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Abstract 

 
Mining companies require metal concentration analysis for ore bodies, which can be costly, time-consuming, 
potentially negatively impacting production due to increased turnaround times. This research’s aim is to explore 
machine learning on geochemical data and to evaluate how models perform in predicting metal concentrations in 
copper deposits. The research used geochemistry dataset comprised of 3282 samples from the Kombat Copper deposit 
area in Namibia to predict copper (Cu) concentrations from zinc (Zn) and lead (Pb) concentrations. In addition to the 
metal concentrations, the dataset had sample coordinates and grid names features. The four machine learning 
algorithms used were Random Forest (RF), K-Nearest Neighbor (KNN), Decision Tree (DT), and Support Vector 
Machine (SVM). These models were used because they were the commonly employed models for the similar purpose 
from the literature reviewed. Machine learning model’s performances were assessed using the regression score (R-
squared), which quantifies the model's ability to explain data variance. Other metrics like Mean Squared Error, Root 
Means Squared Error, Mean Absolute Error, Adjusted R-squared, and explained variance were also considered. The 
KNN model outperformed the other three models, predicting 57% of the relationship between the dependent and 
independent variables. Further optimization of the models improved their prediction accuracy, with KNN model still 
with a superior performance of R-squared at 70% (0.70) with n-estimators set at 4 and the test size set to 10%. 
Predicting metal contents from geochemistry data with machine learning can help mining companies reduce costs by 
supplementing lab-based analyses with model-based predictions in determining grades. 
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1. Introduction 
Naturally occurring ore bodies like copper (Cu) often occur in association with other useful metals such as Silver (Ag), 
Lead (Pb) and Zinc (Zn). One of the major problems faced by the mining industry is determining the precise metal 
content in ore samples, which is a crucial step in assessing the viability of a mining operation from an economic 
standpoint. Typically, samples are collected from the field and sent to laboratories to undergo various analyses to 
determine the different metal concentrations in the sample. Depending on the number of metals to be analyzed in 
samples, the laboratory analysis can be costly for small-scale mining operations and exploration companies. Numerous 
tests are carried out and in Namibia for example, the cost of laboratory analysis for metals such as copper, zinc and 
lead can vary depending on the lab, the method used, and the number of metals being analyzed. At a local laboratory, 
analysis of copper alone in a sample cost N$550 (about US$29) using the Inductively Coupled Plasma –Mass 
Spectrometry (ICP-MS) analysis method. Double element analysis costs N$700 (about US$37) and N$900 (about 
US$47) when analyzing for 4 metal concentrations. These prices are for a local Anatech Laboratory. If samples are 
sent to other laboratories abroad, such as in South Africa or elsewhere, the cost per metal concentration analysis is 
increased by additional costs such as shipping and handling fees. As an example, according to ALS Global, a global 
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testing and analytical laboratory, the cost of analysis for copper, zinc, lead, and nickel can range from N$530 to N$830 
(about US$28-44) per metal concentration in a sample, depending on the method used and the sample matrix (ALS, 
2023). Additionally, the analysis of different metals in samples can take time, which increases the turnaround time of 
receiving results from the laboratory and negatively affects production. Depending on the workload of the lab and the 
complexity of the analysis, the turnaround time for laboratory analysis can also vary, but it normally takes a few days 
to several weeks (Gaudino et al. 2009). For instance, a study by Bortey-Sam et al. (2018), revealed that the typical 
turnaround time in Ghana for ICP-MS analysis of soil samples was almost three weeks. When samples are sent from 
Namibia to laboratories abroad, the process is further impacted by customs clearance, shipping, and other overheads 
which increases the turnaround times to about 2-3 months. 
There have been attempts to address the issue, as evidenced by related work by Arslan et al. (2021) and Sun et al. 
(2020), who demonstrated the effectiveness of Machine Learning (ML) in predicting the presence of associated metals 
in ore deposits, but no published work in Namibia. Deposits are site-specific in that deposits from different areas differ 
based on their deposition modes, grades, minerals etc. Therefore, this research aims to develop a machine learning 
model that utilizes geochemistry data to predict the presence of copper using the associated metals in these copper 
deposits based on the geochemistry data in the Kombat area, Namibia.  Figure 1 shows the map of the Kombat 
area with nine mining sites (Otasline, Otagross, Otainsel, Oaasisk, RL, Otaschn, Otastr, RP, Otakomso) situated in 
Grootfontein district of the Otjozondjupa region. It is situated in Namibia's Otavi Mountain land, which is well known 
for its copper deposits.  
By accurately predicting different metal contents from the geochemistry data, the cost of analyzing multiple metals in 
ore samples can be reduced. Moreover, the mining companies can discover additional metals associated with the main 
commodity, which can be mined, processed, and sold as by-products leading to increased profitability. The model 
developed can be applied to geochemistry data from other sites and yield results that can be interpreted based on those 
sites’ specific characteristics. 

 
Figure 1: Area of study locality plan 

 
1.1 Objectives 
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Main Objective: The study's main objective is to explore machine learning on geochemical data and to evaluate how 
machine learning methods perform in predicting metal concentrations in copper deposits.  
 
Sub-Objectives 
I. To explore the metal composition patterns in copper deposits. 
II. To evaluate performance of the four commonly used machine learning techniques, namely Random Forest (RF), 
Decision Tree (DT), K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) on geochemistry data. 
III. To determine the most suitable technique based on the performance metrics and further fine tune parameters for 
performance improvement. 
 
1.2 Paper Outline 
Section 1 above served as an introduction to the research, covering the problem at hand as well as aims of the study. 
The paper's remaining sections are arranged as follows: Literature review is covered in section 2, and it covers the use 
of machine learning in mineralization and prediction. Section 3 describes the methodology used to accomplish the 
research objectives. Section 4 discusses the data collection. The outcomes and findings related to the objectives from 
the models are discussed in section 5 while section 6 concludes the work and discusses possible directions for future 
research. 
 
2. Literature Review 
This section examines studies that utilize various machine learning techniques, such as RF, SVM, DT and KNN to 
predict mineral deposits' metal content. This was done to better understand the problem domain and comprehend the 
machine learning methods that have been applied in other studies. 
 
2.1 Mineralization in copper deposits 
Mineralization refers to the process by which minerals, including metals, are deposited in rocks, creating 
concentrations of valuable elements such as copper. According to Santoro et al. (2018), this process can occur through 
various geological mechanisms, including hydrothermal activity, magmatic processes, sedimentary processes, and 
metamorphism. When it comes to copper deposits, mineralization typically involves the concentration of copper-
bearing minerals within certain rock formations (Santoro et al. 2018). In many cases, a single rock may contain 
multiple metals with different metal concentrations. The rocks in copper deposits may contain lead, zinc, and nickel, 
among other metals. Different metal concentrations are unevenly distributed throughout the rock. Samples are sent to 
the labs for analysis to ascertain the amounts of metals in the rocks. 
 
2.2 Geochemical data 
Geochemical data include measurements of elements such as gold, copper, iron, zinc, and others that are commonly 
associated with different types of mineral deposits (Rollinson et al. 2020). The data may also include information 
about the abundance of certain minerals that are indicative of specific geological processes or mineralization events. 
According to Zuo et al. (2016), the geochemical data functions as the input features for the machine learning model 
within the framework of machine learning techniques. Numerical values that represent concentrations of various 
elements and minerals are assigned to each sample. The system uses these data points to discover patterns and 
connections between the different types of mineral deposits and the geochemical properties (Zuo et al.2016). 
 
2.3 Laboratory analysis  
Laboratory analysis of rocks is essential for several reasons: One of the primary objectives of analyzing copper-bearing 
rocks is to determine the ore grade (Jowitt and McNulty 2021). Ore grade refers to the concentration of copper or 
other metals within rock. Understanding the metal concentration helps in assessing the economic viability of mining 
and processing the deposit. Secondly, laboratory analysis provides valuable information about the mineralogical and 
chemical composition of the rocks. This data is crucial for conducting metallurgical studies and optimizing the 
extraction processes to achieve maximum metal recovery. Fourthly, the accurate laboratory analysis helps in 
estimating the overall metal concentrations present in a deposit. This information is vital for mine planning and long-
term resource management. However, sending samples for laboratory analysis has its own challenges. 
 
2.4 Machine Learning in metal concentration prediction 
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It is crucial to first determine the presence of the metal in the rocks before estimating the concentration of metals in 
rocks or ore samples. As previously stated, applying machine learning methods can assist in ascertaining the existence 
of related metals. Once the metal's existence has been confirmed, more research can be done to use machine learning 
to forecast the metal's concentration and related metals. Machine learning was defined by Antoine and Miranda (2017) 
as a technique that can recognize patterns and trends in datasets and then extrapolate predictions from those trends. 
SVM and RF are two popular machine learning techniques that have been utilized to forecast mineralization 
(Dumakor-Dupley and Ayra 2021). 
Wenau et al. (2015), highlights that the ability of ML to continually improve the outcomes with the increase of input 
data into the system and not being limited by the mathematical calculations is one of the most recognized features of 
the tool.  In addition, Cate et al. (2017), mentioned that the main attracting characteristic of Machine Learning for 
metal concentration prediction, is that ML requires minimal data pre-processing, secondly it can work with non-linear 
datasets, thirdly the approach is cheaper and faster. 
2.5 Commonly used machine learning techniques for metal concentration prediction 
The goal of Adebayo et al. (2019) study was to forecast the existence of related metals with copper in ore resources 
by means of RF algorithm. Their prediction model was fed with geochemical data that was extracted from the deposit. 
The study's findings proved that the random forest algorithm is capable of reliably and very accurately forecasting the 
presence of related metals, which offers important insight into the possible existence of different metal resources in 
the studied area. 
 Liu et al. (2019) looked at applying the neural network technique to forecast the existence of related metals with 
copper in ore resources in a different study. They used geochemical data gathered from the deposit as the input for 
their prediction model, just like in the earlier work. The neural network method showed exceptional efficacy in 
accurately predicting the existence of linked metals, offering a dependable indicator of the presence or absence of 
metals in the ore deposit. Sheng et al. (2015) employed RF with 100% prediction accuracy on iron ore samples. The 
study utlized silicon and tin emission spectral lines as input data and the ore class as the output data. 
 In a different study, Zaki et al. (2022) compared five machine learning algorithms, namely Gaussian Process 
Regression (GPR), Support Vector Regression (SVR), Decision Tree Ensemble (DTE), Fully Connected Neural 
Network (FCNN), and KNN, to predict highly askew gold data in a vein deposit. According to the ranking, krigging 
techniques are significantly outperformed by the GPR with logarithmic regularization as the most effective technique 
for predicting grades. The link between the independent and dependent variables in both procedures is indicated by 
the statistical parameter values of R-squared, which were found to be 0.4571 and 0.6889, respectively. The R-squared 
score changed to 0.8987 after fuzzy logic and neural networks were joined to form an adaptive neuro-fuzzy inference 
system. When testing data originating from a mixed or complicated distribution, this approach should result in a 
notable improvement (Zaki et al., 2022). 
2.6 Models and Parameters 
2.6.1 K-NN Model 
K-Nearest Neighbors has several variants and extensions that address specific challenges or adapt the algorithm for 
different scenarios. These variants address different challenges and trade-offs associated with the original K-NN 
algorithm, making them suitable for specific use cases and types of datasets (Cunningham and Delany 2021). The 
dimensionality of the data, the quantity of the dataset, and the available computer power all play a role in the variant 
selection process. Cunningham and Delany (2021) reported several noteworthy variants, including Weighted K-NN, 
Radius Neighbors Classifier/Regressor, K-Dimensional Trees and Brute-force K-NN. The K-NN regression approach, 
which predicts the target variable for a new data point by averaging the target values of the five nearest neighbors in 
space, was applied in this work in its basic version. After this parameter was adjusted even more, the four closest 
neighbors produced an improved prediction accuracy of 70%. 
 
In KNN, the value of K is an important parameter that greatly affects the algorithm's performance. When predicting a 
new data point, K represents number of closest neighbors considered (Bansal et al. 2022). According to Bansal et al 
(2022), a small K value (K=1, for example) means the model will be susceptible to data noise and outliers. Overfitting 
will result from this, when the model underperforms on fresh, untried data because it catches the noise in the training 
set. A big K value (e.g., K=10 or more) means the model smoothens over local patterns in the data yet becomes more 
resilient to noise. Too basic model to accurately represent the underlying structure of datasets, may result in 
underfitting.  
 
The cross-validation technique is employed, according to Bansal et al. (2022), to ascertain the ideal value of K. By 
training and assessing the model with several values of K to determine which one works best on unseen data, the 
optimal K value is obtained through experimentation and validation. In this investigation, a K value of five was 
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utilized. After further fine-tuning this parameter, the K value of the four closest neighbours produced a prediction 
accuracy of 70%. 
 
2.6.2 Random Forest 
To decrease overfitting and increase overall accuracy, the Random Forest ensemble learning method constructs several 
decision trees and combines their predictions (Boateng et al. 2020). Here are some key parameters that users typically 
tune according to Boateng et al. (2020): n-estimaters, max_depth, min_samples_split, min_samples_leaf, 
max_features, bootstrap, random state, criterion, and n_jobs. 
 
A value of 100 trees was selected for the n_estimators in this research project. Up to a certain point, performance can 
be enhanced by increasing number of trees. Starting point of 100 is frequently used because it offers a fair balance 
between computational efficiency and model accuracy. To guarantee reproducibility, a random state value of 42 was 
also employed. The same outcomes would be produced if the model were to be run several times using the same 
dataset and settings. This helps with debugging, code sharing, and maintaining consistency between model 
evaluations. 
 
2.6.3 Decision Tree 
Over time, numerous decision tree algorithms have been developed, each with unique advantages and disadvantages 
(Somvanshi et al. 2016). The ways in which these algorithms handle numerical and categorical features, partition data, 
and construct trees vary. The features of the dataset, the kind of problem (classification or regression), and the 
particulars of the current task all influence the choice of algorithm. Some of the primary decision tree algorithms 
described by Somvanshi et al. (2016) are Iterative Dichotomiser 3 (ID3), Classification and Regression Trees (CART), 
Multivariate Adaptive Regression Splines, Gradient Boosting Machines (GBM) and Decision Stump. 
 
2.6.4 SVM 
SVM is a flexible technique that may be used for a range of tasks, including regression, anomaly detection, and both 
linear and non-linear classification (Tanveer M, Rajani T, Rastogi R, Shao Y H, Ganaie M A, 2022). The type of data, 
the existence of outliers, and the selection of suitable kernel functions are some of the variables that affect the task 
selection and SVM's efficacy (Navada A., Ansari A., Patil S. & Sonkambe B. A, 2011). The following are some uses 
for SVM, as described by Navada A., et al. (2011): SVM for Linear Classification, SVM for Non-linear Classification, 
SVM for Regression, SVM for Anomaly Detection and SVM for Multiclass Classification. 
 
3. Methods 
This research’s methodology draws from Saunders et al. (2017)’s research onion model. This research used a 
quantitative method research design, which involved numerical data on metal concentrations. The approach used in 
this study blended case study with design science research. Design science research strategy, according to Saunders 
et al. (2009), enhances research by assessing elements like models that address operations' problems. Case Study 
strategy was used along in this research because it is an in – depth inquiry used along design research to establish rich 
knowledge about an aspect (Saunders et al. 2019). A case –study was used to refine work and use data of one area to 
understand and get more in-depth knowledge on the data for the area -Kombat Area, Namibia. Due to the nature of 
the problem domain, the study employed the cross-sectional time horizon, where data is collected at one point in 
time.   
 
 
 
 
 
 
 
3.1 Data Preparation 
To further prepare the data for the models, the following steps were undertaken. Removing the rows with missing data 
was considered more appropriate because imputation was going to give unrealistic metal concentrations and affect the 
prediction results. Furthermore, the missing values were distributed across a smaller portion of the dataset, and it was 
not going to lead to significant data loss. Furthermore, an analysis on feature importance was done to determine most 
important features for predicting Cu metal concentration. Feature weighting was done and served as criteria for 
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determining irrelevant features not required for the predictions. Features below the weighting of 0.20 were considered 
non-important and the dataset was vertically scaled by dropping these features. 
Performance of four ML methods  (RF, KNN, DT and SVM) shown to function well and frequently employed in 
related work, were assessed on the task of metal concentration prediction and were evaluated using six indicators, 
namely Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-Squared (Coefficient of Determination), 
Mean Absolute Error (MAE), Adjusted R-Squared, and Explained Variance Score. 
4. Data Collection 
The analytical/geochemical data of the area of study were obtained from Earth Data Namibia (EDN) database, which 
is a comprehensive database of geological data, including mineral deposits, exploration and mining licenses, drilling 
data, geochemistry, maps, and reports. To store and manage this factual, geometrical, and unstructured information 
the database uses ORACLE and ARCVIEW as platforms.  The principal source of geological data for Namibia is the 
Ministry of Mines and Energy's Geological Survey of Namibia (GSN), which is also in charge of maintaining this 
database. Professionals at GSN can use this secure server-hosted database, which provides data to interested clients at 
no cost to students and at a nominal fee to non-student researchers.  The database is up to date (new data is added on 
a regular basis), accurate (gathered by trained geologists and subjected to stringent quality control procedures). This 
study focuses on 3282 available samples comprising Cu, Pb and Zn from the Kombat region. Table 1 below lists the 
eight fields from the dataset.  

 
Table 1: Fields in the dataset. 

Field Description Data Type Example in 
the dataset 
(Row 1) 

Unit 

Sample Number A unique identifier for the sample. Numerical 1 - 
Northing northing geographic coordinate in UTM. Numerical 786553.1 - 
Southing southing geographic coordinate in UTM. Numerical 7816087.5 - 
Grid Name The location where the sample was collected. Categorical OTASLIME - 
Type Type of the sample Categorical soil - 
Zn  Concentration of zinc in the sample Numerical 174 ppm 
Cu  Concentration of copper in the sample Numerical 39 ppm 
Pb  Concentration of lead in the sample Numerical 89.0 ppm 

 
 
5. Results and Discussion 
 
5.1 Numerical Results 
Table 2 below summarizes the ML model performances on predicting Copper metal contents from Zinc and Lead 
metal contents in samples. A higher number in the R-squared score is desired, as it quantifies the percentage of 
variance in the target variable that the model explains. ML tasks tend to have different objectives and the models may 
perform differently in different contexts. Therefore, it is imperative to consider a variety of performance evaluation 
metrics, including explained variance score, RMSE, MAE, adjusted R-squared, and explained variance.  
The KNN model scores the highest R-squared score of 0.57, meaning that the features account for around 0.57% of 
variance in the target variable. Furthermore, the KNN model exhibits the lowest RMSE (104.24) with a moderate 
MAE (32.83), indicating that, on average, the predictions have less errors. Additionally, the KNN model shows greater 
explained variance and modified R-squared scores, demonstrating improved model fitting and the capacity to account 
for variance in the target variable. Based on these metrics overall, the KNN model outperforms the other three models 
in predicting Cu concentration in ore samples. 
 

Table 2: Summary of ML model performance. 

Metrics 
SVM 
Model 

KNN 
Model  DT Model RF Model 

Mean Squared Error: 13922.84 10866.86 12905.74 11428.92 
R-squared Score:  0.45 0.57 0.49 0.55 
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Root Mean Squared Error (RMSE):  118.00 104.24 113.60 106.91 
Mean Absolute Error (MAE):  33.69 32.83 38.36 32.20 
Adjusted R-squared:  0.45 0.57 0.49 0.55 
Explained Variance Score: 0.46 0.57 0.49 0.55 

 
5.2 Graphical Results 
 
5.2.1 Trends in the dataset 
Figure 2 shows the distribution of Cu concentrations across the nine mining sites. The box plot below shows that high 
Cu concentrations are more common at Otasline, Otagross and Otainsel, while Lower Cu concentrations are more 
prevalent at Oaasisk, RL, Otaschn, Otastr and RP. 
 

 
Figure 2: Box plot of the dataset showing distribution of metal across the area of study. 

 
A scatter plot in Figure 3 below was plotted to visualize the relationship between Cu, Zn, and Pb concentrations and 
help observe any potential correlations or patterns between these variables. The plot shows that most of the 
concentrations are below 500ppm. The scatter plot further indicates that for high Copper (Cu) concentrations the Lead 
(Pb) concentrations are in similar ranges whereas the Zinc (Zn) concentrations are much lower. 
Additional analyses were conducted to understand the individual range and distributions of Cu, Zn, and Pb 
concentrations. This aided in determining the data's central tendency, dispersion and skewness, and see the frequency 
or count of data points that fall into specific intervals. The histogram (not shown in this section) showed that within 
the limit of 500 ppm, most Pb and Cu concentrations are in the lower ranges whereas some of the Zn concentrations 
are close to 500ppm.  
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Figure 3: Relationship between Cu, Zn and Pb concentrations. 

 
A heatmap illustrating the pairwise correlations between Cu, Zn, and Pb concentrations is displayed in Figure 4 below. 
This type of analysis aids in determining the direction and intensity of the interactions between the variables. The 
results show that there is a stronger correlation of 0.76 between Cu and Pb than that of 0.28 between Cu and Zn. The 
graph further shows that Zn is more correlated to Cu than it is to Pb as the correlation coefficients of 0.28 and 0.2 
show. On the other hand, Pb is more strongly correlated to Cu than it is to Zn as the correlation coefficients of 0.76 
and 0.22 show. 
Furthermore, distributions of the variables were studied using density plots (not shown in this section). Density plots 
are used to show the probability densities of the variables and can be used to uncover errors in the data. Right-skewed 
(aka positively skewed) density plots were observed for the concentrations of all three metals, which confirmed that 
the majority of values were to the left side i.e. less than 500ppm. There are some samples with metal concentrations 
exceeding 500ppm, but only very few. The type of copper ore for the samples collected are predominantly sulfide-
based, with occurrences of oxide ores as well. Determining the metal concentration is a key step in affirming the metal 
ore grade, which is critical in assessing the economic viability of the planned mining venture. For instance, studies 
have shown that the unitary energy cost of extracting metals such as copper increases as the metal concentration 
decreases (Fizaine & Court, 2015). Existing mining operations can similarly use information regarding predicted metal 
concentrations to examine the effectiveness of the mineral extraction processes that are currently in place by 
comparing the estimated metal output with the actual outputs. 
The geological setting, mineralization type, mineral associations, geochemical processes, and sampling characteristics 
can all contribute to the observed correlations between different metal concentrations in the samples. The dataset is 
from volcanic-hosted massive sulfide deposits which contain minerals that are rich in both lead and copper. This 
means in these ore formations, lead and copper minerals occur together in significant quantities due to similar 
geological processes. In addition, the strong correlation between Pb and Cu can also be due to mineral association. 
Lead and copper minerals often occur together in association with each other within the same mineral assemblages or 
ore veins. This association can lead to a strong correlation between their concentrations in samples. These minerals 
might share similar geochemical behaviors, such as solubility, transport, and precipitation processes, which can result 
in their co-occurrence. It is also possible that the observed correlation between Pb and Cu concentrations compared to 
Zn and Cu concentrations could be influenced by sampling bias or the specific characteristics of the samples collected. 
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The samples were collected from areas with known Pb-Cu mineralization or geological settings favoring the formation 
of Pb-Cu ores, this could skew the correlation analysis. 
 

 
Figure 4: A heat map of pairwise Seaborn’s correlations between Cu, Zn and Pb concentrations of the dataset. 

 
5.2.2 Predicted versus actual values of the best performing model K-NN 
A comparison of the actual Cu concentrations and the KNN predicted values is presented in Figure 5. The results 
demonstrate the ML model’s ability to predict metal concentrations with marginal error. 
Perfect prediction is marked by the red line in Figure 6 and indicates where the dots would fall if all the predictions 
and actual values were exactly equal. The graph compares the output to the perfect prediction line/target to show how 
the projected values closely match the actual values. The result shows that more than 90% of points are dispersed 
tightly near the ideal prediction line, indicating that the actual values and predictions correspond marginally. However, 
there are a few outlier points that are widely dispersed, indicating a greater variation between predicted and actual 
values as seen in Figure 6 for samples 6, 21, 25 and 29. Despite scaling done, there could still be issues with the 
model’s sensitivity to feature magnitudes between Cu, Pb, and Zn concentrations, contributing to discrepancies 
between actual and predicted values for these samples.  
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Figure 5: Comparison of actual Cu concentration and the KNN model predicted value. 

 
 

 
Figure 6: Variations between the expected and actual copper values. 

5.3 Proposed Improvements 
The KNN model performed comparatively well in terms of prediction accuracy. Tweaking the testing size and the 
nearest neighbor estimator, from 0.2 (20%) and 5 respectively to 0.1 (10%) and 4 yielded a R-squared score of 0.70 
(70%). On the testing size of 10% other models’ prediction accuracies have also improved. New R2 values were 0.54 
(54%), 0.51 (51%) and 0.50 (68%) for Decision Tree, SVM and RF respectively. Additional hyperparameter tuning 
can be applied for further performance improvement. There is a need to draw up specific industry standards on 
acceptable ML model performance margins in different application domains. The superior performance of KNN than 
other models in this study could be attributed to its ability to capture complex relationships in the data, its robustness 
to outliers which are in the dataset and its suitability for small datasets. Furthermore, the dataset exhibits clear patterns 
of where concentrations of Cu, Pb, and Zn tend to cluster together. For these types of datasets, KNN can effectively 
capture these patterns without making strong assumptions about the underlying data distribution. 
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6. Conclusion 
The first sub-objective was to explore the metal composition patterns in copper deposits. The observation is that 99% 
of the Zn, Cu, and Pb metal concentrations are below 500ppm. Correlations between metal concentrations were 
observed among the metals in ore samples. The scatter plot further shows that for high Cu concentrations the Pb 
concentrations are proportionately high whereas the Zn concentrations are much lower. Furthermore, analysis shows 
that higher Cu concentrations are more common at Otasline, Otagross and Otainsel while the lower Cu concentrations 
were more common at Oaasisk, RL, Otaschn, Otastr and RP locations. 
The second sub-objective was to evaluate performance of four leading ML techniques (RF, DT, KNN and SVM) in 
predicting metal concentrations on the geochemistry data. Six performance evaluation metrics were considered, and 
overall KNN outperformed the other three models.  Adjusting KNN’s testing size and nearest neighbour estimator 
improved the R-squared score from 57% to 70%. 
This study demonstrates the potential of machine learning to predict metal concentrations given some geochemical 
data, which could save exploration costs, boost productivity, and enhance metal concentration estimation accuracy. 
The R2 value of 0.70 is promising but is not sufficient for an ML model to be deployed for the metal prediction task. 
Other variables like the textures, colour, lithologies of samples could be captured to improve the predictive power of 
the model. Using grid search techniques, gamma, kernel type, regularization parameters could influence the model’s 
performance. For future work, further hyperparameter tuning could be done to improve the models. In addition, 
assessing the effectiveness of other machine learning methods such as Artificial Neural Networks can also be carried 
out. Furthermore, having seen the promising results of ML on geochemical data, investigating the integration of ML-
based ore grade estimates into automated mineral extraction process optimization would be the next step.  
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