. Consequently, the effectiveness and efficiency of the branch-and-bound 
algorithm are closely tied to the quality of this initial solution. In this section, we will delve into the development and 
implementation of heuristics aimed at generating a high-quality initial solution. The quality of this initial solution not 
only impacts the overall efficiency of the algorithm but also significantly influences the algorithm's ability to converge 
towards an optimal or near-optimal solution. 
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To obtain the initial solution, for each position in the schedule, the unassigned jobs are sorted by the WSPT rule with 
respect to  𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼/(𝑤𝑤𝑗𝑗𝐴𝐴𝑤𝑤𝐴𝐴)  if 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐴𝐴 ∩ 𝐽𝐽   and 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼/(𝑤𝑤𝑗𝑗𝐵𝐵𝑤𝑤𝐵𝐵)  if 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐵𝐵 ∩ 𝐽𝐽 . 
The unassigned jobs of Agent B are sorted according to the EDD rule. The job with the weighted smallest processing 
time is selected. If none of the unassigned jobs of agent B gets tardy; the selected job is assigned to the position. 
Otherwise, the job belonging to Agent B with the smallest deadline is selected and assigned to the position.  The 
pseudocode of the heuristics developed to obtain the initial solution is shown in Algorithm 1 and the flowchart in 
Figure 2.  
 

Algorithm 1. Heuristics for Initial Solution 

Input: 𝐽𝐽 = {𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑛𝑛} : set of all jobs 
            𝑆𝑆 = {. . . }: partial schedule 
             𝑡𝑡 = 0 : completion time 
For (𝑟𝑟 ← 1to n) do  
1. Set adjusted processing times for each job with respect to the following: If 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐴𝐴 ∩ 𝐽𝐽  then 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) =

�𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼/(𝑤𝑤𝑗𝑗𝐴𝐴𝑤𝑤𝐴𝐴); If 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐵𝐵 ∩ 𝐽𝐽 then 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼/(𝑤𝑤𝑗𝑗𝐵𝐵𝑤𝑤𝐵𝐵)  

2. Select the job with min{pd(u)} value for 𝐽𝐽𝑢𝑢 ∈ 𝐽𝐽. 

3. Calculate the real processing time 𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼    and completion time  𝐶𝐶[𝑟𝑟,𝑡𝑡]
∧ = 𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) + 𝑡𝑡 of  𝐽𝐽𝑢𝑢  as 

assigned to position r in partial schedule S. 
4. Check whether adding job 𝐽𝐽𝑢𝑢 to the partial schedule S would result in tardiness for any unscheduled jobs belonging 

to Agent B by using Algorithm 2. 
5. If 𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟 − 𝑜𝑜𝑜𝑜 − 𝑡𝑡𝑡𝑡𝑟𝑟𝑑𝑑𝑡𝑡 − 𝑗𝑗𝑜𝑜𝑛𝑛𝑗𝑗 = 0 , assign the job 𝐽𝐽𝑢𝑢 to 𝑟𝑟𝑡𝑡ℎ position in the partial schedule S and remove it  from 

the set of unscheduled jobs J. Proceed to step 9. 
6. Else, select the job with the smallest due date from the set  tardy-control = {𝑗𝑗 ∣ 𝑗𝑗 ∈ 𝐽𝐽𝐵𝐵 ∩ 𝐽𝐽, 𝑗𝑗 ∉ 𝑆𝑆} and remove it from 

the set. Then, reapply Algorithm 2 to check the impact of this new assignment. 
7. If the number of tardy jobs is reduced to zero after assigning the job with the smallest due date, assign that job to 𝑟𝑟𝑡𝑡ℎ  

position in the partial schedule "S" and remove it from the set of unscheduled jobs "J." Proceed to step 9. 
8. Else, the solution is INFEASIBLE.  
9. Calculate the completion time of the partial schedule and update t.  
10. 𝑟𝑟 = 𝑟𝑟 + 1 
 
End 
Output 𝑺𝑺 = �𝑱𝑱[1],𝑱𝑱[2], … , 𝑱𝑱[𝒏𝒏]�  

Output  𝑈𝑈𝐵𝐵 = 𝑂𝑂𝑂𝑂𝑂𝑂(𝑆𝑆) = 𝑤𝑤𝐴𝐴 ∑
𝑗𝑗=1

𝑛𝑛𝐴𝐴
𝑤𝑤𝑗𝑗𝐴𝐴𝐶𝐶𝑗𝑗𝐴𝐴(𝑆𝑆) + 𝑤𝑤𝐵𝐵 ∑

𝑗𝑗=1

𝑛𝑛𝐵𝐵
𝑤𝑤𝑗𝑗𝐵𝐵𝐶𝐶𝑗𝑗𝐵𝐵(𝑆𝑆) 
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Algorithm 2. Tardy control algorithm 

Input: 𝐽𝐽 = {𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑛𝑛}  
      𝑆𝑆 = {… , 𝐽𝐽[𝑟𝑟 − 2], 𝐽𝐽[𝑟𝑟 − 1]}  
    tardy-control = {𝑗𝑗 ∣ 𝑗𝑗 ∈ 𝐽𝐽𝐵𝐵 ∩ 𝐽𝐽, 𝑗𝑗 ∉ 𝑆𝑆}  
    number-of-tardy-jobs = 0  
 

1. Sort the jobs in set “tardy-control” in ascending order based on their deadlines.  
2. Schedule the jobs from the "tardy-control" set  to the partial schedule 𝑆𝑆  right after the job 𝐽𝐽𝑢𝑢 
For 𝑗𝑗 ∈ 𝑡𝑡𝑡𝑡𝑟𝑟𝑑𝑑𝑡𝑡 − 𝑐𝑐𝑜𝑜𝑛𝑛𝑡𝑡𝑟𝑟𝑜𝑜𝑐𝑐 ∩ 𝑆𝑆 do: 

Calculate the real processing time 𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼   and completion time  𝐶𝐶[𝑟𝑟,𝑡𝑡]
∧ = 𝑝𝑝𝑗𝑗(𝑟𝑟, 𝑡𝑡) + 𝑡𝑡 of job j 

  if 𝐶𝐶𝑗𝑗(𝑆𝑆) > 𝑑𝑑𝑗𝑗 :  
           𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟 − 𝑜𝑜𝑜𝑜 − 𝑡𝑡𝑡𝑡𝑟𝑟𝑑𝑑𝑡𝑡 − 𝑗𝑗𝑜𝑜𝑛𝑛𝑗𝑗 = +1  
          Break            

End 
Output number_of_tardy_jobs 
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Figure 2. Flowchart of the Proposed Initial Solution 
 
6. The Branch and Bound Algorithm 
In the branch-and-bound algorithm designed to address this scheduling problem known for its NP-hard complexity, 
multiple pruning rules characterized by dominance properties have been incorporated to streamline the branching 
procedure. These pruning rules serve to diminish the search space, facilitating a more efficient exploration of potential 
solution candidates. 
 
6.1 Pruning Rules 
Here is an outline of the implemented pruning rules utilized within the algorithm: 

• Pruning by Boundaries: This rule mandates that the calculated lower bound value of the partial schedule in a 
node must be less than or equal to the best-known upper bound value. If this condition is not met, the node 
undergoes pruning. The initial solution's objective function value serves as the initial upper bound value. 
Detailed information on how to compute the lower bound for each node can be found in Section 6.2 and 
Algorithm 4. 

 
• Pruning by Feasibility: The problem's objective is to minimize the total weighted completion time for both 

agents while ensuring that no tardy job occurs for the second agent. If any unassigned job of the second agent 
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becomes tardy due to the partial schedule in a node, the solution is deemed infeasible, leading to node pruning. 
The tardiness verification for unassigned jobs is elaborated in Algorithm 2. 

 
• Pruning by Optimality: Once all jobs belonging to the second agent have been assigned to a node, the optimal 

schedule is achieved using the Weighted Shortest Processing Time (WSPT) rule. To allocate the remaining 
unassigned jobs to the partial schedule, the jobs are sorted based on  𝒑𝒑𝒅𝒅𝒋𝒋(𝒓𝒓, 𝒕𝒕) = �𝒑𝒑𝒋𝒋 + 𝜷𝜷𝒕𝒕�𝒓𝒓𝜶𝜶/𝒘𝒘𝒋𝒋

𝑨𝑨 values. This 
approach significantly reduces the number of nodes generated compared to conventional branching techniques, 
thereby enhancing efficiency. 

 
• Pruning by Dominance: Non-dominant nodes are pruned to further restrict the search space. The properties of 

dominance are elucidated in greater detail in Section 6.3 and Algorithm 5. 
 
These pruning rules serve as guiding principles for the branch-and-bound algorithm, directing it towards promising 
solution paths while eliminating less promising branches early in the search process. This contributes to enhanced 
algorithm efficiency and enables it to handle the inherent complexity of NP-hard problems, as demonstrated in the 
paper.   
 
The pseudo code of the branch and bound algorithm is given in Algorithm 3. Flowchart is given in Figure 3. 
  

282



Proceedings of the International Conference on Industrial Engineering and Operations Management 
 

© IEOM Society International 

Algorithm 3. Branch and Bound Algorithm 

Input: 𝐽𝐽 = {𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑛𝑛}   
     node-list = {Partial schedules obtained by branching nodes in branch and bound algorithm} 
     UB = objective function vale of the schedule obtained by using Algorithm 1  

For (𝑟𝑟 ← 1to n) do 
For node in node-list do:  

1. For each partial schedule, create the set of “unassigned-jobs” 
2. For the unassigned job belongs to Agent B; create “unassigned-B-agent-jobs” set. 
3. Sort jobs in “unassigned-B-agent-jobs” set by EDD rule 

        if unassigned-jobs ⊂ 𝐽𝐽𝐴𝐴 : 
1. Sort jobs by 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝑡𝑡�𝑟𝑟𝛼𝛼/𝑤𝑤𝑗𝑗 
2. Obtain schedule S that contain all the jobs by adding the jobs in “unassigned-jobs” set in the same order. 

Calculate OFV (S). 
                if OFV(S) <= UB: 

1. Equal UB to OFV(S) 
2. Add schedule S to “feasible-solutions” set.  

 
        Else:               
                 For each job in “unassigned-jobs” do: 

1. Add the job to the partial schedule S in the node.  
2. Calculate lower bound value of S with Algorithm 4. 

                           If LB <= UB 
           Check if any of the unassigned jobs belongs to agent B gets tardy by using Algorithm 2. 

                                 If number_of_tardy_jobs = 0: 
             Apply Algorithm 5 to check if the partial schedule S is dominant. 

                                          If S is dominant in node-list: 
                                                     Add S to the node-list. 

                                                 If s(S/J) = 0: 
      Equal LB to UB 

   Add schedule S to “feasible-solutions” set. 
                                               Else Prune the node 
                                       Else Prune the node 
                                Else Prune the node 

         End 
         Output node-list 
   End 

End 
Output feasible-solutions 

1.Sort schedules in “feasible-solutions” set in ascending order of objective function values. 
2.Add schedule or schedules with the smallest objective function value to the "optimal-solution" set. 

End 
Output optimal-solution 
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Figure 3. Pruning Rules 
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6.2 Calculation of Lower Bound 
The efficiency of the branch-and-bound algorithm relies significantly on the accurate calculation of a lower bound for 
the partial sequence. Let's consider a partial schedule denoted as "S," where the order of the first "k" jobs is already 
determined, leaving "(n - k)" jobs unassigned to the partial schedule within the current node. The completion time for 
the partial schedule S is represented by  𝑪𝑪[𝒌𝒌] .  
 
If there were not a tardiness constraint on Agent B’s jobs; the optimal schedule would be obtained by the WSPT 
method with the real processing times of the jobs are calculated for each position because of simultaneous effect of 
learning and deterioration. In other words, the objective function of the problem studied in this paper is always larger 
than or equivalent to the problem with no tardiness constraint.  
 
The pseudo code for calculating the lower bound value is given in Algorithm 4.  
 

Algorithm 4. Calculation of Lower Bound 

𝐶𝐶[𝑘𝑘] : the completion time of partial schedule S 
For (𝑟𝑟 ← 1to𝑛𝑛 − 𝑘𝑘)  do: 
1. Calculate adjusted processing times for each unassigned  job with respect to the following: If 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐴𝐴 ∩ 𝐽𝐽 

then 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝐶𝐶[𝑘𝑘+𝑟𝑟−1]�(𝑟𝑟 + 𝑘𝑘)𝛼𝛼/(𝑤𝑤𝑗𝑗𝐴𝐴𝑤𝑤𝐴𝐴) ; If 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽𝐵𝐵 ∩ 𝐽𝐽  then 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡) = �𝑝𝑝𝑗𝑗 +
𝛽𝛽𝐶𝐶[𝑘𝑘+𝑟𝑟−1]�(𝑟𝑟 + 𝑘𝑘)𝛼𝛼/(𝑤𝑤𝑗𝑗𝐵𝐵𝑤𝑤𝐵𝐵)  
  

2. Assign the job with minimum value 𝑝𝑝𝑑𝑑𝑗𝑗(𝑟𝑟, 𝑡𝑡)  to the position (𝑘𝑘 + 𝑟𝑟) of partial schedule S and remove the 
job from “unassigned -jobs” set.  

3. Calculate the completion time for the job with 𝐶𝐶[𝑘𝑘+𝑟𝑟] = �𝑝𝑝𝑗𝑗 + 𝛽𝛽𝐶𝐶[𝑘𝑘+𝑟𝑟−1]�(𝑟𝑟 + 𝑘𝑘)𝛼𝛼 + 𝐶𝐶[𝑘𝑘+𝑟𝑟−1]  
4. r = r +1 
 
Calculate lower bound:  

              𝐿𝐿𝐵𝐵 = 𝑤𝑤𝐴𝐴 ∑
𝑗𝑗=1

𝑘𝑘
𝑤𝑤[𝑘𝑘]
𝐴𝐴 𝐶𝐶[𝑘𝑘]

𝐴𝐴 + 𝑤𝑤𝐵𝐵 ∑
𝑗𝑗=1

𝑘𝑘
𝑤𝑤[𝑘𝑘]
𝐵𝐵 𝐶𝐶[𝑘𝑘]

𝐵𝐵 + 𝑤𝑤𝐴𝐴 ∑
𝑟𝑟=1

𝑛𝑛−𝑘𝑘−𝑘𝑘𝐵𝐵
𝑤𝑤[𝑟𝑟]
𝐴𝐴 𝐶𝐶[𝑟𝑟]

𝐴𝐴 + 𝑤𝑤𝐵𝐵 ∑
𝑟𝑟=1

𝑘𝑘𝐵𝐵
𝑤𝑤[𝑟𝑟]
𝐵𝐵 𝐶𝐶[𝑟𝑟]

𝐵𝐵   

End 

Output 𝐿𝐿𝐵𝐵 = 𝑤𝑤𝐴𝐴 ∑
𝑗𝑗=1

𝑘𝑘
𝑤𝑤[𝑘𝑘]
𝐴𝐴 𝐶𝐶[𝑘𝑘]

𝐴𝐴 + 𝑤𝑤𝐵𝐵 ∑
𝑗𝑗=1

𝑘𝑘
𝑤𝑤[𝑘𝑘]
𝐵𝐵 𝐶𝐶[𝑘𝑘]

𝐵𝐵 + 𝑤𝑤𝐴𝐴 ∑
𝑟𝑟=1

𝑛𝑛−𝑘𝑘−𝑘𝑘𝐵𝐵
𝑤𝑤[𝑟𝑟]
𝐴𝐴 𝐶𝐶[𝑟𝑟]

𝐴𝐴 + 𝑤𝑤𝐵𝐵 ∑
𝑟𝑟=1

𝑘𝑘𝐵𝐵
𝑤𝑤[𝑟𝑟]
𝐵𝐵 𝐶𝐶[𝑟𝑟]

𝐵𝐵   

 
 
6.3 Dominance Rules 
In the context of dominance rules within the branch-and-bound algorithm, let's consider two partial schedules, denoted 
as S and S', with the only difference being the exchange of two adjacent jobs, i and j, in pairs. In partial schedule S, 
job i is processed at the  𝒓𝒓𝒕𝒕𝒕𝒕   position while job j is processed at the  (𝒓𝒓 + 𝟏𝟏)𝒕𝒕𝒕𝒕   position. We denote "t" as the 
completion time of the job scheduled at the  (𝒓𝒓 − 𝟏𝟏)𝒕𝒕𝒕𝒕 position. 
According to the dominance rules, new job assignments continue on the node with the dominant partial schedule and 
the node with the non-dominant schedule is pruned. Since the jobs are simultaneously under the effects of learning 
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and deterioration; 2 parameters determine the dominance: the objective function value of partial schedule and the 
completion time of the last job scheduled in the partial schedule. 
 
Partial schedule S is considered dominant over S ’if any of the conditions listed below are met: 

•  𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺) < 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺′) and 𝑪𝑪𝒋𝒋(𝑺𝑺) < 𝑪𝑪𝒊𝒊(𝑺𝑺′)   
• 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺) < 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺′) and 𝑪𝑪𝒋𝒋(𝑺𝑺) = 𝑪𝑪𝒊𝒊(𝑺𝑺′)  
• 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺) = 𝑶𝑶𝑶𝑶𝑶𝑶(𝑺𝑺′) and 𝑪𝑪𝒋𝒋(𝑺𝑺) < 𝑪𝑪𝒊𝒊(𝑺𝑺′)         

 
 
In other combinations of conditions where these criteria are not satisfied, it may be challenging to definitively 
determine which partial schedule is dominant. However, when one schedule is dominant over the other, the branch-
and-bound algorithm prioritizes further exploration and assignment of new jobs within the dominant schedule, 
ultimately contributing to the search for an optimal solution. 
 
 

Algorithm 5. Dominance Rules 

Input: 𝑆𝑆 = �… , 𝐽𝐽[𝑟𝑟−2], 𝐽𝐽[𝑟𝑟−1], 𝐽𝐽𝑖𝑖,[𝑟𝑟]� 
       𝑆𝑆′ = �… , 𝐽𝐽[𝑟𝑟−2], 𝐽𝐽[𝑟𝑟−1], 𝐽𝐽𝑗𝑗,[𝑟𝑟], 𝐽𝐽𝑗𝑗,[𝑟𝑟+1]�  
       node-list = {Partial schedules obtained by branching nodes in branch and bound algorithm} 

For 𝐽𝐽𝑗𝑗 do: 

  1.   Add job 𝐽𝐽𝑗𝑗  to partial schedule S, position (r+1) 
  2.  Get 𝑆𝑆 = �… , 𝐽𝐽[𝑟𝑟−2], 𝐽𝐽[𝑟𝑟−1], 𝐽𝐽𝑖𝑖,[𝑟𝑟], 𝐽𝐽𝑗𝑗,[𝑟𝑟+1]�  
         If  𝑆𝑆′ in node_list:     
                 Check if S dominates 𝑆𝑆′ by using propositions from 1-6 
                 If partial schedule S is dominant to 𝑆𝑆′  
                       1. Add partial schedule S to node-list set. 
                        2. Remove partial schedules S’ from node_list set 
                  Elif partial schedule 𝑆𝑆′ is dominant: 
                               1. Do not add partial schedule S to node-list set. 
                  Else: 
                               1. Add partial schedule S to node-list set. 
            Else: 
                   1. Add partial schedule S to node-list set. 
End 
Output node-list 

 
7. Computational results 
Experiments were conducted using various parameter combinations and different sample sizes to evaluate the 
performance of the developed algorithms. 
 
Experimental Environment: 
The algorithms were implemented in JetBrains PyCharm Professional 2021.3.2, and experiments were conducted on 
a personal computer equipped with a 3.2 GHz 6-Core Intel Core i7-8700 processor and 16 GB of memory. The 
operating system used for these experiments was Windows 10 Pro 21H1.   
 
Data Generation: 
Job processing times and due dates were generated randomly, with processing times drawn from a uniform distribution 
over the integers (0,100) and due dates from the interval [1, 5].  
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Experimental Setup: 
The experiments encompassed various parameter combinations and sample sizes. The total number of jobs assigned 
to the agents was set at 5, 10, and 15. Two deterioration coefficients (𝛽𝛽) (0.1 and 0.2) and three learning coefficients 
(α)(70%, 80%, and 90%) were considered. This resulted in a total of 30 distinct parameter combinations. Each 
combination was tested five times, yielding a total of 90 experiments.   
 
 
The experiments provided three primary metrics for evaluation: nodes-ratio, the error-percentage, and the CPU-time.  
 
The nodes-ratio metric indicates the extent to which the developed algorithm reduces the number of generated nodes 
compared to the classical branching method.  It is calculated using Equation 10 where TN and TN* are denoted as the 
nodes generated by the classical branch-and-bound algorithm and the total nodes generated by the proposed algorithm, 
respectively: 
 

  𝑁𝑁𝑜𝑜𝑑𝑑𝑛𝑛𝑗𝑗 − 𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑜𝑜 = 𝑇𝑇𝑁𝑁∗/𝑇𝑇𝑁𝑁     
 

The error percentage quantifies the percentage difference between the total weighted completion time of the initial 
solution and the solution obtained by the branch-and-bound algorithm. Calculation involves Equation 11 where 𝑂𝑂𝑂𝑂𝑂𝑂  
and 𝑂𝑂𝑂𝑂𝑂𝑂∗ are denoted as the total weighted completion time of the initial solution and the branch-and-bound algorithm 
solution, respectively: 

 
𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟 − 𝑝𝑝𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛 = (𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑂𝑂𝑂𝑂∗)/𝑂𝑂𝑂𝑂𝑂𝑂      
 
CPU time represents the duration in seconds required for processing the developed algorithm. Note that CPU times 
are influenced not only by the algorithm's efficiency but also by the coding implementation. 
 
The efficiency of the proposed methodology hinges on several critical factors, including the total number of jobs, the 
learning coefficient, and the deterioration coefficient. These factors collectively shape the performance of the 
algorithm and its ability to provide optimal solutions. The assessment of the methodology's effectiveness for different 
parameter values is summarized in Table 1. 
 
A comprehensive analysis of the relationships between these parameters and key results, such as processing time and 
the number of nodes, reveals notable trends. Specifically, as the total number of jobs increases, both processing time 
and the error percentage exhibit a corresponding increase. These relationships are visually represented in Figure 5and 
Figure 6. On the other hand, although the number of nodes increases as the number of jobs increases, the value of the 
nodes-ratio decreases as shown in Figure 4. 

Table 1. Performance Indicators for Proposed Algorithms for the Second Problem 

 
α β 

Total number of jobs (n) 

 5 10 15 

Node – ratio (%)  

70% 0,2 2,974359 0,0113198 2,34E-06 

70% 0,1 3,025641 0,0100709 6,88E-06 

80% 0,2 3,025641 0,0076175 2,96E-07 

80% 0,1 3,2820513 0,0078 2,75E-06 

90% 0,2 2,5128205 0,0045519 7,47E-08 

90% 0,1 2,5128205 0,0069951 4,09E-07 

MEAN 2,8888889 0,0080592 2,12E-06 
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Error Percentage  

70% 0,2 0,0252641 0,0559249 0,0623773 

70% 0,1 0,0321291 0,0428 0,0428416 

80% 0,2 0,0121311 0,0420808 0,0584301 

80% 0,1 0,0139486 0,0251013 0,0244233 

90% 0,2 0,0036245 0,0560238 0,0497368 

90% 0,1 0,0054943 0,0145459 0,028879 

MEAN 0,015432 0,0394128 0,047204 

CPU time 

70% 0,2 0,03019 9,5659109 2300,0308 

70% 0,1 0,034335 7,757144 5326,2117 

80% 0,2 0,027825 4,272038 346,22927 

80% 0,1 0,0476699 4,802578 2728,5332 

90% 0,2 0,0176551 2,3049759 79,404798 

90% 0,1 0,0305834 5,205898 411,402 

MEAN 0,0313764 5,6514242 1863,4005 
 
 
 
When considering higher values of the learning effect coupled with lower values of the deterioration effect, an 
interesting set of consequences emerges. Specifically, as the learning effect becomes more pronounced and the 
deterioration effect diminishes, the processing times of jobs are expected to shorten. Consequently, this results in an 
expansion of slack time within the scheduling framework. Additionally, the number of jobs that can be accommodated 
and processed during these slack-time intervals is poised to increase,  CPU time tends to increase, reflecting the 
algorithm's increased computational demands, while the node ratio also increases, indicating a less efficient use of 
computational resources. 
 
Conversely, when dealing with lower values of the learning effect combined with higher values of the deterioration 
effect, a different set of outcomes unfolds. In this scenario, as the learning effect diminishes and the deterioration 
effect intensifies, job processing times tend to lengthen. Consequently, the available slack time is reduced, limiting 
the number of jobs that can be accommodated and processed during these constrained intervals. As a result, CPU time  
and node ratio tend to decrease.  
 
These observations underscore the intricate relationship between the learning and deterioration effects on job 
processing times and their significant impact on various performance metrics, offering valuable insights for optimizing 
the scheduling algorithm under different conditions. 
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Figure 4. Relation Between Total Number of Jobs and Nodes Ratio  
 
 

 

Figure 5. Relation Between Total Number of Jobs and CPU time 
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Figure 6. Relation Between Total Number of Jobs and Error Percentage 
 
8. Conclusion 
This paper presented a methodology designed to address the challenging multi-agent scheduling problem involving 
jobs subject to the simultaneous influence of learning and deterioration effects. The primary objective of this problem 
was to minimize the total weighted completion time for all agents while enforcing the constraint that no tardy jobs 
were permissible for the second agent. 
 
The proposed methodology was structured into two key phases: an initial heuristic for generating an initial solution 
and a subsequent branch-and-bound algorithm for refining and optimizing the solution further. To enhance the 
efficiency of the branch-and-bound algorithm and reduce its computational complexity, a set of dominance rules and 
pruning rules were introduced. 
 
The computational results showcased the effectiveness of the branch-and-bound algorithm, particularly when coupled 
with the initial heuristic solution. Notably, this approach demonstrated commendable performance in terms of the 
number of nodes generated and execution time across a range of experiments. The methodology was rigorously tested 
with up to 15 jobs, revealing that its success was notably influenced by factors such as a smaller learning coefficient, 
a larger deterioration coefficient, and reduced slack time intervals for jobs belonging to agent B. 
 
In summary, this study offers a promising methodology for tackling complex multi-agent scheduling problems 
characterized by the simultaneous influence of learning and deterioration effects. The proposed approach, combining 
heuristic and branch-and-bound techniques, provides a robust foundation for efficiently solving such problems, with 
its performance particularly favorable under certain parameter conditions. 
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