
Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

5th African International Conference on Industrial Engineering and Operations Management,
Johannesburg/Pretoria, South Africa, April 23 - 25, 2024

Publisher: IEOM Society International, USA
Published: April 23, 2024

 DOI: 10.46254/AF05.20240071

Reentrant Permutation Flow Shop Scheduling

with a Deteriorating Schedule

Makgoba Matsebe and Olufemi Adetunji
Department of Industrial and Systems Engineering,

University of Pretoria,
Pretoria, South Africa

makgobamatsebe@gmail.com, olufemi.adetunji@up.ac.za

Abstract

The classic flow shop problem assumes that jobs make only single passes through the processing machines and that
the processing times are not affected by the length of the delay before jobs are processed. These assumptions are being
relaxed in recent papers considering re-entrance problems and those with schedule deterioration. In this paper, these
two assumptions are relaxed together, and a model of a re-entrance flow shop with a deteriorating schedule is
considered. A linear programming formulation of the problem is first presented. Three solution heuristics are
considered under different deterioration scenarios. It was observed that both the Nawaz Enscor and Ham (NEH)
algorithm and Genetic Algorithm (GA) performed much better than the Campbell Dudek and Smith (CDS) algorithm.
Overall, when considering both the quality of the solution and computational time together, the NEH algorithm seems
to have performed much better than the others as the size of problems increases. This model would find useful
applications in many metallurgical and manufacturing processes where such problems are usually encountered.

Keywords
Reentrant flow shop, deteriorating schedule, CDS algorithm, NEH Algorithm, Genetic Algorithm, makespan
minimization

1. Introduction
The classical flow shop is characterized by jobs that are processed on each machine within the system only once. Chen
%3et al. (2008), however, stated that in reality, this assumption is sometimes violated. The allowance of jobs to return
to one or more machines for further processing is termed reentrance. For decades, the reentrant flow shop problem
has attracted the attention of many researchers, and this can be attributed to the drive to reduce operating costs and
increase profits by manufacturing facilities. The reentrant property is observed in processes such as semiconductor
manufacturing, wherein components need to be processed more than once on the same machine before the final
product is achieved, and cold drawing operations in steel tube manufacturing. Reentrance can also be used in tool
machining shops, where a particular tool might require a polishing stage or heat treatment in between the machining
stages to achieve the final tooling finish (Graves et al. 1983).

Deterioration of jobs, on the other hand, can be observed in processes where job processing time is increased as a
result of queuing due to the unavailability of machines, deterioration in the state of the job, or deterioration caused by
fatigue or tiredness of machine operators. In some instances jobs require a preparation step before processing; the
cold-drawn tube manufacturing is a typical example. The input material may lose temperature while it waits to be
processed and would need to be re-heated to ensure it is at the correct temperature before processing. Ingot and/or
bloom rolling can also be affected by the deterioration of processing times. In these steel rolling operations, the input
material is reheated to a predetermined temperature before rolling. Each steel grade has a critical temperature below
which rolling becomes difficult and may cause machine damage. Below this temperature, the input ingots/blooms are
said to have deteriorated and require a reheating cycle. In all cases of deteriorating jobs, the resultant effect is

https://doi.org/10.46254/AF05.20240071
mailto:makgobamatsebe@gmail.com
mailto:olufemi.adetunji@up.ac.za

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

processing times that increase with an increase in waiting time before processing. A deteriorating job is, thus, referred
to as a job that will take more time to be processed later than when it is processed first in the schedule.

This paper presents a permutation flow shop that considers a scheduling problem that is both reentrant and has a
deteriorating schedule. The reentrant flow shop problem has been studied for various machine environments; however,
work on deteriorating jobs has significantly been on one and two-machine environments. To date, there appears to be
no evidence of work published that considers the reentrant flow shop with deteriorating jobs and this paper seeks to
fill that gap. The aim of this study is to develop a mathematical programming model and utilize heuristics to solve
the problem related to scheduling of 𝑁𝑁 jobs on 𝑀𝑀 machines in a reentrant permutation flow shop with deteriorating
jobs with the objective being the minimization of the makespan. The remainder of the paper is organized in the
following manner. Section 2 gives a literature review on the study of reentrance and deteriorating jobs. The model for
the problem being studied and the proposed solution algorithms are presented in Section 3. Section 4 covers the
experimental design for computations. The results of the computational experiments are presented and discussed in
Section 5. The paper is concluded in Section 6.

2. Literature
The earliest work identified on reentrant flow shop scheduling was that of Graves et al. (1983). The manufacturing
process that was used for their study is that of an integrated circuit fabrication facility. They solved the problem of
minimizing the throughput time using a heuristic. It was initially suggested that the system could be operated as a job
shop with the use of sequencing rules to determine an optimal sequence of jobs at each machine. This implied that a
simple Gantt chart for sequencing jobs in this system could be used. However, for a large number of jobs, it would be
nearly impossible to manage. A heuristic was, thus, developed to minimize the throughput time using a cyclic
scheduling method at specified production rates. The heuristic was referred to as a cyclic Gantt chart. In the cyclic
schedule, the chart is divided into manageable cycle times to enable the scheduler to know the number of cycles
required to complete a single job. One of the unique features of the model is that the generated schedule could be
adapted when conditions in the system such as shutdowns, machine breakdowns and operator unavailability arose.
The downside, however, was that the model was developed as a computer program from which the results needed to
be transferred onto a shop schedule. Any errors that take place during the transfer of the schedule from the program
to the workshop can affect the entire process negatively.

Pan and Chen (2010) studied the minimization of makespan in a reentrant permutation flow shop. They proved that
the reentrant flow shop problem is NP-hard, even for a two-machine shop. Heuristics were used to solve the problem.
Chen (2006) extended the work done on the reentrant permutation flow shop by developing a branch and bound
algorithm. For the algorithm to reach an optimal solution quickly, a branching rule, upper and lower bounds, and a
fathoming rule were utilised. Chen et al. (2007) developed an integer programming model and used heuristics to find
an initial solution. Tabu search was then applied to improve the initial solution in scheduling jobs in a reentrant 𝑁𝑁
machine environment to minimize makespan.

Recent work includes scheduling a reentrant no-wait shop and systems with multiple objectives. One such problem
was studied by Rifai et al. (2016) where three objective functions, namely maximum completion time, total production
cost, and average tardiness, were integrated. A multi-objective adaptive large neighborhood search (MOALNS)
algorithm was developed to find near-optimal solutions for the problem. TasoujiHassanpour et al. (2015) proved that
the no-wait reentrant problem is NP-hard and utilized heuristic algorithms to solve the problem. Genetic algorithm, a
bottleneck-based heuristic, and simulated annealing heuristics were used to solve the problem. The simulated
annealing algorithm outperformed the genetic algorithm and the bottleneck-based algorithm in terms of finding the
best solution within reasonable computation time. Amrouche et al. (2020) presented a two-machine chain-reentrant
flowshop problem with no wait, which was solved in polynomial time based on dynamic programming formulation.
Rifai et al (2021) proposed the multi-objective adaptive large neighborhood search (MOALNS) algorithm to solve the
Multi-objective distributed reentrant permutation flow shop scheduling with sequence-dependent setup time. Zheng
et al. (2023) investigated the optimal solution properties of a two-stage reentrant flexible flow shop scheduling
problem using mixed integer linear programming and a greedy random constructive heuristic.

The job deterioration problem is relatively new, currently spanning only three decades of research. However, much
like any area of scheduling, the job deterioration problem has had variants of the original problem since its inception.
The first decade did not see much development. Studies were conducted with a focus on single-machine problems
with the objective of optimizing makespan (Browne and Yechiali, 1990), Kubiak and van de Velde (1998) and

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

minimization of flowtime Mosheiov (1991). Browne and Yechiali (1990) pioneered the study of deteriorating jobs,
with a focus on a single machine problem with simple linear deterioration and an objective of makespan minimization.
They proved that the processing time of a job increases linearly in relation to the waiting time, and they used
scheduling policies to develop a solution approach. Meanwhile, Mosheiov (1991) studied the minimization of
flowtime for 𝑁𝑁 jobs on a single machine and proved that the optimal sequence for the problem is V-shaped. The V-
shape property essentially means that the first set of jobs to be scheduled is arranged in decreasing order of the
deterioration rate. In contrast, the remaining set of the jobs is scheduled in increasing order of their deterioration rate.
A study proving the NP-hardness of a two- and three-machine scheduling problem for deteriorating jobs was
conducted by Kononov and Gawiejnowicz (2001). The types of deteriorating jobs studied were simple linear and
proportional deterioration with the objective of minimizing the makespan. Hindi and Mhlanga (2001) studied two
variants of deterioration, simple linear deterioration and jobs with basic processing times. Simple linear deterioration
assumes that jobs are only available at a positive time 𝑡𝑡0. Jobs with basic processing time are said to have a scheduling
horizon that starts at 𝑡𝑡 = 0 for all jobs. The total processing time of jobs with basic processing is made up of two
components; the deterioration-affected component and the actual processing time. Thus, the longer a job waits in the
queue before processing, the longer it will take to be completed. Heuristics were used to schedule jobs for the parallel
machine environment to minimise makespan. Their choice of the solution technique was based on the fact that
scheduling problems with parallel machines is NP-hard, and introducing deterioration increases the complexity of the
problem.

A lot of focus for the scheduling of deteriorating jobs has been on manufacturing facilities with machines that are less
than or equal to three. Single-machine scheduling of deteriorating jobs has been studied extensively, for a range of
variations (Browne and Yechiali (1990), Mosheiov (1991), Wand and Xia (2005), Ji and Cheng (2010), Wang and
Wang (2011)). Shiau et al. (2007) studied deteriorating jobs for two machine manufacturing systems. Jafari et al.
(2017) studied three machine problems. Wang et al. (2019), however, studied an 𝑀𝑀 machine (m > 3) problem for
scheduling deteriorating jobs. These were one of the few identified in the literature to have studied the problem for 𝑀𝑀
machines. They utilized a metaheuristic called multi-verse optimizer (MVO) to find a solution to the problem.

3. Model development and solution algorithms

The following notations are adopted for model development:

Symbol Description

𝑱𝑱 job index set; 𝐽𝐽: {𝑗𝑗 = 1,2, … ,𝑘𝑘}, where 𝑘𝑘 is the number of jobs
𝑴𝑴 machine index set; 𝑀𝑀: {𝑚𝑚 = 1,2, … ,𝑛𝑛}, where 𝑛𝑛 is the number of machines
𝑳𝑳

number of levels of job 𝑗𝑗; 𝐿𝐿: {𝑙𝑙 = 1,2, … , 𝑏𝑏}, where 𝑏𝑏 is the number of levels

𝒊𝒊 position of job 𝑗𝑗 in the sequence
𝒙𝒙𝒊𝒊𝒊𝒊 1, if job 𝑗𝑗 is scheduled in the 𝑖𝑖th position at each level; 0 otherwise

𝒔𝒔𝒎𝒎𝒎𝒎𝒎𝒎 the starting time of a job scheduled in the 𝑖𝑖th position of level 𝑙𝑙 on machine
𝑚𝑚

𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎 the deterioration rate of a job scheduled in the 𝑖𝑖th position of level 𝑙𝑙 on
machine 𝑚𝑚

𝒂𝒂𝒋𝒋 the deterioration rate of a job 𝑗𝑗

𝒑𝒑′𝒋𝒋𝒋𝒋𝒋𝒋 the normal processing time of the operation of job 𝑗𝑗 on machine 𝑚𝑚 at level 𝑙𝑙

𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋 the actual processing time of the operation of job 𝑗𝑗 on machine 𝑚𝑚 at level 𝑙𝑙, where
 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑝𝑝′𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 . 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎 completion time of the last job in the sequence

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

𝑪𝑪𝒋𝒋 completion time of job 𝑗𝑗

The following assumptions are also made for model development:

• All jobs are available from time zero (batch processing)
• Each machine can only process a single job at a time
• Jobs visit every machine in the same order 𝑀𝑀1,𝑀𝑀2, …𝑀𝑀𝑛𝑛 (permutation)
• No machine breakdowns
• All job processing times are known
• There is unlimited storage space for jobs waiting to be processed
• Pre-emption is not allowed
• Machine set-up times are included in the processing time

The model is presented as follows:
Minimise 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (1)
Subject to ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘

𝑗𝑗=1 = 1 𝑖𝑖 = 1,2, … , 𝑘𝑘 (2)
 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 𝑗𝑗 = 1,2, … , 𝑘𝑘𝑞𝑞

𝑖𝑖=1 (3)

 𝑠𝑠111 = 0 (4)

 𝑠𝑠1,1,𝑖𝑖+1 = 𝑎𝑎11𝑖𝑖 . 𝑠𝑠11𝑖𝑖 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗11𝑘𝑘
𝑗𝑗=1 𝑖𝑖 = 1,2, … , 𝑞𝑞 − 1 (5)

𝑠𝑠1,𝑙𝑙,𝑖𝑖+1 ≥ 𝑎𝑎1𝑙𝑙𝑙𝑙 . 𝑠𝑠1𝑙𝑙𝑙𝑙 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑗𝑗=1 𝑝𝑝111 𝑙𝑙 = 2,3, … , 𝑏𝑏; 𝑖𝑖 = 1,2, … , 𝑞𝑞 − 1 (6)

𝑠𝑠𝑚𝑚,𝑙𝑙,𝑖𝑖+1 ≥ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 . 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗 𝑚𝑚 = 2,3, …𝑛𝑛; 𝑙𝑙 = 1,2, … , 𝑏𝑏; 𝑖𝑖 = 1,2, … , 𝑞𝑞 − 1 (7)

𝑠𝑠1,𝑙𝑙+1,1 ≥ 𝑎𝑎1𝑙𝑙𝑙𝑙 . 𝑠𝑠1𝑙𝑙𝑙𝑙 + ∑ 𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗1 𝑙𝑙 = 1,2, … , 𝑏𝑏 − 1 (8)

𝑠𝑠𝑚𝑚,𝑙𝑙+1,1 ≥ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 . 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 + ∑ 𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗 𝑚𝑚 = 2,3, …𝑛𝑛 − 1; 𝑙𝑙 = 1,2, … , 𝑏𝑏 − 1 (9)

𝑠𝑠𝑚𝑚+1,1,1 = 𝑎𝑎𝑚𝑚11. 𝑠𝑠𝑚𝑚11 + ∑ 𝑥𝑥1𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗1𝑚𝑚 𝑚𝑚 = 1,2, … ,𝑛𝑛 − 1 (10)

𝑠𝑠𝑚𝑚+1,𝑙𝑙+1,1 ≥ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 . 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 + ∑ 𝑥𝑥𝑞𝑞𝑞𝑞𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗 𝑚𝑚 = 1,2, … ,𝑛𝑛 − 1; 𝑙𝑙 = 1,2, … , 𝑏𝑏 − 1 (11)

𝑠𝑠𝑚𝑚+1,𝑙𝑙,𝑖𝑖 ≥ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗 𝑚𝑚 = 1,2,3; 𝑙𝑙 = 1,2, … , 𝑏𝑏; 𝑖𝑖 = 1,2, … , 𝑞𝑞; (𝑙𝑙, 𝑖𝑖) ∉ {(1,1)} (12)

𝑠𝑠𝑚𝑚,𝑙𝑙+1,𝑖𝑖 ≥ 𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛 . 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗 𝑙𝑙 = 1,2, … , 𝑏𝑏 − 1; 𝑖𝑖 = 1,2, … , 𝑞𝑞 (13)

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘
𝑗𝑗=1 ∏ (1 + 𝑎𝑎𝑟𝑟)𝑘𝑘

𝑟𝑟=𝑗𝑗+1 (14)

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0, 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0 𝑚𝑚 = 1,2,3; 𝑙𝑙 = 1,2, … , 𝑏𝑏; 𝑖𝑖 = 1,2, … , 𝑞𝑞;

𝑥𝑥𝑖𝑖𝑖𝑖 = 0 𝑜𝑜𝑜𝑜 1 𝑖𝑖 = 1,2, … , 𝑞𝑞; 𝑗𝑗 = 1,2, … , 𝑘𝑘 (15)

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Equation (1) is the objective function. Constraints (2) and (3) describe the decision variables for the problem ensuring
that each job is scheduled in only a single position and that a position has only a single job allocated to it, while
constraint (4) defines the starting time of the first operation scheduled at the first level of the first machine. Constraints
(5) and (10) define the starting time of any job, on any machine at the first level of operation. Constraints (6) to (9)
and (11) to (13) describe the precedence of jobs in the process. Constraint (14) is the expression for calculating the
makespan of the system, allowing deterioration of processing time, while constraint (15) enforces the non-negativity
and binary restrictions.

Three solution algorithms; CDS, NEH, and GA, which were adapted for reentrance and deterioration, are presented
as pseudo-codes 1, 2, and 3, respectively.

Pseudo-code 1: Modified CDS algorithm for reentrant flow shop problem
//Create an aggregate processing time for each job for each machine across all levels
For every job across all levels 𝒍𝒍 = 𝟏𝟏 𝒕𝒕𝒕𝒕 𝒃𝒃
 𝒑𝒑𝒋𝒋𝒋𝒋′ = ∑ 𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋𝒃𝒃

𝒍𝒍=𝟏𝟏
EndFor
//solve 𝒏𝒏 − 𝟏𝟏 surrogate two machine problems
Set makespan to a large number
For 𝒛𝒛 varying from 𝟏𝟏 to 𝒏𝒏 − 𝟏𝟏

For every job, 𝒋𝒋, on two pseudo machines, 𝑴𝑴𝟏𝟏

′ and 𝑴𝑴𝟐𝟐
′

Create two surrogate processing times as follows
 𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋′ = ∑ 𝒑𝒑𝒋𝒋𝒋𝒋′𝒛𝒛

𝒎𝒎=𝟏𝟏 as processing time of job 𝒋𝒋 on 𝑴𝑴𝟏𝟏
′

𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋′ = ∑ 𝒑𝒑𝒋𝒋𝒋𝒋′𝒏𝒏
𝒎𝒎=𝒏𝒏−𝒛𝒛+𝟏𝟏=𝟏𝟏 as processing time of job 𝒋𝒋 on 𝑴𝑴𝟐𝟐

′
EndFor
 Solve sequencing problem for 𝑴𝑴𝟏𝟏

′ and 𝑴𝑴𝟐𝟐
′ using Johnson’s Algorithm

 If makespan from sequence is better
Update makespan
Update optimum sequence

EndIf
EndFor

Johnson’s Algorithm
Create two sets, 𝑰𝑰 and 𝑰𝑰𝑰𝑰 such that
 If 𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋′ < 𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋′ allocate job to set 𝑰𝑰
 ElseIf 𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋′ < 𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋′ allocate job to set 𝑰𝑰𝑰𝑰
 Else allocate to either set
 EndIf
Sort set 𝑰𝑰 in non-decreasing order of 𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋′
Sort set 𝑰𝑰𝑰𝑰 in non-increasing order of 𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋′
Append set 𝑰𝑰𝑰𝑰 to set 𝑰𝑰

Pseudo-code 2: NEH Algorithm
For each job, 𝒋𝒋,
Determine the work content, 𝒑𝒑𝒋𝒋′, from 𝒑𝒑𝒋𝒋′ = ∑ ∑ 𝒑𝒑𝒋𝒋𝒋𝒋𝒋𝒋𝒏𝒏

𝒎𝒎=𝟏𝟏
𝒃𝒃
𝒍𝒍=𝟏𝟏

EndFor
Sort jobs into set 𝑰𝑰 in decreasing order of work content, 𝒑𝒑𝒋𝒋′,
Take the first two jobs out of set 𝑰𝑰 and form two partial sequences with them
Retain the partial sequence with the minimum makespan of the two
While there exists an unscheduled job in set 𝑰𝑰
 Remove the next job (with largest work content)
Form a set of new partial sequences by inserting the job in all possible positions in the currently retained partial
sequence

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

 Retain one of the new partial sequence which has minimum makespan
EndWhile

Pseudo-code 3: GA algorithm
Set current iteration to 1
Generate initial population
Evaluate fitness and rank chromosomes based on makespan
Store the best chromosome
While current iteration is less than the required iterations

Evaluate fitness and rank chromosomes based on makespan
Update the best chromosome found
Retain top performers and discard the remaining chromosomes
Cross breed top performers to create new chromosomes make up population
Mutate the top chromosomes
Increment current iteration

EndWhile

The various components of GA, including the crossover and mutation operators that were modified to incorporate
reentrance and deterioration are discussed next.

Chromosome representation
To represent a chromosome, a vector of the same length as the number of jobs to be sequenced is created and
populated with a random number between 1 and the number of jobs in such a way as to guarantee that every job is
placed in exactly one position only in the vector.

Crossover Implementation
The crossover algorithm makes use of a logic termed herein as autogamy, meaning a chromosome is crossed with
itself. The advantages of this procedure are twofold. The first is that it ensures that all jobs are placed exactly in one
position after crossover. This is important because it is easy for some jobs to be missing while others are present in
more than a single position after the crossover process. The second advantage is that it preserves some partial
sequences of schedules that have performed well so that the advantage of promising sequences is not lost while trying
to explore other areas during search. The procedure randomly selects, through a probability mechanism, a breeding
chromosome. It then randomly generates the crossover point. From the crossover point, two partial sequences (the
head and the tail) are created. The tail partial sequence is swapped to the head position as a block while the head
sequence is also swapped to the tail position as a block. This way, the promising partial sequences are preserved with
minimum disturbance. If further mix in the sequence is desired, more than one crossover procedures may be
implemented in a single reproduction process. How the partial sequences are repositioned may also alter the new
sequences formed.

4. Mutation implementation
In implementing the mutation process, there is also the need to ensure that all jobs are sequenced in exactly one
position. To do this, a swap procedure is implemented. Two random positions are generated within the sequence and
the jobs in these two positions are swapped. This procedure is repeated for the number of mutations required per
chromosome.

4.1 Experimental design
The experimental design procedure involves the generation of data, development of test instances, and implementation
of the experiments.

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

4.2 Data generation for processing times
Test data sizes and the method of data generation approach used by Chen et al. [3] for minimizing makespan in
reentrant flow shops were adopted. The method involves the use of a wide range of data sizes; it tackles the scheduling
of jobs in manufacturing facilities with as few as two operational levels to as many as ten operational levels. Widening
the test data range allows for observations to be made on the effect that manufacturing facility configurations have on
the makespan.

Parameters used in the experimental environment are described as 𝑘𝑘 𝑥𝑥 𝑛𝑛 𝑥𝑥 𝑏𝑏; where 𝑘𝑘 represents the number of jobs,
𝑛𝑛 the number of machines, and 𝑏𝑏 the number of operational levels. The test data is divided into three categories:
small, medium, and large problem sizes. The small problems are composed of eight matrix sizes: 3𝑥𝑥3𝑥𝑥3, 3𝑥𝑥3𝑥𝑥4,
3𝑥𝑥4𝑥𝑥2, 4𝑥𝑥3𝑥𝑥3, 4𝑥𝑥4𝑥𝑥3, 4𝑥𝑥5𝑥𝑥3, 4𝑥𝑥4𝑥𝑥4, and 4𝑥𝑥5𝑥𝑥4. Medium problems are also composed of eight matrix sizes:
6𝑥𝑥6𝑥𝑥2, 6𝑥𝑥8𝑥𝑥5, 6𝑥𝑥9𝑥𝑥3, 7𝑥𝑥7𝑥𝑥5, 7𝑥𝑥8𝑥𝑥4, 8𝑥𝑥8𝑥𝑥3, 9𝑥𝑥9𝑥𝑥2, and 10𝑥𝑥10𝑥𝑥2. The large problems include five matrix sizes:
12𝑥𝑥12𝑥𝑥10, 15𝑥𝑥15𝑥𝑥5, 20𝑥𝑥20𝑥𝑥4, 25𝑥𝑥25𝑥𝑥8, and 30𝑥𝑥30𝑥𝑥5. Data was generated randomly as no benchmark data was
available. Two types of data sets were generated. The first set of processing times was generated in the range [1, 100]
on all machines since most benchmark data is generated within this range (Chen et al., 2007). The set was then termed
the same data range (SDR) set. The second set was generated by first setting unique upper and lower bounds for the
processing times of each machine in the first level within the range [1, 100]. These unique data ranges were then
applied to all jobs on all other operational levels, and was termed the unique data range (UDR) set. The unique
processing time ranges per machine were introduced to mimic typical manufacturing. In manufacturing, machines
often have specific processing times based on their function. A set of five instances of processing time matrices was
generated for each of the data set types (i.e. SDR and UDR) for each of the matrix sizes mentioned.

4.3 Data generation for penalty matrices
Penalty matrices were generated to evaluate the effect of deterioration of processing times within the range [0, 0.1].
This penalty range was classified as small by Ng et al. (2010) in their study of a two-machine flow shop problem with
deteriorating jobs. Four scenarios were created within this range.

Table 1. Scenarios for delay penalty

Scenario # Scenario Details

1 No penalty To observe the effect of job reentrance system without
deterioration (delay penalty).

2 Penalty of 0.1 only on the first machine in
the first operational level for jobs not
scheduled first

To determine the effect of penalizing delay only on
the first machine.

3 0.1 penalty on the first machine and 0.05
penalty for all other jobs not scheduled
first

To determine the effect of uniformly penalising all
delays on all machines, with the delay on the first
machine incurring higher penalty

4 Random penalty in the range [0.01,
0.1] on all jobs not scheduled first

To determine the effect of random deterioration rates
on all machines.

Development of test instances
A test instance refers to a computation conducted on a particular processing time matrix instance. Computations were
run for all four penalty scenarios on CDS, NEH and GA algorithms for the three test categories (i.e. small, medium
and large problems). Unlike the CDS and NEH heuristics, the GA algorithm requires more information in addition to
the processing time and deterioration rate. The additional GA parameters are discussed next.

GA parameter setting
Parameters required for the execution of the GA include population size, mutation rate, retention rate and the number of iterations.
The same mutation and retention rates were used for all problem sizes. The retention rate used was 0.5. A rate of 0.5 was selected

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

for the mutation rate after initially testing with 0.3, 0.5, and 0.7. Figures 1 and 2 are a representation of the makespan convergence
for the tested instances of mutation rates. The population sizes and the number of iterations were varied for the different matrix
sizes. The population sizes were selected in relation to the number of machines for the matrix. For the small problems fewer
population sizes were used. Problems with fewer machines have a tendency to repeat chromosomes due to the limited number
of possible combinations.

Mutation rate = 0.5

Mutation rate = 0.3

Mutation rate = 0.7

Figure 1. GA solution convergence for a 25x25x8 matrix for various mutation rates with scenario 3

Limiting the population size to a small number eliminates this challenge. The number of iterations for each matrix size
was selected if the minimum makespan values appear to always converge (or stabilise) within the selected number
of runs.

Mutation rate = 0.5

Mutation rate = 0.3

Mutation rate = 0.7

Figure 2. GA solution convergence for a 25x25x8 matrix with scenario 4 for various mutation rates

5. Implementation
The three algorithms, CDS, NEH, and GA, were coded in MATLAB R2019a, and all computational experiments were
performed with this code. The experiment was run on all categories of test instances. For each category, computations
for makespan, subject to the varying degrees of penalty were performed using the three algorithms.

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

During experimentation, the minimum makespan values were achieved and their corresponding computation times
were recorded. The makespan output analysis and statistical testing were performed in MS Excel. The output analysis
was conducted by applying two measures; the count of the number of times that any given algorithm returned the
lowest makespan value and the average proportion above the minimum makespan when an algorithm did not return
the lowest makespan value. The procedure followed to execute the counting exercise involved several steps. The five
makespan values returned for each matrix size were evaluated. A value of one was allocated for the test instances with
the lowest makespan value, and zero otherwise. The count of instances is not mutually exclusive; i.e. a test instance
of one algorithm is counted for as long as it returned the lowest value, regardless of another algorithm being already
counted for the same test instance.

The procedure for determining the average value above the minimum makespan was also stepwise. The minimum
makespan value among the three algorithms for each of the matrix sizes was determined. This was then termed the
global minimum. The average of the five instances of makespan values was calculated for each matrix size for the
three algorithms. The proportional value above the global minimum was then calculated by subtracting the global
minimum from the average makespan and then dividing by the global minimum.

Statistical testing was applied on all instances of makespan values for each of the matrix sizes. The t-test was selected
as the test of choice due to the random nature of the data and the small sample sizes being evaluated. Two sets of t-
tests were performed; one for the count of minimum makespan values and the other one for the proportion of values
above the global minimum makespan. The paired t-test for sample means was executed for the counts of minimum
makespan and the proportion above minimum makespan.

6. Discussion of results
The results are divided into three sections, makespan analysis, statistical test results, and computation time’s
discussion.

Makespan Analysis
The total number of counts when a solution method results in the lowest makespan value for the various test instances
is presented in Table 2. The asterisks beside the counts indicate the algorithm(s) with the most number of lowest
makespan for each test category. It should be noted that the maximum count obtainable for small and medium sized
problems is 40, while for large sized problems is 25.

The CDS algorithm reported several test instances that had the lowest makespan values for the small problems of
scenario 1 (i.e. no deterioration) and scenario 2 (i.e. deterioration only on the first machine) for the SDR data set. The
CDS algorithm also returned a few instances with the lowest makespan values for the small and medium problems of
scenarios 1 and 2 for the UDR data set. Overall, the NEH and GA algorithms returned the most number of the lowest
makespan values. For the SDR data set, GA returned more instances of the lowest makespan values than NEH. On
the other hand, the NEH algorithm returned the most instances for the UDR data set, while dominating scenario 3 (i.e.
uniform deterioration on all machines, with the first machine incurring the highest penalty) and scenario 4 (i.e. random
deterioration on all machines).

Table 2. Count of minimum makespan attainment

 Problem
size

Same data range (SDR) Unique data range (UDR)
CDS NEH GA CDS NEH GA

Scenario 1
Small 14 36 39* 8 34 35*
Medium 0 20 34* 1 11 39*
Large 0 15* 10 0 19* 7

Scenario 2
Small 11 35* 29 5 32* 30
Medium 0 16 32* 1 16 33*
Large 0 4 21* 0 13* 13*

Scenario 3
Small 0 33* 10 0 40* 3
Medium 0 27* 13 0 32* 9

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Large 0 8 17* 0 18* 7

Scenario 4
Small 0 33* 8 0 33* 8
Medium 0 10 30* 0 23* 17
Large 0 10 15* 0 15* 10

The analysis of the average proportion above the global minimum makespan is presented in Table 3, and the asterisks
beside the values indicate the lowest proportional value.

The proportional values above the global minimum for the CDS algorithm got significantly large for the medium and
large problem sizes of scenarios 3 and 4 as compared to scenarios 1 and 2 for both the SDR and UDR data sets. The
NEH and GA returned the lowest proportional values, the same number of instances for the SDR data set. The NEH,
however, had the lowest proportional values mostly for scenarios 3 and 4. For the UDR data set, the NEH returned
the most instances of the lowest proportional values. As with the SDR data set, NEH dominated scenarios 3 and 4

Table 3. Average proportion above global minimum makespan

 Problem
size

Same data range (SDR) Unique data range (UDR)
CDS NEH GA CDS NEH GA

Scenario 1
Small 0.157 0.114 0.113* 0.116 0.089* 0.089*
Medium 0.121 0.073 0.067* 0.038 0.023 0.019*
Large 0.076 0.021* 0.024 0.036 0.010* 0.011

Scenario 2
Small 0.159 0.119 0.117* 0.122 0.097* 0.097*
Medium 0.124 0.076 0.068* 0.041 0.028 0.024*
Large 0.109 0.058 0.031* 0.077 0.042 0.029*

Scenario 3
Small 0.893 0.178* 0.269 0.738 0.088* 0.406
Medium 2.189 0.070* 0.085 2.124 0.055* 0.075
Large 6264 1.029* 1.605 3264 0.050* 0.069

Scenario 4
Small 1.209 0.184* 0.247 1.013 0.105* 0.174
Medium 4.097 0.125* 0.317 4.320 0.093* 0.109
Large 99723 0.195 0.100* 100254 0.197 0.182*

.
Statistical test of significance of differences
Statistical testing was performed to determine if the difference in the count of the number of instances in which the
minimum makespans were found by each of the algorithms was significant or not. The null hypothesis, H0, is that two
algorithms being compared have no significant difference of the makespan values. The alternative hypothesis, H1, is
that the algorithms have a significant difference in makespan values. This is important because the data were randomly
generated. The statistical test values achieved are presented in Tables 6 and 8 for the count of the minimum makespan
and proportion above the minimum makespan value respectively. The absolute values of the t statistic are of interest
in determining the algorithm(s) resulting in the minimum makespan. The evaluation of the significance of the t stat
values returned against the t critical value is presented in Tables 7 and 9. Instances for which there is no significant
difference between two algorithms are denoted by N and S denotes results with a significant difference. Additionally,
the algorithm that performed better for a particular problem size or penalty scenario is indicated in brackets for
instances with a significant difference.

Count of minimum makespan
The NEH-GA comparison generally returned instances with the lowest t-stat values, however, with a few exceptions.
The CDS-NEH comparison returned the lowest t stat values for scenario 2 (large problem sizes) and scenario 4
(medium problem sizes) for the SDR data set, and scenario 1 (medium problem sizes) for the UDR data set. The CDS-

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

GA comparison returned the lowest t stat values for scenario 3 (small problem sizes) and scenario 4 (small problem
sizes) for the SDR data set, and scenario 4 (small problem sizes) for the UDR data set. GA was the better-performing
algorithm for cases where there was a significant difference for the SDR data set. The NEH algorithm returned the
majority of instances with the minimum makespan counts for the UDR data set. The difference in makespans was
significant for any algorithm compared to CDS, with the CDS algorithm being the worst performing. It is for this
reason that there is no indication of the algorithm which performs better for CDS-NEH and CDS-GA comparisons.

Table 4. t Stat values for the count of minimum makespan

Problem

size

Same data range (SDR) Unique data range (UDR)

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA

Scenario 1
Small -6.2973 -1.3556 -8.0623 -8.5105 -0.2981 -8.1219
Medium -6.245 -3.0095 -14.8661 -3.6056 -8.5732 -27.2213
Large -6 1 -4 -8.7178 2.753 -3.0551

Scenario 2
Small -6.958 1.5246 -5.1523 -8.1219 0.4953 -7.3193
Medium -5.099 -3.1225 -12.49 -4.8374 -3.4426 -12.49
Large -2.1381 -4.5434 -11.225 -5.099 0 -5.099

Scenario 3
Small -13.5594 4.6577 -3.6056 UNDEF 21.9317 -1.7782
Medium -9 2.3333 -4.3333 -12.49 4.4733 -3.3649
Large -3.3607 -1.8904 -7.1414 -7.8558 2.4004 -3.0551

Scenario 4
Small -13.5594 5.1058 -3.1225 -13.5594 5.1058 -3.1225
Medium -3.6056 -3.6056 -10.8167 -7.2639 0.9475 -5.369
Large -4 -1 -6 -6 1 -4

Table 5. Evaluation of the significance of T values for a count of minimum makespan

Problem

size

Same data range (SDR) Unique data range (UDR)

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA

Scenario 1

Small S N S S N S

Medium S S (GA) S S S (GA) S

Large S N S S S (NEH) S

Scenario 2

Small S N S S N S

Medium S S (GA) S S S (GA) S

Large S S (GA) S S N S

Scenario 3
Small S S (NEH) S N S (NEH) N
Medium S S (NEH) S S S (NEH) S
Large S N S S S (NEH) S

Scenario 4
Small S S (NEH) S S S (NEH) S
Medium S S (GA) S S N S
Large S N S S N S

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Proportion above minimum makespan
In the test for a proportion of values above the minimum makespan, the same observation was made for all penalty
scenarios and problem sizes. The NEH-GA comparison resulted in the lowest t-stat values. GA performed better for
cases where there was a significant difference for the SDR data set with penalty scenarios 1 and 2. Penalty scenarios
3 and 4 of the SDR data set were dominated by NEH. The NEH algorithm was the overall better-performing method
for the UDR data set. The paired test of CDS with any method resulted in higher t-stat values, and thus a significant
difference from t-critical was observed. The CDS
 algorithm was the worst performing for both data sets.

Table 6. t Stat values for proportion falling within the minimum makespan

 Problem

size

Same data range Unique data range

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA

Scenario 1

Small 5.2017 0.9105 5.2271 3.9067 0.3697 4.0086

Medium 9.3686 3.1116 10.2402 6.774 4.1266 9.8536

Large 21.2569 -1.7356 20.4309 24.4516 -3.0656 21.3496

Scenario 2

Small 4.9676 0.8628 5.1592 3.5914 -0.4565 3.5985

Medium 9.1832 3.3348 10.6583 5.5364 3.0074 9.4545

Large 6.9113 3.4371 6.3809 4.7638 1.3925 6.0476

Scenario 3

Small 15.3478 -3.5605 10.9191 17.5279 -2.9098 3.4483

Medium 12.9587 -2.2846 12.997 12.4692 -5.3536 12.4092

Large 3.3186 -1.3395 3.3186 2.9278 -2.2007 2.9278

Scenario 4

Small 11.6613 -5.1845 11.3359 12.7631 -5.3719 11.8116

Medium 12.2037 -0.7797 8.344 12.2398 -1.4284 12.2818

Large 2.7558 2.4267 2.7558 2.7092 0.3481 2.7091

Table 7. Evaluation of the significance of T values for proportion falling above the minimum makespan

 Problem

size

Same data range Unique data range

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA

Scenario 1

Small S N S S N S

Medium S S (GA) S S S S

Large S N S S S (NEH) S

Scenario 2

Small S N S S N S

Medium S S (GA) S S S (GA) S

Large S S (GA) S S N S

Scenario 3

Small S S (NEH) S S S (NEH) S

Medium S S (NEH) S S S (NEH) S

Large S N S S S (NEH) S

Scenario 4

Small S S (NEH) S S S (NEH) S

Medium S N S S N S

Large S S (GA) S S N S

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Computation times
The average computation times are presented in Table 8. The CDS algorithm had the shortest computation times,
followed by NEH. The computation times increased slightly from the small problem size to the large problems for
both the CDS and NEH algorithms for all penalty scenarios. The GA algorithm had the longest computation times for
the large problem size. The time complexity for GA is influenced by the large population sizes and the high number
of iterations related to the problem sizes.

Table 8. Average computation times

Penalty
type

Solution
method

Small problems Medium problems Large problems
Min
computation
time

Max
computation
time

Min
computation
time

Max
computation
time

Min
computation
time

Max
computation
time

Scenario 1
CDS 0.0003 0.0393 0.0005 0.1402 0.0043 0.1017
NEH 0.0002 0.0153 0.0006 0.0075 0.0157 0.5409
GA 0.0252 0.2008 0.0993 0.8794 38 872

Scenario 2
CDS 0.0003 0.0890 0.0005 0.0650 0.0044 0.0993
NEH 0.0003 0.0282 0.0009 0.0234 0.0166 0.2481
GA 0.0251 0.3108 0.1589 7 42 915

Scenario 3
CDS 0.0003 0.0789 0.0005 0.0495 0.0051 0.0828
NEH 0.0003 0.0558 0.0008 0.0995 0.0178 0.2942
GA 0.0242 0.1700 0.1348 6 40 970

Scenario 4
CDS 0.0003 0.0468 0.0005 0.1554 0.0051 0.1385
NEH 0.0003 0.0073 0.0007 0.0059 0.0174 0.3294
GA 0.0313 0.1935 0.1735 7 46 874

7. Conclusions and Recommendations
The problem of scheduling a reentrant permutation flow shop with deteriorating jobs with the objective of minimizing
makespan was studied. The CDS, NEH and GA algorithms were utilized to model the solution. The study involved
test problems classified as small, medium and large. Simulations for various deterioration rates were conducted.
The algorithms performed similarly for small problems that are not exposed to deterioration of processing time. The
GA and NEH algorithms performed better than the CDS algorithm as the problem sizes increased in size (i.e. an
increase in the number of jobs and machines). The NEH achieved the lowest makespan within reasonable computation
times as problem sizes got bigger, and the complexity of deterioration of processing times increased. Essentially, the
NEH algorithm is capable of handling changes that are introduced into the system being scheduled. In instances where
the NEH achieved minimum makespan values above the global minimum, the proportional difference was small. The
NEH algorithm, thus, appears to be the overall best-performing algorithm. For future studies, the NEH algorithm can
be compared with other solution methods such as the branch and bound.

Conflict of Interest
The authors have no conflict of interest.

References
Amrouche K., Boudhar N. and Sami N., Two-machine chain-reentrant flow shop with the no-wait constraint,

European Journal of Industrial Engineering,14(4), pp. 573-597, 2020.
Browne S, Yechiali U. Scheduling deteriorating jobs on a single processor. Operations Research, 1990; 38(3): pp.

495-498, 1990.
Chen J-S. A branch and bound procedure for the reentrant permutation flow-shop scheduling problem. Int J Adv Manuf

Technol,; 29: 1186–1193, 2006.

Proceedings of the International Conference on Industrial Engineering and Operations Management

© IEOM Society International

Chen J-S, Pan J.C-H, Wu C-K. Minimizing makespan in reentrant flow-shops using hybrid tabu search. Int J Adv
Manuf Technol, 2007; 34, pp. 353-361, 2007.

Chen J-S, Pan J.C-H, Lin C-M. A hybrid genetic algorithm for the re-entrant flow-shop scheduling problem. Expert
Systems with Applications 2008; 34: pp. 570–577, 2008.

Graves S.C, Meal H.C, Stefek D, Zeghmi A.H. Scheduling of re-entrant flow shops. Journal of Operations
Management 1983; 3(4): pp. 197-207, 1983.

Hindi K.S, Mhlanga S. Scheduling deteriorating jobs on parallel machines: a simulated annealing approach.
Production Planning & Control 2001; 12(1): pp. 76-80, 2001.

Jafari A-A, Khademi-Zare H, Lotfi M.M, Tavakkoli-Moghaddam R. A note on “On three-machine flow shop
scheduling with deteriorating jobs”. International Journal of Production Economics 2017; 191: pp. 250–252,
2017.

Ji M, Cheng T.C.E. Scheduling resumable simple linear deteriorating jobs on a single machine with an availability
constraint to minimize makespan. Computers & Industrial Engineering 2010; 59: pp. 794–798,2010.

Kononov A., and Gawiejnowicz S. NP-hard cases in scheduling deteriorating jobs on dedicated machines. Journal of
the Operational Research Society 2001; 52: pp. 708-718.

Kubiak W, van de Velde S. Scheduling deteriorating jobs to minimize makespan. Naval Research Logistics 1998; 45:
pp. 511-523, 1998.

Mosheiov G. V-shaped policies for scheduling deteriorating jobs. Operations Research 1991; 39(6): pp. 979-991,
1991.

Ng C.T, Wang J.-B, Cheng T.C.E, Liu L.L. A branch-and-bound algorithm for solving a two-machine flow shop
problem with deteriorating jobs. Computers &Operations Research 2010; 37: pp. 83-90, 2010.

Pan JC-H, Chen J-S. Minimizing makespan in re-entrant permutation flow-shops. Journal of the Operational Research
Society 2003; 54: pp. 642-653, 2003.

Rifai A.P., Mara S.T.W., and, Sudiarso A., Multi-objective distributed reentrant permutation flow shop scheduling
with sequence-dependent setup time, Expert Systems with Applications, 183, 115339

Rifai A.P., Nguyen H-T, Dawal S.Z.M. Multi-objective adaptive large neighborhood search for distributed reentrant
permutation flow shop scheduling. Applied Soft Computing; 40: pp. 42–57, 2016.

Shiau Y-R., Lee W-C, Wu C-C and Chang C-M. Two-machine flowshop scheduling to minimize mean flow time
under simple linear deterioration. Int J Adv Manuf 2007; 34: pp. 774–782, 2007.

TasoujiHassanpour S, Amin-Naseri M. R, Nahavandi N. Solving re-entrant no-wait flowshop scheduling problem.
IJE TRANSACTIONS C: Aspects 2015; 28(6): pp. 903-912, 2015.

Wang H, Huang M, Wang J. An effective metaheuristic algorithm for flowshop scheduling with deteriorating jobs.
Journal of Intelligent Manufacturing 2019; 30: pp. 2733–2742, 2019.

Wang J-B., Wang J-J, Ji P. Scheduling jobs with chain precedence constraints and deteriorating jobs. Journal of the
Operational Research Society 2011; 62: pp. 1765–1770.

Wang J-B, Xia Z-Q. Scheduling jobs under decreasing linear deterioration. Information Processing Letters 2005; 94:
pp. 63–69, 2005.

Zheng S., He Z., Yang Z., Chu C., and Wang N., Effective upper and lower bounds for a two-stage reentrant flexible
flow shop scheduling problem, Computers & Operations Research, 2023, 153: 106183, 2023.

Biographies
Koketso Mbewe is a practicing metallurgical engineering practitioner who completed a Master’s studies in Industrial
Engineering in the University of Pretoria. She has interest in the applications of operations research techniques in
diverse areas of manufacturing, especially in metal processing.

Olufemi Adetunji is a professor of Industrial and Systems Engineering in the University of Pretoria. His interest is
in the planning and control of manufacturing systems.

	Reentrant Permutation Flow Shop Scheduling
	with a Deteriorating Schedule
	Abstract
	1. Introduction
	2. Literature
	3. Model development and solution algorithms
	4.1 Experimental design
	4.2 Data generation for processing times
	4.3 Data generation for penalty matrices
	Development of test instances
	GA parameter setting
	5. Implementation

	6. Discussion of results
	Count of minimum makespan
	Proportion above minimum makespan
	Computation times

	7. Conclusions and Recommendations
	Conflict of Interest
	References

