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Abstract 

 
The fishing industry in Namibia contributes approximately 4.5% towards the Namibian GDP. Furthermore, the 
demand for sustainable processed Yellowfin Sole is increasing worldwide. This research focuses on the processing of 
Yellowfin Sole fillets which constitutes one of the main operations of a Namibian seafood production company. We 
present a decision support tool that provides quantitative guidelines for resource capacity allocation over a short-term 
planning horizon. The decision support tool consists of a software program based on established queueing theory 
principles to provide measurements and scenario testing of resource utilization, processing queue length as well and 
the waiting time of unprocessed fish in the processing queue. We test the validity of the decision support tool by means 
of a discrete event simulation model and predict the processing capacity based on various input values. The decision 
support tool enables the minimization of downtime, maximization of resource utilization, and improved overall 
efficiency while maintaining the sustainable processing of Yellowfin Sole fillets. 
 
Keywords 
Sustainable seafood production improvement, Decision support tool, Queueing theory, Discrete-event simulation, 
Resource allocation. 
 
1. Introduction 
The Namibian fishing industry holds significant economic importance, contributing around 4.5% to the country's GDP 
and constituting 15% of export earnings (Namibian Ministry of Fisheries  2018). While the overall Namibian fishing 
industry had a gross export value of $468 million in 2020 (The Growth Lab at Harvard University 2020), Yellowfin 
Sole (YFS), a key commodity in this industry, is not sourced from Namibian waters. Instead, it is caught in the Bering 
Sea and processed in Namibia. This presents a unique opportunity for European companies to invest in Yellowfin Sole 
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processing in Namibia, especially as the cost of processing in China, where most Yellowfin Sole is currently processed 
(Ng 2007), has increased (Huang et al. 2021). 
 
Yellowfin Sole populations are well managed, not subject to overfishing, and the 2021 stock assessment indicates a 
healthy state (Spies et al. 2020). With a total catch of 106,789 tons in 2021, Yellowfin Sole is abundant and sustainable 
(Spies et al. 2020). The biomass estimate has increased from 310,617 tons in 2010 to 510,029 tons in 2019, showcasing 
the species' resilience and the potential for continued fishing with proper conservation methods (Spies et al. 2020). 
 
Market trends and demands in the global seafood industry are experiencing significant shifts. The global seafood trade 
has grown over 350% since 1970 (Food and Agriculture Organization of the United Nations, n.d.), with the seafood 
market valued at USD 310.75 billion in 2021 (Food and Agriculture Organization of the United Nations, n.d.). 
Projections suggest substantial growth, reaching USD 605.46 billion by 2029, driven by increased demand for ready-
to-cook and processed seafood and a rising inclination toward pescetarianism (Food and Agriculture Organization of 
the United Nations, n.d.). These trends bode well for Yellowfin Sole, a commercially important flatfish species in the 
global seafood market. 
 
The YFS processing facility consists of multiple processing stations that work in series to transform the raw material 
(whole frozen YFS) into YFS fillets that are sold on the international market. The processing line does not always run 
efficiently, as there are regular production backups and bottlenecks that form at certain processing stations. This leads 
to downtime at other processing stations and results in the resources of the facility being underutilized. This is seen in 
the daily production output of the facility, illustrated in Figure 1, as the production output per shift varies immensely. 

 
Figure 1.  Sample production data 

 
Furthermore, under the existing operational model of the Yellowfin Sole processing facility, a production of 4 metric 
tons of Yellowfin Sole fillets is achieved per shift. This falls short of the facility’s maximum capacity and results in 
the production resources being underutilized.  
 
The current positive market dynamics indicate a robust demand for Yellowfin Sole that can sustainably be harvested. 
The research aims to enhance the operational efficiency of a Namibian Yellowfin Sole processing company so that 
they can position themselves to meet the growing demand, maximize production, optimize resource utilization, and 
ensure product quality. This paper will delve into the intricacies of Yellowfin Sole processing, providing a tool for 
improved decision making, operational efficiency, and contributing to the sustainable growth of the industry. 
 
This aim can be effectively addressed by firstly conducting a comprehensive analysis of the current operational model 
of the Namibian Seafood processing companies Yellowfin Sole processing facility. Thereafter, constraints, 
bottlenecks, and inefficiencies related to throughput, downtime and resource utilization can be identified. Finally, we 
develop a decision support tool that provides insight towards minimizing downtime, maximizing resource utilization 
and throughput while maintaining product quality and meeting their required production demands. 
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2. Literature Review 
This literature review provides an in-depth exploration of various key aspects that provide the foundation of 
knowledge for the development of a decision support tool aimed at enhancing operational efficiency of the Yellowfin 
Sole processing facility of the company.  
Although the literature on the seafood processing industry in Southern Africa is not prolific, literature on operations 
management in production lines can successfully contribute towards achieving the aim of this research. Sims and Wan 
(2017) suggested that constraint identification and management should be the first steps in improving production 
processes. Other articles also propose the systematic use of Value Stream Mapping (VSM) and Theory of Constraints 
(TOC) to identify basic causes of production losses (Pereira Librelato et al. 2014; Pacheco et al.2019). 
 
The foundation of TOC is the assumption that every system has at least one bottleneck, which is defined as any 
circumstance that prevents the system from performing at its highest possible performance level with respect to its 
objectives (Şimşit et al., 2014; Šukalová & Ceniga, 2015). TOC has an extremely wide range of industries where  it 
is applied in. These industries include, but are not limited to, production, distribution, supply chain, project 
management and so forth (Şimşit et al., 2014). Goldratt and Cox proposed the Five Focusing Steps (5FS) that are the 
working process for ongoing process improvement. These steps are (Goldratt & Cox  1984): 
 

1. Identify the system’s constraint. 
2. Decide how to exploit the system’s constraint. 
3. Subordinate everything else to the above decision. 
4. Elevate the system’s constraint. 
5. If in any of the previous steps a constraint is broken, go back to step 1. 

 
Research has shown the advantages of TOC in production settings as either a standalone practice (Situmorang and 
Matondang 2020) or integrated with other methodologies such as Time Driven Activity-Based Costing (TDABC) 
(Kefe and Tanış, 2023). Kefe and Tanış (2023) conducted a study in a manufacturing company who integrated 
TOC,with TDABC. This integration facilitated the identification of capacity constraints in specific resource centers, 
thereby aiding in capacity management and decision-making. Moreover, TOC plays a crucial role in optimizing 
production flow by eliminating constraints at bottleneck workstations, leading to enhanced overall system 
effectiveness. In a case study focused on the production of instant noodles, TOC was instrumental in overcoming 
constraints at mixing and cooking stations, ultimately improving production flow and efficiency (Situmorang and 
Matondang 2020). This optimization of production flow not only streamlines operations but also contributes to 
increased throughput and resource utilization. Furthermore, TOC  offers a structured approach to manage production 
challenge and enables companies to make informed decisions regarding product mix, capacity management, and 
process improvement. By managing constraints effectively, companies can achieve maximum throughput and 
profitability (Saleh et al. 2019).  
 
Drip loss is another factor that must be kept in mind in seafood processing. Drip loss is defined as the weight loss that 
is observed in fillets during storage and handling. Drip loss is an important factor that can significantly impact the 
overall yield and product quality (Love et al. 2015) of the YFS fillets. There are no studies on the specific rates of drip 
loss for YFS. However, a study conducted in 2018 showed that drip loss accelerated exponentially with longer holding 
time at room temperature (Yang et al. 2018). We therefore argue that the decision support tool that we develop will 
be more useful if a quantitative measurement of holding times between processes can be indicated. 
 
Operations Research (OR) techniques are explored due to their ability to improve the efficiency of processes within 
an organization (Marcinkowski et al. 2021). They aid in finding optimal solutions to issues involving resource 
allocation, scheduling, and decision-making is the main goal of using OR approaches (Marcinkowski et al. 2021). 
Operations Research has the ability to solve real-world problems by formulating them as mathematical models. These 
models aid in understanding the dynamics of complex systems. They allow identification of constraints and variables, 
and provide quantifiable relationships between different components in a system. Formulating these complex models 
and solving them provides valuable insights and solutions that can be used to enhance productivity and streamline 
operations (Marcinkowski et al. 2021). In the context of the YFS processing line, OR methodologies can be 
instrumental in optimizing the Yellowfin Sole processing facility’s operations. Employing OR techniques could lead 
to a more balanced production line and quantitative data of each component in the production process. OR can assist 
in maximizing throughput, minimizing downtime, and improving overall efficiency (Mcginnis 2014; Marcinkowski 
et al. 2021).  
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The YFS processing line is a series of processing stations, with a specified number of employees at each station. 
Bhosale and Pawar (2020) suggest that Queuing Theory is most suitable in such circumstances. Queuing Theory excels 
in scenarios where process optimization relies on identifying bottlenecks and maximizing throughput (Bhosale and 
Pawar 2020), which are precisely the goals of this project. Sztrik (2016) also describes Queuing Theory as a potent 
and adaptable branch of Operations Research, offering valuable insights into the behavior of waiting lines and resource 
utilization in diverse systems. Queuing Theory was also previously applied for capacity management of hospital beds 
(Bittencourt et al. 2018). Bittencourt et al. (2018) used Queuing Theory to determine operational measures such as 
utilization rate, waiting probability, estimated bed capacity, capacity simulations and demand behavior assessment. 
Their model provided a quantitative picture used to enhance decision-making for their specific use-case of capacity 
management in a hospital. 
 
3. Methods 
The YFS processing facility has 7 processing stations that determine the throughput in terms of changing the raw 
material to the final product. These processes are illustrated in Figure 2. 
 

 
Figure 2. Flowchart of YFS processing facility 

TOC was employed as a systematic approach to pinpoint the bottleneck within the production process. The following 
steps outline how TOC was utilized to identify the Spiral Freezer as the primary constraint: 

1. Identify the system’s constraint: The first step in TOC involves identifying the bottleneck. This was done by 
closely examining the existing operational model of the facility. Gemba walks were performed to understand 
the flow of production, resource allocation, and the sequence of processes involved in creating Yellowfin 
Sole fillets. By engaging with the production team, we came to the conclusion that the Spiral Freezer is the 
absolute constraint of the facility. The production team indicated that 800 trays is the maximum that the 
Spiral Freezer can process in an hour without being at risk of the trays overlapping and causing a shutdown 
of the Spiral Freezer. 

2. Decide how to exploit the system’s constraint: In the case of our facility, the Spiral Freezer was recognized 
as a critical component in the production process that determines the upper limit of what the facility can 
produce. Therefore, to maximize throughput, we would have to maximize the utilization of the Spiral Freezer. 

3. Subordinate everything else to the above decision: The next step is to subordinate all other processes to 
facilitate the maximum utilization of the Spiral Freezer. This requires synchronizing all other processes with 
the maximum rate of production of the Spiral Freezer. This would minimize any downtime and reduce 
inefficiencies. 

4. Elevate the system’s constraint: Elevating the capacity of the spiral freezer is not currently an option, due to 
the fact that a larger capacity Spiral Freezer would require a large amount of capital, which does not fall 
within the scope of this project. 

To maximize the throughput of the Spiral Freezer, all other processes must be able to process the equivalent of 800 
trays per hour. With each tray containing 9 fillets weighing 75 grams each, the maximum total throughput that can be 
processed by the spiral freezer per hour can be calculated.  

𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 𝑟𝑟𝑜𝑜 𝑆𝑆𝑝𝑝𝑆𝑆𝑟𝑟𝑀𝑀𝑆𝑆 𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟 =  (800 𝑝𝑝𝑟𝑟𝑀𝑀𝑡𝑡𝑡𝑡/ℎ𝑟𝑟𝑟𝑟𝑟𝑟)  ∗  (9 𝑜𝑜𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝑝𝑝𝑡𝑡/𝑝𝑝𝑟𝑟𝑀𝑀𝑡𝑡)  ∗  (75 𝑟𝑟𝑟𝑟𝑀𝑀𝑔𝑔𝑡𝑡/𝑜𝑜𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝑝𝑝) 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 𝑟𝑟𝑜𝑜 𝑆𝑆𝑝𝑝𝑆𝑆𝑟𝑟𝑀𝑀𝑆𝑆 𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟 =  540 𝑘𝑘𝑟𝑟/ℎ𝑟𝑟𝑟𝑟𝑟𝑟 

Queuing Theory is then used to propagate backwards from the Spiral Freezer to the initial starting process (RF Defrost) 
to determine the throughput required from each process to sustain the Spiral Freezer at 100 % utilization. Among the 
various queuing models available, the M/M/c queue emerges as the most suitable choice due to its alignment with the 
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characteristics of the production process and the specific objectives of this project. This is due to the fact that mean 
arrivals per hour is the context in which the items arrive at the Spiral Freezer. This indicates that a Poisson distribution 
is most applicable as it will accurately represent both the arrival and service times of each process station (He et al. 
2014). The process stations can be modelled accurately with either a single server or multiple servers in a M/M/c 
queuing model. The following mathematical formulations are used to determine utilization, average waiting time in 
queue, and average number of items in queue for each process (Shortle et al. 2018): 

• Arrival Rate (λ): The arrival rate (λ) represents the rate at which entities arrive at a process. It is a measure 
of how frequently new entities join the queue for processing. 

λ = (kg per hour or trays per hour) 

• Service Rate (μ): The service rate (μ) denotes the rate at which entities are processed by the employees at 
each process station. It represents how quickly the servers (employees) perform their tasks on the fish. 

μ = (kg per hour or trays per hour) 

• Utilization (ρ): Utilization (ρ) is the ratio of time a server (employee) is busy performing tasks to the total 
time. In this context, it represents the percentage of time that each employee at a process station is actively 
working on the fish. 

𝜌𝜌 =  
𝜆𝜆
𝑐𝑐𝑐𝑐

 

where: 

c = Number of Servers at the Process Station 

• Throughput (X): Throughput (X) is the rate at which entities leave the system after being fully processed. It 
indicates the overall production rate of the system. The throughput of the system is equal to the arrival rate 
(λ), as long as ρ < 1. 

• Average Waiting Time (Wq ): Average waiting time (Wq ) is the average time an entity spends waiting in the 
queue before being processed. 

𝑊𝑊𝑞𝑞 =
1

𝑐𝑐𝑐𝑐 − 𝜆𝜆
 

• Queue Length (Lq ): Queue length (Lq ) represents the average number of entities waiting in the queue to be 
processed by the servers (employees) at a given process station. 

𝐿𝐿𝑞𝑞 = 𝜆𝜆𝑊𝑊𝑞𝑞 

These equations, based on the M/M/c queue model, play a pivotal role in analyzing and optimizing the production 
process at each station on the production line. By calculating these performance metrics, the production team can 
analyze the employee allocations of each process station to determine whether resources are being used efficiently. 

By using the throughput rate, determined previously for the Spiral Freezer, this rate can be propagated backward 
through the production process, calculating the required service rates for each process station. Figure 3 illustrates the 
order in which the service rates are propagated, from final product to raw material. 

 

 
Figure 3. Flow of propagated rate calculation 

Table 1 illustrates the calculated service rates that each process must be able to handle in order to sustain the Spiral 
Freezer at 100 % utilization. The facility currently employs Just-In-Time (JIT) manufacturing in its production line. 



Proceedings of the International Conference on Industrial Engineering and Operations Management 

© IEOM Society International 

This is done with the goal of minimizing holding times between the different processes in the production line. By 
synchronizing production levels, holding times are decreased and waste can therefore be minimized. However, this 
does not provide flexibility in terms of resources allocated, since differing resource allocation would have a significant 
impact on the production levels of each process. 

Table 1.  Required service rates of each process 

Process Required Service Rate of Entire Process 
Spiral Freezer 800 trays/hour 

Ironing 540 kg/hour 
Filleting 1 149 kg/hour 
Skinning 1 149 kg/hour 

Water Defrost 1 149 kg/hour 
Breakout 1 149 kg/hour 

Employing a dynamic software approach in conjunction with JIT manufacturing offers several advantages that can 
significantly enhance operational efficiency and flexibility. Firstly, a dynamic tool would provide real-time production 
rates aligned with the current resource allocation at each process. Unlike traditional static approaches, which assume 
constant resource allocation, a dynamic tool can adapt to changes in resource availability or demand fluctuations, 
allowing for more accurate and responsive production planning. A software model offers a systematic and structured 
approach to process optimization and resource management. Given the complexity of the production operations, 
manual methods for planning and scheduling would regularly fall short in addressing these kinds of dynamic 
production environments. 

Furthermore, dynamic software enables resources to be allocated and reallocated dynamically based on changing 
production needs. This flexibility ensures that resources are optimally utilized across the production line, minimizing 
idle time and maximizing throughput. Moreover, by providing visibility into real-time production data and 
performance metrics, a dynamic software tool empowers managers to make informed decisions and proactively 
identify opportunities for optimization. For instance, managers can quickly identify bottlenecks or inefficiencies in 
the production process and take corrective actions to improve overall performance. 

4. Data Collection 
The data collection process involved conducting comprehensive time studies at each processing station within the 
Yellowfin Sole facility, these results are illustrated in Table 2. This meticulous approach aimed to capture the intricate 
details of the production workflow. Through rigorous observation and measurement, the mean time for each 
processing step was meticulously determined. This granular data forms the foundation for the subsequent analyses, 
enabling a detailed examination of the operational dynamics and facilitating precise insights into the time efficiency 
of individual processes. 

Table 2.  Service rate observations of each process 
Process Nr. Of Observations Mean Service Rate Unit 
Breakout 75 6 minutes/bag/employee 

Water Defrost 50 8 minutes/3 bins/tub 
Skinning 125 98 seconds/bin/machine 
Filleting 200 18 seconds/fish/employee 
Ironing 125 42 seconds/tray/employee 

 
Furthermore, the number of servers at each process was also documented, as seen in Table 3.   

Table 3. Nr. of servers at each process 

Process Nr. Of Servers 
Breakout 6 

Water Defrost 3 
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Skinning 2 
Filleting 32 
Ironing 16 

 
5. Results and Discussion 
The decision support tool is a sophisticated software program that is designed to aid the decision-makers to make 
informed decisions. The decision support tool harnesses the power of queuing theory to provide actionable data that 
will drive improvements. The decision support tool uses concepts from queuing theory as the mathematical backbone 
of the program. It calculates and provides the following key performance metrics: 

• Utilization: Calculates the utilization of all relevant processes, to provide a measure of how efficiently the 
resources (employees) at each process are being used. 

• Average Queue Length: Calculates the average number of items (fish/bins/trays) that will be waiting in a 
queue at each process. This allows the production team to have quantitative data to mitigate drip-loss and 
know where bottlenecks will occur. 

• Average Time in Queue: Calculates the average time an item (fish/bins/trays) will spend waiting in a queue 
at a process. This also gives the production team quantitative data to mitigate drip-loss and determine 
bottlenecks. 

 
The tool is designed so that changes can be made in terms of servers and service time for each process station. This 
allows the production team to have quantitative data on different configurations of the production line and the effects 
can be analyzed before being implemented. The User Interface (UI) is intuitive and easy-to-use, therefore the 
production team does not need any training prior to using the tool. Figure 4 illustrates the interface of the tool with 
the current operational model. 
 

 
Figure 4.  Tool UI with current operational model 

5.1 Numerical Results 
The tool indicates that a total fillet output of 4 590 kg per shift would be achieved if the spiral freezer is at constant 
100 % utilization. The data provided by the tool indicates that with the current operational model, it would be highly 
unlikely that a constant 100 % utilization of the spiral freezer will be achieved. Table 4 provides the required 
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utilization, inferred capacity status and queue length of all processes in order to achieve 100 % utilization of the 
spiral freezer. 

Table 4.  Summary of current process data acquired from DST 

Process Utilization Capacity Status Queue Length 

RF Defrost 88.38 % N/A N/A 

Breakout 95.74 % High likelihood of delays 
and congestion 

22.5 bags 

Water Defrost 85.11 % Possible staff falling 
behind 

5.71 bins 

Skinning 67.76 % Staffed for required 
throughput 

2.1 bins 

Filleting 30.16 % Staffed in excess of 
required throughput 

0.43 fish 

Ironing 58.33 % Staffed for required 
throughput 

1.4 trays 

 
5.2 Proposed Improvements 
Figure 5 illustrates an example of how the tool can be used to determine quantitative data about changing the servers 
at a process before investing resources in real-life. 
 

 
Figure 5. Tool UI with improved operational model 

 
Only 2 changes are made to the current operational model, however it provides a picture that is far more plausible in 
terms of attaining 100 % utilization of the spiral freezer. 
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• Breakout has 9 servers instead of 6. This provides a substantial decrease in utilization, queue length and 
queue waiting time. This indicates that with 9 servers, breakout would be sufficiently staffed to deliver the 
required throughput. 

• Water defrost has 4 defrost tubs instead of 3. This also provides another substantial decrease in utilization, 
queue length and queue waiting time. This indicates that with 4 defrost tubs, this process would also have 
sufficient capacity to handle the required throughput. 

By adding servers at 2 process stations, it becomes far more plausible for the facility to produce 4 590 kg of 
fillets per shift. 
 
5.3 Validation  
A discrete event simulation was constructed to determine the validity of the results obtained from the decision support 
tool. A discrete event simulation provides a realistic representation of the production process and allows changes to 
be captured dynamically (Salem and DeMelo, 2013). FlexSim was used to construct the simulation, due to its 
credibility and widespread use as industry standard software (Leks and Gwiazda, 2015; Aliyu and Mokhtar, 2021). 
Figure 6 provides a screenshot of the model that was developed in FlexSim. 
 

 
Figure 6.  FlexSim simulation of current production model 

FlexSim provides the obtained utilization rates of each process in dashboards, the data from these dashboards are 
illustrated in Table 5 below: 

Table 5.  Comparison of utilization rates obtained between DST and FlexSim 

Process Decision Support Tool FlexSim % Change 
Breakout 95.74 % 93.97 % 1.77% 

Water Defrost 85.11 % 82.61 % 2.50 % 
Skinning 67.67 % 67.77 % 0.10 % 
Filleting 30.16 % 38.43 % 8.27 % 
Ironing 58.33 % 58.66 % 0.33 % 

Mean Difference = 2.59 % 

 
Figure 7. FlexSim Spiral Freezer input volume 

The FlexSim simulation indicates an output per shift of 4 580 kg, shown in Figure 7. This is comparable to the tools 
predicted output of 4 590 kg as it is only a 0.22 % difference. A mean difference in the utilization rates of 2.59 %, 
shown in Table 5, indicates that the tool is comparable to industry standard simulation software.  

Table 6.  Comparison of DST and historical production input rates 

Production Input Rate Production Output Predicted Input Rate 
51.05 bags per hour 4 080 kg 51.06 bags per hour 
52.24 bags per hour 4 160 kg 52.06 bags per hour 
52.94 bags per hour 4 250 kg 53.21 bags per hour 
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48 bags per hour 3 820 kg 47.82 bags per hour 
49.41 bags per hour 3 910 kg 48.96 bags per hour 

This validates the data obtained from the tool and proves that it can be used to infer real-world outcomes. Historical 
data is used to compare production input and output values to predicted input and output values obtained from the 
decision support tool. The historical data obtained from the company is illustrated in Table 6. The output values of the 
decision support tool is aligned with the observed production output to determine if the predicted input rate is the same 
as the observed input rate. 

6. Conclusion  
The aim of this research was to develop and test a decision support tool that will improve the operational efficiency 
of a Namibian Yellowfin Sole processing company. The project deliverable addresses this and provides a clear 
framework to increase the shift output to a capacity of 4 590 kg. The decision support tool provides a measurement of 
the utilization of all the processes in the production facility to allow the production team to prevent under-utilization 
of resources. The use of Queuing Theory to determine how a system will react to a specified outcome is an innovative 
approach that is not currently in scientific literature. In this case it allowed us to use Theory of Constraints in 
conjunction with Queuing Theory. By subordinating everything in the system to maximizing the utilization of the 
primary constraint, and then determining the behavior of the system, it provided a clear framework in terms of how 
the maximum throughput should be reached and why it currently isn’t being reached. 
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