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Abstract 
 
The classic flow shop problem assumes that jobs make only single passes through the processing machines and that 
the processing times are not affected by the length of the delay before jobs are processed. These assumptions are being 
relaxed in recent papers considering re-entrance problems and those with schedule deterioration. In this paper, these 
two assumptions are relaxed together, and a model of a re-entrance flow shop with a deteriorating schedule is 
considered. A linear programming formulation of the problem is first presented. Three solution heuristics are 
considered under different deterioration scenarios. It was observed that both the Nawaz Enscor and Ham (NEH) 
algorithm and Genetic Algorithm (GA) performed much better than the Campbell Dudek and Smith (CDS) algorithm. 
Overall, when considering both the quality of the solution and computational time together, the NEH algorithm seems 
to have performed much better than the others as the size of problems increases. This model would find useful 
applications in many metallurgical and manufacturing processes where such problems are usually encountered. 
 
Keywords 
Reentrant flow shop, deteriorating schedule, CDS algorithm, NEH Algorithm, Genetic Algorithm, makespan 
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1. Introduction 
The classical flow shop is characterized by jobs that are processed on each machine within the system only once. Chen 
%3et al. (2008), however, stated that in reality, this assumption is sometimes violated. The allowance of jobs to return 
to one or more machines for further processing is termed reentrance.  For decades, the reentrant flow shop problem 
has attracted the attention of many researchers, and this can be attributed to the drive to reduce operating costs and 
increase profits by manufacturing facilities. The reentrant property is observed in processes such as semiconductor 
manufacturing, wherein components need to be processed more than once on the same machine before the final 
product is achieved, and cold drawing operations in steel tube manufacturing. Reentrance can also be used in tool 
machining shops, where a particular tool might require a polishing stage or heat treatment in between the machining 
stages to achieve the final tooling finish (Graves et al. 1983). 
 
Deterioration of jobs, on the other hand, can be observed in processes where job processing time is increased as a 
result of queuing due to the unavailability of machines, deterioration in the state of the job, or deterioration caused by 
fatigue or tiredness of machine operators. In some instances jobs require a preparation step before processing; the 
cold-drawn tube manufacturing is a typical example. The input material may lose temperature while it waits to be 
processed and would need to be re-heated to ensure it is at the correct temperature before processing. Ingot and/or 
bloom rolling can also be affected by the deterioration of processing times. In these steel rolling operations, the input 
material is reheated to a predetermined temperature before rolling. Each steel grade has a critical temperature below 
which rolling becomes difficult and may cause machine damage. Below this temperature, the input ingots/blooms are 
said to have deteriorated and require a reheating cycle. In all cases of deteriorating jobs, the resultant effect is 
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processing times that increase with an increase in waiting time before processing. A deteriorating job is, thus, referred 
to as a job that will take more time to be processed later than when it is processed first in the schedule. 

This paper presents a permutation flow shop that considers a scheduling problem that is both reentrant and has a 
deteriorating schedule. The reentrant flow shop problem has been studied for various machine environments; however, 
work on deteriorating jobs has significantly been on one and two-machine environments.  To date, there appears to be 
no evidence of work published that considers the reentrant flow shop with deteriorating jobs and this paper seeks to 
fill that gap.  The aim of this study is to develop a mathematical programming model and utilize heuristics to solve 
the problem related to scheduling of 𝑁𝑁 jobs on 𝑀𝑀 machines in a reentrant permutation flow shop with deteriorating 
jobs with the objective being the minimization of the makespan. The remainder of the paper is organized in the 
following manner. Section 2 gives a literature review on the study of reentrance and deteriorating jobs. The model for 
the problem being studied and the proposed solution algorithms are presented in Section 3. Section 4 covers the 
experimental design for computations. The results of the computational experiments are presented and discussed in 
Section 5. The paper is concluded in Section 6. 
 
2. Literature 
The earliest work identified on reentrant flow shop scheduling was that of Graves et al. (1983). The manufacturing 
process that was used for their study is that of an integrated circuit fabrication facility. They solved the problem of 
minimizing the throughput time using a heuristic. It was initially suggested that the system could be operated as a job 
shop with the use of sequencing rules to determine an optimal sequence of jobs at each machine. This implied that a 
simple Gantt chart for sequencing jobs in this system could be used. However, for a large number of jobs, it would be 
nearly impossible to manage. A heuristic was, thus, developed to minimize the throughput time using a cyclic 
scheduling method at specified production rates. The heuristic was referred to as a cyclic Gantt chart. In the cyclic 
schedule, the chart is divided into manageable cycle times to enable the scheduler to know the number of cycles 
required to complete a single job. One of the unique features of the model is that the generated schedule could be 
adapted when conditions in the system such as shutdowns, machine breakdowns and operator unavailability arose. 
The downside, however, was that the model was developed as a computer program from which the results needed to 
be transferred onto a shop schedule. Any errors that take place during the transfer of the schedule from the program 
to the workshop can affect the entire process negatively.  
 
Pan and Chen (2010) studied the minimization of makespan in a reentrant permutation flow shop. They proved that 
the reentrant flow shop problem is NP-hard, even for a two-machine shop. Heuristics were used to solve the problem. 
Chen (2006) extended the work done on the reentrant permutation flow shop by developing a branch and bound 
algorithm. For the algorithm to reach an optimal solution quickly, a branching rule, upper and lower bounds, and a 
fathoming rule were utilised. Chen et al. (2007) developed an integer programming model and used heuristics to find 
an initial solution.  Tabu search was then applied to improve the initial solution in scheduling jobs in a reentrant 𝑁𝑁 
machine environment to minimize makespan.  
 
Recent work includes scheduling a reentrant no-wait shop and systems with multiple objectives. One such problem 
was studied by Rifai et al. (2016) where three objective functions, namely maximum completion time, total production 
cost, and average tardiness, were integrated. A multi-objective adaptive large neighborhood search (MOALNS) 
algorithm was developed to find near-optimal solutions for the problem. TasoujiHassanpour et al. (2015) proved that 
the no-wait reentrant problem is NP-hard and utilized heuristic algorithms to solve the problem. Genetic algorithm, a 
bottleneck-based heuristic, and simulated annealing heuristics were used to solve the problem. The simulated 
annealing algorithm outperformed the genetic algorithm and the bottleneck-based algorithm in terms of finding the 
best solution within reasonable computation time. Amrouche et al.  (2020) presented a two-machine chain-reentrant 
flowshop problem with no wait, which was solved in polynomial time based on dynamic programming formulation. 
Rifai et al (2021) proposed the multi-objective adaptive large neighborhood search (MOALNS) algorithm to solve the 
Multi-objective distributed reentrant permutation flow shop scheduling with sequence-dependent setup time. Zheng 
et al. (2023) investigated the optimal solution properties of a two-stage reentrant flexible flow shop scheduling 
problem using mixed integer linear programming and a greedy random constructive heuristic.  
 
The job deterioration problem is relatively new, currently spanning only three decades of research. However, much 
like any area of scheduling, the job deterioration problem has had variants of the original problem since its inception. 
The first decade did not see much development. Studies were conducted with a focus on single-machine problems 
with the objective of optimizing makespan (Browne and Yechiali, 1990), Kubiak and van de Velde (1998) and 
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minimization of flowtime Mosheiov (1991). Browne and Yechiali (1990) pioneered the study of deteriorating jobs, 
with a focus on a single machine problem with simple linear deterioration and an objective of makespan minimization. 
They proved that the processing time of a job increases linearly in relation to the waiting time, and they used 
scheduling policies to develop a solution approach. Meanwhile, Mosheiov (1991) studied the minimization of 
flowtime for 𝑁𝑁 jobs on a single machine and proved that the optimal sequence for the problem is V-shaped. The V-
shape property essentially means that the first set of jobs to be scheduled is arranged in decreasing order of the 
deterioration rate. In contrast, the remaining set of the jobs is scheduled in increasing order of their deterioration rate.  
A study proving the NP-hardness of a two- and three-machine scheduling problem for deteriorating jobs was 
conducted by Kononov and Gawiejnowicz (2001). The types of deteriorating jobs studied were simple linear and 
proportional deterioration with the objective of minimizing the makespan. Hindi and Mhlanga (2001) studied two 
variants of deterioration, simple linear deterioration and jobs with basic processing times. Simple linear deterioration 
assumes that jobs are only available at a positive time 𝑡𝑡0. Jobs with basic processing time are said to have a scheduling 
horizon that starts at 𝑡𝑡 = 0 for all jobs. The total processing time of jobs with basic processing is made up of two 
components; the deterioration-affected component and the actual processing time. Thus, the longer a job waits in the 
queue before processing, the longer it will take to be completed. Heuristics were used to schedule jobs for the parallel 
machine environment to minimise makespan. Their choice of the solution technique was based on the fact that 
scheduling problems with parallel machines is NP-hard, and introducing deterioration increases the complexity of the 
problem. 
 
A lot of focus for the scheduling of deteriorating jobs has been on manufacturing facilities with machines that are less 
than or equal to three. Single-machine scheduling of deteriorating jobs has been studied extensively, for a range of 
variations (Browne and Yechiali (1990), Mosheiov (1991), Wand and Xia (2005), Ji and Cheng (2010), Wang and 
Wang (2011)). Shiau et al. (2007) studied deteriorating jobs for two machine manufacturing systems. Jafari et al. 
(2017) studied three machine problems. Wang et al. (2019), however, studied an 𝑀𝑀 machine (m > 3) problem for 
scheduling deteriorating jobs. These were one of the few identified in the literature to have studied the problem for 𝑀𝑀 
machines. They utilized a metaheuristic called multi-verse optimizer (MVO) to find a solution to the problem.  
 
3. Model development and solution algorithms 
 
The following notations are adopted for model development: 
 

Symbol Description 

𝑱𝑱 job index set; 𝐽𝐽: {𝑗𝑗 = 1,2, … ,𝑘𝑘}, where 𝑘𝑘 is the number of jobs 
𝑴𝑴 machine index set; 𝑀𝑀: {𝑚𝑚 = 1,2, … ,𝑛𝑛}, where 𝑛𝑛 is the number of machines 
𝑳𝑳  
 

number of levels of job 𝑗𝑗; 𝐿𝐿: {𝑙𝑙 = 1,2, … , 𝑏𝑏}, where 𝑏𝑏 is the number of levels 

𝒊𝒊 position of job 𝑗𝑗 in the sequence 
𝒙𝒙𝒊𝒊𝒊𝒊 1, if job 𝑗𝑗 is scheduled in the 𝑖𝑖th position at each level; 0 otherwise 

𝒔𝒔𝒎𝒎𝒎𝒎𝒊𝒊 the starting time of a job scheduled in the 𝑖𝑖th position of level 𝑙𝑙 on machine 
𝑚𝑚 

𝒂𝒂𝒎𝒎𝒎𝒎𝒊𝒊 the deterioration rate of a job scheduled in the 𝑖𝑖th position of level 𝑙𝑙 on 
machine 𝑚𝑚 

𝒂𝒂𝒊𝒊 the deterioration rate of a job 𝑗𝑗 

𝒑𝒑′𝒊𝒊𝒎𝒎𝒎𝒎 the normal processing time of the operation of job 𝑗𝑗 on machine 𝑚𝑚 at level 𝑙𝑙 

𝒑𝒑𝒊𝒊𝒎𝒎𝒎𝒎  the actual processing time of the operation of job 𝑗𝑗 on machine 𝑚𝑚 at level 𝑙𝑙, where 
 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑝𝑝′𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑎𝑎𝑗𝑗𝑗𝑗𝑚𝑚 . 𝑠𝑠𝑗𝑗𝑗𝑗𝑚𝑚 

𝑪𝑪𝒎𝒎𝒂𝒂𝒙𝒙  completion time of the last job in the sequence 
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𝑪𝑪𝒊𝒊  completion time of job 𝑗𝑗 
 
The following assumptions are also made for model development: 

• All jobs are available from time zero (batch processing) 
• Each machine can only process a single job at a time 
• Jobs visit every machine in the same order 𝑀𝑀1,𝑀𝑀2, …𝑀𝑀𝑛𝑛 (permutation) 
• No machine breakdowns 
• All job processing times are known 
• There is unlimited storage space for jobs waiting to be processed 
• Pre-emption is not allowed 
• Machine set-up times are included in the processing time 

 
The model is presented as follows: 
Minimise   𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚        (1) 
Subject to   ∑ 𝑥𝑥𝑚𝑚𝑗𝑗𝑘𝑘

𝑗𝑗=1 = 1          𝑖𝑖 = 1,2, … , 𝑘𝑘      (2) 
    ∑ 𝑥𝑥𝑚𝑚𝑗𝑗 = 1          𝑗𝑗 = 1,2, … , 𝑘𝑘𝑞𝑞

𝑚𝑚=1      (3) 

    𝑠𝑠111 = 0       (4) 

                   𝑠𝑠1,1,𝑚𝑚+1 =  𝑎𝑎11𝑚𝑚 . 𝑠𝑠11𝑚𝑚 +  ∑ 𝑥𝑥𝑚𝑚𝑗𝑗𝑝𝑝𝑗𝑗11𝑘𝑘
𝑗𝑗=1          𝑖𝑖 = 1,2, … , 𝑞𝑞 − 1    (5) 

𝑠𝑠1,𝑗𝑗,𝑚𝑚+1 ≥ 𝑎𝑎1𝑗𝑗𝑚𝑚 . 𝑠𝑠1𝑗𝑗𝑚𝑚 + ∑ 𝑥𝑥𝑚𝑚𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝑝𝑝111            𝑙𝑙 = 2,3, … , 𝑏𝑏; 𝑖𝑖 = 1,2, … , 𝑞𝑞 − 1    (6) 

𝑠𝑠𝑗𝑗,𝑗𝑗,𝑚𝑚+1 ≥ 𝑎𝑎𝑗𝑗𝑗𝑗𝑚𝑚 . 𝑠𝑠𝑗𝑗𝑗𝑗𝑚𝑚 + ∑ 𝑥𝑥𝑚𝑚𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗              𝑚𝑚 = 2,3, …𝑛𝑛; 𝑙𝑙 = 1,2, … , 𝑏𝑏; 𝑖𝑖 = 1,2, … , 𝑞𝑞 − 1 (7) 

𝑠𝑠1,𝑗𝑗+1,1 ≥ 𝑎𝑎1𝑗𝑗𝑞𝑞 . 𝑠𝑠1𝑗𝑗𝑞𝑞 + ∑ 𝑥𝑥𝑞𝑞𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗1               𝑙𝑙 = 1,2, … , 𝑏𝑏 − 1     (8) 

𝑠𝑠𝑗𝑗,𝑗𝑗+1,1 ≥ 𝑎𝑎𝑗𝑗𝑗𝑗𝑞𝑞 . 𝑠𝑠𝑗𝑗𝑗𝑗𝑞𝑞 + ∑ 𝑥𝑥𝑞𝑞𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗              𝑚𝑚 = 2,3, …𝑛𝑛 − 1; 𝑙𝑙 = 1,2, … , 𝑏𝑏 − 1  (9) 

𝑠𝑠𝑗𝑗+1,1,1 = 𝑎𝑎𝑗𝑗11. 𝑠𝑠𝑗𝑗11 + ∑ 𝑥𝑥1𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗1𝑗𝑗             𝑚𝑚 = 1,2, … ,𝑛𝑛 − 1    (10) 

𝑠𝑠𝑗𝑗+1,𝑗𝑗+1,1 ≥ 𝑎𝑎𝑗𝑗𝑗𝑗𝑞𝑞 . 𝑠𝑠𝑗𝑗𝑗𝑗𝑞𝑞 + ∑ 𝑥𝑥𝑞𝑞𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗          𝑚𝑚 = 1,2, … ,𝑛𝑛 − 1; 𝑙𝑙 = 1,2, … , 𝑏𝑏 − 1  (11) 

𝑠𝑠𝑗𝑗+1,𝑗𝑗,𝑚𝑚 ≥ 𝑎𝑎𝑗𝑗𝑗𝑗𝑚𝑚𝑠𝑠𝑗𝑗𝑗𝑗𝑚𝑚 + ∑ 𝑥𝑥𝑚𝑚𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗    𝑚𝑚 = 1,2,3; 𝑙𝑙 = 1,2, … , 𝑏𝑏; 𝑖𝑖 = 1,2, … , 𝑞𝑞; (𝑙𝑙, 𝑖𝑖) ∉ {(1,1)} (12) 

𝑠𝑠𝑗𝑗,𝑗𝑗+1,𝑚𝑚 ≥ 𝑎𝑎𝑛𝑛𝑗𝑗𝑚𝑚 . 𝑠𝑠𝑛𝑛𝑗𝑗𝑚𝑚 + ∑ 𝑥𝑥𝑚𝑚𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝑝𝑝𝑗𝑗𝑗𝑗𝑛𝑛          𝑙𝑙 = 1,2, … , 𝑏𝑏 − 1; 𝑖𝑖 = 1,2, … , 𝑞𝑞    (13) 

𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚 = ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑛𝑛𝑘𝑘
𝑗𝑗=1 ∏ (1 + 𝑎𝑎𝑟𝑟)𝑘𝑘

𝑟𝑟=𝑗𝑗+1         (14) 

𝐶𝐶𝑗𝑗𝑚𝑚𝑚𝑚 ≥ 0, 𝑠𝑠𝑗𝑗𝑗𝑗𝑚𝑚 ≥ 0    𝑚𝑚 = 1,2,3; 𝑙𝑙 = 1,2, … , 𝑏𝑏; 𝑖𝑖 = 1,2, … , 𝑞𝑞; 

𝑥𝑥𝑚𝑚𝑗𝑗 = 0 𝑜𝑜𝑜𝑜 1     𝑖𝑖 = 1,2, … , 𝑞𝑞; 𝑗𝑗 = 1,2, … , 𝑘𝑘        (15) 
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Equation (1) is the objective function. Constraints (2) and (3) describe the decision variables for the problem ensuring 
that each job is scheduled in only a single position and that a position has only a single job allocated to it, while 
constraint (4) defines the starting time of the first operation scheduled at the first level of the first machine. Constraints 
(5) and (10) define the starting time of any job, on any machine at the first level of operation. Constraints (6) to (9) 
and (11) to (13) describe the precedence of jobs in the process. Constraint (14) is the expression for calculating the 
makespan of the system, allowing deterioration of processing time, while constraint (15) enforces the non-negativity 
and binary restrictions. 

Three solution algorithms; CDS, NEH, and GA, which were adapted for reentrance and deterioration, are presented 
as pseudo-codes 1, 2, and 3, respectively. 

Pseudo-code 1: Modified CDS algorithm for reentrant flow shop problem 
//Create an aggregate processing time for each job for each machine across all levels 
For every job across all levels 𝒎𝒎 = 𝟏𝟏 𝒕𝒕𝒕𝒕 𝒃𝒃 
 𝒑𝒑𝒊𝒊𝒎𝒎′ = ∑ 𝒑𝒑𝒊𝒊𝒎𝒎𝒎𝒎𝒃𝒃

𝒎𝒎=𝟏𝟏  
EndFor  
//solve 𝒏𝒏 − 𝟏𝟏 surrogate two machine problems 
Set makespan to a large number 
For 𝒛𝒛 varying from 𝟏𝟏 to 𝒏𝒏 − 𝟏𝟏 
  
For every job, 𝒊𝒊, on two pseudo machines, 𝑴𝑴𝟏𝟏

′  and 𝑴𝑴𝟐𝟐
′  

Create two surrogate processing times as follows 
 𝒑𝒑𝒊𝒊𝒎𝒎𝟏𝟏′ = ∑  𝒑𝒑𝒊𝒊𝒎𝒎′𝒛𝒛

𝒎𝒎=𝟏𝟏  as processing time of job 𝒊𝒊 on 𝑴𝑴𝟏𝟏
′  

𝒑𝒑𝒊𝒊𝒎𝒎𝟐𝟐′ = ∑  𝒑𝒑𝒊𝒊𝒎𝒎′𝒏𝒏
𝒎𝒎=𝒏𝒏−𝒛𝒛+𝟏𝟏=𝟏𝟏  as processing time of job 𝒊𝒊 on 𝑴𝑴𝟐𝟐

′  
EndFor 
 Solve sequencing problem for 𝑴𝑴𝟏𝟏

′  and 𝑴𝑴𝟐𝟐
′  using Johnson’s Algorithm 

 If makespan from sequence is better 
Update makespan 
Update optimum sequence 

EndIf 
EndFor 
 
Johnson’s Algorithm 
Create two sets, 𝑰𝑰 and 𝑰𝑰𝑰𝑰 such that 
 If 𝒑𝒑𝒊𝒊𝒎𝒎𝟏𝟏′  <  𝒑𝒑𝒊𝒊𝒎𝒎𝟐𝟐′  allocate job to set 𝑰𝑰 
 ElseIf 𝒑𝒑𝒊𝒊𝒎𝒎𝟐𝟐′   <  𝒑𝒑𝒊𝒊𝒎𝒎𝟏𝟏′  allocate job to set 𝑰𝑰𝑰𝑰 
 Else allocate to either set  
 EndIf 
Sort set 𝑰𝑰 in non-decreasing order of 𝒑𝒑𝒊𝒊𝒎𝒎𝟏𝟏′  
Sort set 𝑰𝑰𝑰𝑰 in non-increasing order of 𝒑𝒑𝒊𝒊𝒎𝒎𝟐𝟐′  
Append set 𝑰𝑰𝑰𝑰 to set 𝑰𝑰 
 
Pseudo-code 2: NEH Algorithm 
For each job, 𝒊𝒊, 
Determine the work content, 𝒑𝒑𝒊𝒊′, from 𝒑𝒑𝒊𝒊′ = ∑ ∑ 𝒑𝒑𝒊𝒊𝒎𝒎𝒎𝒎𝒏𝒏

𝒎𝒎=𝟏𝟏
𝒃𝒃
𝒎𝒎=𝟏𝟏  

EndFor 
Sort jobs into set 𝑰𝑰 in decreasing order of work content, 𝒑𝒑𝒊𝒊′,  
Take the first two jobs out of set 𝑰𝑰 and form two partial sequences with them 
Retain the partial sequence with the minimum makespan of the two 
While there exists an unscheduled job in set 𝑰𝑰 
 Remove the next job (with largest work content) 
Form a set of new partial sequences by inserting the job in all possible positions in the currently retained partial 
sequence 
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 Retain one of the new partial sequence which has minimum makespan 
EndWhile 
 

  

Pseudo-code 3: GA algorithm 
Set current iteration to 1  
Generate initial population 
Evaluate fitness and rank chromosomes based on makespan 
Store the best chromosome 
While current iteration is less than the required iterations 

Evaluate fitness and rank chromosomes based on makespan 
Update the best chromosome found 
Retain top performers and discard the remaining chromosomes 
Cross breed top performers to create new chromosomes make up population 
Mutate the top chromosomes 
Increment current iteration 

 
EndWhile 
 

 
The various components of GA, including the crossover and mutation operators that were modified to incorporate 
reentrance and deterioration are discussed next. 
 
Chromosome representation 
To represent a chromosome, a vector of the same length as the number of jobs to be sequenced is created and 
populated with a random number between 1 and the number of jobs in such a way as to guarantee that every job is 
placed in exactly one position only in the vector. 
 
Crossover Implementation 
The crossover algorithm makes use of a logic termed herein as autogamy, meaning a chromosome is crossed with 
itself. The advantages of this procedure are twofold. The first is that it ensures that all jobs are placed exactly in one 
position after crossover. This is important because it is easy for some jobs to be missing while others are present in 
more than a single position after the crossover process. The second advantage is that it preserves some partial 
sequences of schedules that have performed well so that the advantage of promising sequences is not lost while trying 
to explore other areas during search. The procedure randomly selects, through a probability mechanism, a breeding 
chromosome. It then randomly generates the crossover point. From the crossover point, two partial sequences (the 
head and the tail) are created. The tail partial sequence is swapped to the head position as a block while the head 
sequence is also swapped to the tail position as a block. This way, the promising partial sequences are preserved with 
minimum disturbance. If further mix in the sequence is desired, more than one crossover procedures may be 
implemented in a single reproduction process. How the partial sequences are repositioned may also alter the new 
sequences formed. 
 
4. Mutation implementation 
In implementing the mutation process, there is also the need to ensure that all jobs are sequenced in exactly one 
position. To do this, a swap procedure is implemented. Two random positions are generated within the sequence and 
the jobs in these two positions are swapped. This procedure is repeated for the number of mutations required per 
chromosome. 
 
4.1 Experimental design 
The experimental design procedure involves the generation of data, development of test instances, and implementation 
of the experiments.  
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4.2 Data generation for processing times 
Test data sizes and the method of data generation approach used by Chen et al. [3] for minimizing makespan in 
reentrant flow shops were adopted. The method involves the use of a wide range of data sizes; it tackles the scheduling 
of jobs in manufacturing facilities with as few as two operational levels to as many as ten operational levels. Widening 
the test data range allows for observations to be made on the effect that manufacturing facility configurations have on 
the makespan.  
 
Parameters used in the experimental environment are described as 𝑘𝑘 𝑥𝑥 𝑛𝑛 𝑥𝑥 𝑏𝑏; where 𝑘𝑘 represents the number of jobs, 
𝑛𝑛 the number of machines, and 𝑏𝑏 the number of operational levels. The test data is divided into three categories: 
small, medium, and large problem sizes. The small problems are composed of eight matrix sizes: 3𝑥𝑥3𝑥𝑥3, 3𝑥𝑥3𝑥𝑥4, 
3𝑥𝑥4𝑥𝑥2, 4𝑥𝑥3𝑥𝑥3, 4𝑥𝑥4𝑥𝑥3, 4𝑥𝑥5𝑥𝑥3, 4𝑥𝑥4𝑥𝑥4, and 4𝑥𝑥5𝑥𝑥4. Medium problems are also composed of eight matrix sizes:  
6𝑥𝑥6𝑥𝑥2, 6𝑥𝑥8𝑥𝑥5, 6𝑥𝑥9𝑥𝑥3, 7𝑥𝑥7𝑥𝑥5, 7𝑥𝑥8𝑥𝑥4, 8𝑥𝑥8𝑥𝑥3, 9𝑥𝑥9𝑥𝑥2, and 10𝑥𝑥10𝑥𝑥2. The large problems include five matrix sizes: 
12𝑥𝑥12𝑥𝑥10, 15𝑥𝑥15𝑥𝑥5, 20𝑥𝑥20𝑥𝑥4, 25𝑥𝑥25𝑥𝑥8, and 30𝑥𝑥30𝑥𝑥5. Data was generated randomly as no benchmark data was 
available. Two types of data sets were generated. The first set of processing times was generated in the range [1, 100] 
on all machines since most benchmark data is generated within this range (Chen et al., 2007). The set was then termed 
the same data range (SDR) set. The second set was generated by first setting unique upper and lower bounds for the 
processing times of each machine in the first level within the range [1, 100].  These unique data ranges were then 
applied to all jobs on all other operational levels, and was termed the unique data range (UDR) set. The unique 
processing time ranges per machine were introduced to mimic typical manufacturing. In manufacturing, machines 
often have specific processing times based on their function. A set of five instances of processing time matrices was 
generated for each of the data set types (i.e. SDR and UDR) for each of the matrix sizes mentioned. 

4.3 Data generation for penalty matrices 
Penalty matrices were generated to evaluate the effect of deterioration of processing times within the range [0, 0.1].  
This penalty range was classified as small by Ng et al. (2010) in their study of a two-machine flow shop problem with 
deteriorating jobs. Four scenarios were created within this range. 
 

Table 1.  Scenarios for delay penalty 

Scenario # Scenario Details 

1 No penalty To observe the effect of job reentrance system without 
deterioration (delay penalty). 

2 Penalty of 0.1 only on the first machine in 
the first operational level for jobs not 
scheduled first   

To determine the effect of penalizing delay only on 
the first machine. 

3 0.1 penalty on the first machine and 0.05 
penalty for all other jobs not scheduled 
first   

To determine the effect of uniformly penalising all 
delays on all machines, with the delay on the first 
machine incurring higher penalty 

4 Random penalty in the range        [0.01, 
0.1] on all jobs not scheduled first 

To determine the effect of random deterioration rates 
on all machines. 

 
Development of test instances 
A test instance refers to a computation conducted on a particular processing time matrix instance. Computations were 
run for all four penalty scenarios on CDS, NEH and GA algorithms for the three test categories (i.e. small, medium 
and large problems). Unlike the CDS and NEH heuristics, the GA algorithm requires more information in addition to 
the processing time and deterioration rate. The additional GA parameters are discussed next. 
 
GA parameter setting  
Parameters required for the execution of the GA include population size, mutation rate, retention rate and the number of iterations. 
The same mutation and retention rates were used for all problem sizes. The retention rate used was 0.5. A rate of 0.5 was selected 
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for the mutation rate after initially testing with 0.3, 0.5, and 0.7.  Figures 1 and 2 are a representation of the makespan convergence 
for the tested instances of mutation rates. The population sizes and the number of iterations were varied for the different matrix 
sizes. The population sizes were selected in relation to the number of machines for the matrix. For the small problems fewer 
population sizes were used. Problems with fewer machines have a tendency to repeat chromosomes due to the limited number 
of possible combinations.  
 

Mutation rate = 0.5 

 

Mutation rate = 0.3 

 

Mutation rate = 0.7 

 
 

Figure 1. GA solution convergence for a 25x25x8 matrix for various mutation rates with scenario 3 
 
Limiting the population size to a small number eliminates this challenge. The number of iterations for each matrix size 
was selected if the minimum makespan values appear to always converge (or stabilise) within the selected number 
of runs.  
 

Mutation rate = 0.5 

 

Mutation rate = 0.3 

 

Mutation rate = 0.7 

 
 

Figure 2.  GA solution convergence for a 25x25x8 matrix with scenario 4 for various mutation rates 

5. Implementation  
The three algorithms, CDS, NEH, and GA, were coded in MATLAB R2019a, and all computational experiments were 
performed with this code. The experiment was run on all categories of test instances. For each category, computations 
for makespan, subject to the varying degrees of penalty were performed using the three algorithms.  
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During experimentation, the minimum makespan values were achieved and their corresponding computation times 
were recorded. The makespan output analysis and statistical testing were performed in MS Excel. The output analysis 
was conducted by applying two measures; the count of the number of times that any given algorithm returned the 
lowest makespan value and the average proportion above the minimum makespan when an algorithm did not return 
the lowest makespan value. The procedure followed to execute the counting exercise involved several steps. The five 
makespan values returned for each matrix size were evaluated. A value of one was allocated for the test instances with 
the lowest makespan value, and zero otherwise. The count of instances is not mutually exclusive; i.e. a test instance 
of one algorithm is counted for as long as it returned the lowest value, regardless of another algorithm being already 
counted for the same test instance. 
 
The procedure for determining the average value above the minimum makespan was also stepwise. The minimum 
makespan value among the three algorithms for each of the matrix sizes was determined. This was then termed the 
global minimum. The average of the five instances of makespan values was calculated for each matrix size for the 
three algorithms. The proportional value above the global minimum was then calculated by subtracting the global 
minimum from the average makespan and then dividing by the global minimum. 
 
Statistical testing was applied on all instances of makespan values for each of the matrix sizes. The t-test was selected 
as the test of choice due to the random nature of the data and the small sample sizes being evaluated. Two sets of t-
tests were performed; one for the count of minimum makespan values and the other one for the proportion of values 
above the global minimum makespan.  The paired t-test for sample means was executed for the counts of minimum 
makespan and the proportion above minimum makespan.  
 
6. Discussion of results 
The results are divided into three sections, makespan analysis, statistical test results, and computation time’s 
discussion. 
 
Makespan Analysis 
The total number of counts when a solution method results in the lowest makespan value for the various test instances 
is presented in Table 2. The asterisks beside the counts indicate the algorithm(s) with the most number of lowest 
makespan for each test category. It should be noted that the maximum count obtainable for small and medium sized 
problems is 40, while for large sized problems is 25. 
 
The CDS algorithm reported several test instances that had the lowest makespan values for the small problems of 
scenario 1 (i.e. no deterioration) and scenario 2 (i.e. deterioration only on the first machine) for the SDR data set. The 
CDS algorithm also returned a few instances with the lowest makespan values for the small and medium problems of 
scenarios 1 and 2 for the UDR data set. Overall, the NEH and GA algorithms returned the most number of the lowest 
makespan values. For the SDR data set, GA returned more instances of the lowest makespan values than NEH. On 
the other hand, the NEH algorithm returned the most instances for the UDR data set, while dominating scenario 3 (i.e. 
uniform deterioration on all machines, with the first machine incurring the highest penalty) and scenario 4 (i.e. random 
deterioration on all machines).  

Table 2. Count of minimum makespan attainment 

  Problem 
size  

Same data range (SDR) Unique data range (UDR) 
CDS  NEH GA CDS  NEH GA 

Scenario 1  
Small 14 36 39* 8 34 35* 
Medium 0 20 34* 1 11 39* 
Large 0 15* 10 0 19* 7 

Scenario 2 
Small 11 35* 29 5 32* 30 
Medium 0 16 32* 1 16 33* 
Large 0 4 21* 0 13* 13* 

Scenario 3 
Small 0 33* 10 0 40* 3 
Medium 0 27* 13 0 32* 9 
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Large 0 8 17* 0 18* 7 

Scenario 4 
Small 0 33* 8 0 33* 8 
Medium 0 10 30* 0 23* 17 
Large 0 10 15* 0 15* 10 

 

The analysis of the average proportion above the global minimum makespan is presented in Table 3, and the asterisks 
beside the values indicate the lowest proportional value.  
 
The proportional values above the global minimum for the CDS algorithm got significantly large for the medium and 
large problem sizes of scenarios 3 and 4 as compared to scenarios 1 and 2 for both the SDR and UDR data sets. The 
NEH and GA returned the lowest proportional values, the same number of instances for the SDR data set. The NEH, 
however, had the lowest proportional values mostly for scenarios 3 and 4. For the UDR data set, the NEH returned 
the most instances of the lowest proportional values. As with the SDR data set, NEH dominated scenarios 3 and 4 
 

Table 3.  Average proportion above global minimum makespan 

  Problem 
size  

Same data range (SDR) Unique data range (UDR) 
CDS  NEH GA CDS  NEH GA 

Scenario 1  
Small 0.157 0.114 0.113* 0.116 0.089* 0.089* 
Medium 0.121 0.073 0.067* 0.038 0.023 0.019* 
Large 0.076 0.021* 0.024 0.036 0.010* 0.011 

Scenario 2 
Small 0.159 0.119 0.117* 0.122 0.097* 0.097* 
Medium 0.124 0.076 0.068* 0.041 0.028 0.024* 
Large 0.109 0.058 0.031* 0.077 0.042 0.029* 

Scenario 3 
Small 0.893 0.178* 0.269 0.738 0.088* 0.406 
Medium 2.189 0.070* 0.085 2.124 0.055* 0.075 
Large 6264 1.029* 1.605 3264 0.050* 0.069 

Scenario 4 
Small 1.209 0.184* 0.247 1.013 0.105* 0.174 
Medium 4.097 0.125* 0.317 4.320 0.093* 0.109 
Large 99723 0.195 0.100* 100254 0.197 0.182* 

.  
Statistical test of significance of differences 
Statistical testing was performed to determine if the difference in the count of the number of instances in which the 
minimum makespans were found by each of the algorithms was significant or not. The null hypothesis, H0, is that two 
algorithms being compared have no significant difference of the makespan values. The alternative hypothesis, H1, is 
that the algorithms have a significant difference in makespan values. This is important because the data were randomly 
generated. The statistical test values achieved are presented in Tables 6 and 8 for the count of the minimum makespan 
and proportion above the minimum makespan value respectively. The absolute values of the t statistic are of interest 
in determining the algorithm(s) resulting in the minimum makespan. The evaluation of the significance of the t stat 
values returned against the t critical value is presented in Tables 7 and 9. Instances for which there is no significant 
difference between two algorithms are denoted by N and S denotes results with a significant difference. Additionally, 
the algorithm that performed better for a particular problem size or penalty scenario is indicated in brackets for 
instances with a significant difference. 
 
Count of minimum makespan 
The NEH-GA comparison generally returned instances with the lowest t-stat values, however, with a few exceptions. 
The CDS-NEH comparison returned the lowest t stat values for scenario 2 (large problem sizes) and scenario 4 
(medium problem sizes) for the SDR data set, and scenario 1 (medium problem sizes) for the UDR data set. The CDS-
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GA comparison returned the lowest t stat values for scenario 3 (small problem sizes) and scenario 4 (small problem 
sizes) for the SDR data set, and scenario 4 (small problem sizes) for the UDR data set. GA was the better-performing 
algorithm for cases where there was a significant difference for the SDR data set. The NEH algorithm returned the 
majority of instances with the minimum makespan counts for the UDR data set. The difference in makespans was 
significant for any algorithm compared to CDS, with the CDS algorithm being the worst performing. It is for this 
reason that there is no indication of the algorithm which performs better for CDS-NEH and CDS-GA comparisons. 

 
Table 4.  t Stat values for the count of minimum makespan 

 

  
Problem 

size  

Same data range (SDR) Unique data range (UDR) 

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA 

Scenario 1  
Small -6.2973 -1.3556 -8.0623 -8.5105 -0.2981 -8.1219 
Medium -6.245 -3.0095 -14.8661 -3.6056 -8.5732 -27.2213 
Large -6 1 -4 -8.7178 2.753 -3.0551 

Scenario 2 
Small -6.958 1.5246 -5.1523 -8.1219 0.4953 -7.3193 
Medium -5.099 -3.1225 -12.49 -4.8374 -3.4426 -12.49 
Large -2.1381 -4.5434 -11.225 -5.099 0 -5.099 

Scenario 3 
Small -13.5594 4.6577 -3.6056 UNDEF 21.9317 -1.7782 
Medium -9 2.3333 -4.3333 -12.49 4.4733 -3.3649 
Large -3.3607 -1.8904 -7.1414 -7.8558 2.4004 -3.0551 

Scenario 4 
Small -13.5594 5.1058 -3.1225 -13.5594 5.1058 -3.1225 
Medium -3.6056 -3.6056 -10.8167 -7.2639 0.9475 -5.369 
Large -4 -1 -6 -6 1 -4 

 
Table 5.  Evaluation of the significance of T values for a count of minimum makespan 

 

  
Problem 

size  

Same data range (SDR) Unique data range (UDR) 

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA 

Scenario 1  

Small S N  S S N  S 

Medium S S (GA) S S S (GA) S 

Large S N  S S S (NEH) S 

Scenario 2 

Small S N  S S N  S 

Medium S S (GA) S S S (GA) S 

Large S S (GA) S S N  S 

Scenario 3 
Small S S (NEH) S N S (NEH) N 
Medium S S (NEH) S S S (NEH) S 
Large S N  S S S (NEH) S 

Scenario 4 
Small S S (NEH) S S S (NEH) S 
Medium S S (GA) S S N S 
Large S N  S S N  S 
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Proportion above minimum makespan 
In the test for a proportion of values above the minimum makespan, the same observation was made for all penalty 
scenarios and problem sizes. The NEH-GA comparison resulted in the lowest t-stat values. GA performed better for 
cases where there was a significant difference for the SDR data set with penalty scenarios 1 and 2. Penalty scenarios 
3 and 4 of the SDR data set were dominated by NEH. The NEH algorithm was the overall better-performing method 
for the UDR data set. The paired test of CDS with any method resulted in higher t-stat values, and thus a significant 
difference from t-critical was observed. The CDS 
 algorithm was the worst performing for both data sets. 
 

Table 6. t Stat values for proportion falling within the minimum makespan 
 

  
 Problem 

size 

Same data range Unique data range 

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA 

Scenario 1  

Small 5.2017 0.9105 5.2271 3.9067 0.3697 4.0086 

Medium 9.3686 3.1116 10.2402 6.774 4.1266 9.8536 

Large 21.2569 -1.7356 20.4309 24.4516 -3.0656 21.3496 

Scenario 2 

Small 4.9676 0.8628 5.1592 3.5914 -0.4565 3.5985 

Medium 9.1832 3.3348 10.6583 5.5364 3.0074 9.4545 

Large 6.9113 3.4371 6.3809 4.7638 1.3925 6.0476 

Scenario 3 

Small 15.3478 -3.5605 10.9191 17.5279 -2.9098 3.4483 

Medium 12.9587 -2.2846 12.997 12.4692 -5.3536 12.4092 

Large 3.3186 -1.3395 3.3186 2.9278 -2.2007 2.9278 

Scenario 4 

Small 11.6613 -5.1845 11.3359 12.7631 -5.3719 11.8116 

Medium 12.2037 -0.7797 8.344 12.2398 -1.4284 12.2818 

Large 2.7558 2.4267 2.7558 2.7092 0.3481 2.7091 
 
Table 7.  Evaluation of the significance of T values for proportion falling above the minimum makespan 
 

  
 Problem 

size 

Same data range Unique data range 

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA 

Scenario 1  

Small S N  S S N  S 

Medium S S (GA) S S S S 

Large S N S S S (NEH) S 

Scenario 2 

Small S N S S N S 

Medium S S (GA) S S S (GA) S 

Large S S (GA) S S N  S 

Scenario 3 

Small S S (NEH) S S S (NEH) S 

Medium S S (NEH) S S S (NEH) S 

Large S N  S S S (NEH) S 

Scenario 4 

Small S S (NEH) S S S (NEH) S 

Medium S N S S N  S 

Large S S (GA) S S N  S 
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Computation times 
The average computation times are presented in Table 8. The CDS algorithm had the shortest computation times, 
followed by NEH. The computation times increased slightly from the small problem size to the large problems for 
both the CDS and NEH algorithms for all penalty scenarios. The GA algorithm had the longest computation times for 
the large problem size. The time complexity for GA is influenced by the large population sizes and the high number 
of iterations related to the problem sizes.  

 
Table 8.  Average computation times 

 

Penalty 
type 

Solution 
method 

Small problems Medium problems Large problems 
Min 
computation 
time 

Max 
computation 
time 

Min 
computation 
time 

Max 
computation 
time 

Min 
computation 
time 

Max 
computation 
time 

Scenario 1 
CDS 0.0003 0.0393 0.0005 0.1402 0.0043 0.1017 
NEH 0.0002 0.0153 0.0006 0.0075 0.0157 0.5409 
GA 0.0252 0.2008 0.0993 0.8794 38 872 

Scenario 2 
CDS 0.0003 0.0890 0.0005 0.0650 0.0044 0.0993 
NEH 0.0003 0.0282 0.0009 0.0234 0.0166 0.2481 
GA 0.0251 0.3108 0.1589 7 42 915 

Scenario 3 
CDS 0.0003 0.0789 0.0005 0.0495 0.0051 0.0828 
NEH 0.0003 0.0558 0.0008 0.0995 0.0178 0.2942 
GA 0.0242 0.1700 0.1348 6 40 970 

Scenario 4 
CDS 0.0003 0.0468 0.0005 0.1554 0.0051 0.1385 
NEH 0.0003 0.0073 0.0007 0.0059 0.0174 0.3294 
GA 0.0313 0.1935 0.1735 7 46 874 

 
7. Conclusions and Recommendations 
The problem of scheduling a reentrant permutation flow shop with deteriorating jobs with the objective of minimizing 
makespan was studied. The CDS, NEH and GA algorithms were utilized to model the solution. The study involved 
test problems classified as small, medium and large. Simulations for various deterioration rates were conducted.  
The algorithms performed similarly for small problems that are not exposed to deterioration of processing time. The 
GA and NEH algorithms performed better than the CDS algorithm as the problem sizes increased in size (i.e. an 
increase in the number of jobs and machines). The NEH achieved the lowest makespan within reasonable computation 
times as problem sizes got bigger, and the complexity of deterioration of processing times increased. Essentially, the 
NEH algorithm is capable of handling changes that are introduced into the system being scheduled. In instances where 
the NEH achieved minimum makespan values above the global minimum, the proportional difference was small. The 
NEH algorithm, thus, appears to be the overall best-performing algorithm. For future studies, the NEH algorithm can 
be compared with other solution methods such as the branch and bound. 
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