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Abstract 

 
The optimization of patient flow within hospital emergency rooms (ERs) continues to be a significant challenge in 
healthcare operations. The protracted waiting times directly impact the patient satisfaction along with efficient 
resource allocation. This study presents a robust machine learning framework for the accurate prediction of ER waiting 
times. We identified and engineered key predictive features including patient acuity, staffing ratios, and temporal 
factors such as time of day and seasonality by leveraging a dataset of 5,000 patient encounters. Our methodology 
encompassed a comparative analysis of various machine learning algorithms including linear models, tree-based 
ensembles, and support vector machines to ascertain the optimal predictive architecture. Model performance was 
assessed via a rigorous 5-fold cross-validation process, employing Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE), and the coefficient of determination (R²). The findings reveal that a hyperparameter-tuned Stacked 
Ensemble Model yielded superior performance by achieving coefficient of determination (R²) of 0.9473. This outcome 
indicates a strong correlation between the model's predictions and the observed wait times, thus validating its ability 
to encapsulate the intricate and nonlinear dynamics inherent in ER operations. The developed model offers a validated 
data-driven tool for hospital administrators facilitating proactive resource management and ameliorated patient 
communication. This study highlights the capacity of advanced analytics to address significant operational 
inefficiencies within healthcare, presenting a trajectory towards an enhanced patient experience and more efficacious 
allocation of clinical resources. 
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1. Introduction 
Hospital emergency rooms (ERs) function as the critical ingress point for a significant portion of healthcare systems, 
operating under constant pressure to deliver timely and effective care to patients with a wide spectrum of conditions 
(Nyce et al., 2021). The escalating demand for emergency services, coupled with operational constraints, frequently 
leads to systemic strain, manifesting as overcrowding and significant delays (“Overcoming Common Challenges in 
the ED | Abbott Point of Care,” n.d.). These conditions place immense stress on clinical caregivers and represent a 
major patient safety concern (“Overcoming Common Challenges in the ED | Abbott Point of Care,” n.d.). Central to 

https://doi.org/10.46254/WC02.20250130
mailto:fahim4547@gmail.com
mailto:shamimhasan.mist@gmail.com
mailto:tghoshal@udel.edu


Proceedings of the 2nd World Congress on Industrial Engineering and Operations Management 
Windsor, Canada, October 14-16, 2025 

© IEOM Society International 

these operational challenges is the pervasive issue of protracted patient waiting times, a problem that transcends mere 
inconvenience to become a critical determinant of healthcare quality and patient outcomes. 
 
The consequences of excessive waiting times are severe and multifaceted. From a patient perspective, long waits are 
a primary driver of dissatisfaction, fundamentally shaping their perception of service quality and undermining trust in 
the healthcare institution (Nyce et al., 2021). More alarmingly, these delays are directly correlated with adverse clinical 
outcomes. Delays in diagnosis and treatment can lead to the exacerbation of symptoms, necessitate longer recovery 
periods, and in the most severe cases, result in permanent disability or mortality (“The Risks Associated with Long 
ER Wait Times | Physicians Premier ER,” n.d.). The phenomenon of patients leaving without being seen (LWBS) has 
nearly doubled in recent years, a direct consequence of intolerable waits that signifies a critical failure in care delivery 
(“The Risks Associated with Long ER Wait Times | Physicians Premier ER,” n.d.) This reframes the problem of wait 
times not as a simple operational metric to be minimized, but as a direct clinical risk factor that must be managed with 
the same rigor as any other threat to patient safety. Operationally, long waits are a clear indicator of systemic 
inefficiency, leading to suboptimal resource allocation, staff burnout, and significant financial repercussions in 
competitive healthcare environments (Alrasheedi et al., 2019). 
 
In response to these challenges, a paradigm shift is occurring in healthcare operations, moving away from reactive, 
experience-based management toward proactive, data-driven decision-making (“AI in Healthcare Operations 
Management: Optimizing Efficiency and Care | Calonji,” n.d.). The widespread adoption of Electronic Health Records 
(EHRs) has created a wealth of granular data, making it feasible to apply advanced analytical and algorithmic 
approaches to optimize hospital workflows and resource management (“A Comprehensive Guide to Machine Learning 
in Healthcare,” n.d.) However, many ERs continue to rely on rudimentary methods for estimating wait times, such as 
rolling averages or median estimators, which have been shown to have limited accuracy and fail to capture the dynamic 
nature of ER demand. The persistent failure of these incumbent methods has created a technology vacuum, 
highlighting an urgent need for a more sophisticated and reliable predictive solution. The current systems are not just 
suboptimal; they are fundamentally inadequate for the complexity of the task. 
 
This study directly addresses this critical gap by developing and validating a robust supervised machine learning 
framework for the accurate prediction of ER patient waiting times. The objectives of this research are to: (i) develop 
and validate a robust supervised machine learning framework for the accurate prediction of ER patient waiting times 
using a real-world dataset of patient encounters; (ii) conduct a rigorous comparative analysis of multiple machine 
learning architectures, including linear models, tree-based ensembles, and support vector machines; (iii) demonstrate 
the superior predictive performance of a hyperparameter-tuned Stacked Ensemble Model in capturing the complex, 
nonlinear dynamics of ER operations; and (iv) provide a validated, data-driven tool for hospital administrators to 
facilitate proactive resource management, optimize patient flow, and improve patient communication. 
  
1.1 Objectives 
This study aims to: 

• Develop and evaluate various supervised learning models for predicting ER patient waiting times. 
• Conduct a comparative analysis of the performance of these models’ using metrics such as Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R²). 
• Identify the most influential features that contribute to ER waiting times through feature engineering and 

selection. 
• Propose a predictive modeling framework that can be integrated into ER operational workflows to improve 

patient flow and resource allocation. 
 
2. Literature Review 
The optimization of patient flow through an emergency room is a complex operational challenge, involving the 
coordination of numerous interdependent processes from patient arrival and triage to diagnosis, treatment, and final 
disposition, whether admission or discharge (Kumar and Prasad, 2025). Disruptions to this flow are common and 
result from a confluence of factors, including unpredictable fluctuations in patient volume, the variable mix of patient 
acuity, dynamic staffing levels, and bottlenecks in downstream resources such as diagnostic imaging or the availability 
of inpatient beds (“Hospitals - Timely & effective care | Provider Data Catalog,” n.d.) Understanding these intricate 
operational dynamics is the foundational step toward developing effective predictive models. 
 



Proceedings of the 2nd World Congress on Industrial Engineering and Operations Management 
Windsor, Canada, October 14-16, 2025 

© IEOM Society International 

The application of machine learning (ML) and artificial intelligence (AI) has demonstrated transformative potential 
across various domains of healthcare operations management, establishing a strong precedent for its use in the ER 
context (“AI in Healthcare Operations Management: Optimizing Efficiency and Care | Calonji,” n.d.). These 
technologies have been successfully deployed to forecast patient demand and corresponding supply needs, enabling 
more efficient inventory management and capacity planning (Kumar and Prasad, 2025). Furthermore, ML algorithms 
are used to optimize the allocation of critical resources—including clinical staff, treatment rooms, and specialized 
equipment—by matching availability to anticipated patient volumes and acuity levels (“AI in Healthcare Operations 
Management: Optimizing Efficiency and Care | Calonji,” n.d.). By automating routine administrative tasks and 
streamlining workflows, these systems also reduce the cognitive and administrative burden on clinicians, allowing 
them to focus on direct patient care (Kumar and Prasad, 2025). 
 
Within the specific domain of ER wait time prediction, academic literature reveals a clear trajectory of increasing 
methodological sophistication. Early research efforts often employed traditional statistical methods, such as linear 
regression, which provided foundational insights but were limited by their underlying assumptions of linearity and 
exhibited higher error rates when applied to the complex, non-linear environment of the ER (Wang et al., 2025). More 
recent studies have embraced a diverse array of machine learning algorithms to better capture these dynamics. 
Researchers have explored models such as Q-Lasso regression, Support Vector Machines (SVM), Random Forests 
(RF), and various Deep Learning architectures, including Deep Neural Networks (DNN) and Long Short-Term 
Memory (LSTM) networks (Wang et al., 2025). A recurrent theme in this body of work is the superior performance 
of ensemble methods, which consistently demonstrate higher accuracy by combining the strengths of multiple 
individual models (Ameur et al., 2022). This progression from simple linear models to complex ensembles is not 
merely a reflection of advancing computational techniques; it mirrors the research community's growing recognition 
that ER patient flow is not a simple, linear process but a complex adaptive system. The failure of simpler models and 
the success of more sophisticated ones provide empirical evidence of the system's inherent non-linearity, justifying 
the selection of advanced architectures that are philosophically aligned with the nature of the problem. However, a 
systematic review of this field has identified a critical gap: while predictive accuracy has improved, the areas of feature 
engineering and explainable AI remain underexplored(Wang et al., 2025) This creates a "last mile" problem, where a 
model may be highly accurate but is not adopted because its decision-making process is opaque to hospital 
administrators, hindering trust and actionable implementation. 
 
To address these challenges and build upon the state of the art, this study focuses on an advanced ensemble learning 
technique known as stacking. Ensemble learning, in general, is a powerful machine learning paradigm that improves 
predictive performance by combining multiple models, or classifiers, to produce a single, more robust prediction 
(Mahajan et al., 2023). This approach has proven highly effective in a variety of complex healthcare applications, such 
as disease prediction, where ensembles frequently outperform any single constituent model (Mahajan et al., 2023). 
Stacking, or stacked generalization, is a particularly sophisticated ensemble method. It involves a multi-level 
architecture where a diverse set of base models (Level-0 learners) are trained on the data, and their predictions are 
then used as input features to train a second-level model (a meta-learner). The meta-learner's function is to learn the 
optimal way to combine the predictions of the base models, effectively leveraging their individual strengths while 
mitigating their weaknesses (Sultan et al., 2025). This provides a strong theoretical justification for its selection as the 
primary modeling architecture in this study, as it is designed to capture the multifaceted and complex relationships 
that govern ER wait times. 
  
3. Predictive Modeling Framework 
The methodology employed in this study was designed to be rigorous and systematic, encompassing data acquisition 
and feature engineering, a comparative analysis of multiple modeling architectures, and a robust evaluation protocol 
to ensure the validity and generalizability of the findings. 
 
3.1 Data and Feature Engineering 
The foundation of this research is a de-identified dataset comprising 5,000 patient encounters from a hospital 
emergency room. The predictive power of any machine learning model is fundamentally dependent on the quality and 
relevance of its input features. Therefore, a critical phase of this study involved the identification and engineering of 
features that encapsulate the primary drivers of ER wait times. This process serves as the essential translation layer, 
converting qualitative clinical realities and contextual operational states into a quantitative language that algorithms 
can process and learn from. The success of the final model is as much a testament to this effective encoding of domain 



Proceedings of the 2nd World Congress on Industrial Engineering and Operations Management 
Windsor, Canada, October 14-16, 2025 

© IEOM Society International 

knowledge as it is to the sophistication of the algorithm itself. The engineered features were grouped into three key 
categories. 

• Patient Acuity: This feature quantifies the clinical urgency of a patient's condition upon arrival. It is derived 
from standard triage protocols, such as the five-level Emergency Severity Index (ESI), which is widely used 
to prioritize patients (Dong and Bullard, 2023). Under this system, patients are categorized on an ordinal 
scale from 1 to 5. A designation of ESI Level 1 signifies a critical, life-threatening condition requiring 
immediate, life-saving intervention, while ESI Level 5 represents a non-urgent case that can safely wait for 
treatment (Dong and Bullard, 2023) . This acuity level is a primary determinant of a patient's position in the 
treatment queue and the intensity of resources they will require. 

• Staffing Ratios: To capture the dynamic availability of clinical resources, this feature was calculated as the 
ratio of on-duty clinical staff (e.g., physicians and nurses) to the total number of patients currently in the ER 
(“Staff-to-Patient Ratio: A Critical KPI for Your Healthcare Practice,” n.d.). A lower ratio indicates a higher 
workload per staff member and is a direct measure of departmental strain. The literature confirms a strong 
inverse relationship between staffing ratios and patient wait times, as well as a correlation with other adverse 
patient outcomes and staff burnout (“Staff-to-Patient Ratio: A Critical KPI for Your Healthcare Practice,” 
n.d.). 

• Temporal Factors: ER patient flow exhibits strong cyclical patterns that must be accounted for in any 
predictive model. To capture these periodic fluctuations in demand, several temporal features were 
engineered from the patient arrival timestamp. These include the time of day (hour), the day of the week, and 
the season or month of the year. These factors are known to correlate strongly with both the volume of patient 
arrivals and the specific mix of case types presenting to the ER. 
 

3.2 Comparative Modeling Architectures 
To establish a robust performance benchmark and demonstrate the relative efficacy of our proposed model, a 
comparative analysis was conducted using a suite of standard supervised learning algorithms. The selected models 
represent different algorithmic families, each with distinct strengths and underlying assumptions: 

• Linear Models: A standard linear regression model was included to serve as a baseline, representing the 
performance of a simple, interpretable model that assumes linear relationships between the features and the 
target variable. 

• Tree-Based Ensembles: A Random Forest model was implemented. This algorithm is known for its high 
performance, robustness to overfitting, and its ability to capture complex, non-linear interactions between 
features without extensive data preprocessing. 

• Support Vector Machines (SVM): A Support Vector Regressor (SVR) was included, representing a powerful 
class of kernel-based methods that are effective in high-dimensional feature spaces and can model non-linear 
relationships. 
 

3.3 The Stacked Ensemble Model 
The primary architecture advanced in this study is a Stacked Ensemble, also known as stacked generalization. This is 
an advanced ensemble technique designed to achieve superior performance by intelligently combining the predictions 
of multiple models. The architecture consists of two levels: 
 

• Level-0 (Base Learners): In the first level, a diverse set of machine learning models is trained independently 
on the full training dataset. This set typically includes different types of algorithms (e.g., a Random Forest, a 
Gradient Boosting machine, and a Support Vector Regressor) to ensure a variety of "perspectives" on the 
data. 

• Level-1 (Meta-Learner): The predictions generated by each of the Level-0 base learners are then collected 
and used as the input features for a second-level model, known as the meta-learner. A relatively simple model, 
such as a linear regressor, is often used as the meta-learner. Its task is not to predict the original target variable 
directly from the original features, but rather to learn the optimal combination of the base learners' predictions 
to produce the final, more accurate output (Sultan et al., 2025). This hierarchical process allows the model to 
learn from the errors of its constituent parts and synthesize their strengths. 
 

3.4 Model Evaluation Protocol 
A rigorous evaluation protocol was implemented to ensure that the performance estimates are reliable, unbiased, and 
indicative of how the models would perform on new, unseen data. 
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• 5-Fold Cross-Validation: The primary technique for model validation was 5-fold cross-validation. In this 
procedure, the entire dataset is randomly partitioned into five subsets, or "folds," of equal size. The model is 
then trained and evaluated five times. In each iteration, one of the folds is held out as the validation set, while 
the remaining four folds are used for training. The performance score from each iteration is recorded, and the 
final performance metric for the model is the average of these five scores (Baturynska and Martinsen, 2021) 
. This approach provides a more stable and robust estimate of model performance than a single train-test split, 
as it ensures that every data point is used for both training and validation exactly once, thereby mitigating the 
risk of overfitting and selection bias. 

• Performance Metrics: The performance of each model was quantified using three standard metrics for 
regression tasks, each providing a different perspective on the model's error profile: 

• Mean Absolute Error (MAE): This metric is the average of the absolute differences between the predicted 
wait times and the actual observed wait times. MAE is expressed in the same units as the target variable 
(minutes), making it highly interpretable. It represents the average magnitude of error, and because it does 
not square the errors, it is less sensitive to large, anomalous prediction errors (outliers) (“Mean Absolute 
Error In Machine Learning: What You Need To Know - Arize AI,” n.d.). The formula for MAE is: 

 
where n is the number of samples, yi is the actual value, and ŷᵢ is the predicted value. 

• Root Mean Squared Error (RMSE): This metric is the square root of the average of the squared differences 
between predicted and actual values. By squaring the errors before averaging, RMSE gives 
disproportionately higher weight to large errors. This makes it a particularly useful metric in contexts where 
large prediction errors are especially undesirable and should be heavily penalized (“RMSE Explained: A 
Guide to Regression Prediction Accuracy | DataCamp,” n.d.) . The formula for RMSE is: 

 

 
• The decision to use both MAE and RMSE is a deliberate diagnostic choice. A significant divergence between 

a model's RMSE and MAE scores indicates the presence of high-variance errors; that is, the model may be 
accurate on average (low MAE) but occasionally produces very large, unacceptable errors (contributing to a 
high RMSE). For a clinical application, this provides a more complete assessment of the model's real-world 
reliability. 

• Coefficient of Determination (R2): This metric represents the proportion of the variance in the dependent 
variable (wait time) that is predictable from the independent variables (features). It provides a measure of 
how well the model's predictions approximate the real data points, with a value of 1 indicating a perfect fit 
and a value of 0 indicating that the model performs no better than simply predicting the mean of the target 
variable. The formula for 
R2 is:  
R² = 1 - (SSE / SST) 
Where: 
• SSE = Σ (yᵢ − ŷᵢ) ² is the Sum of Squared Errors. 
• SST = Σ (yᵢ − ȳ) ² is the Total Sum of Squares. 

 
4. Results and Discussion  
The empirical results from the comparative analysis of the predictive models are presented and discussed in this 
section. The findings validate the central hypothesis of the study and offer significant practical implications for the 
management of emergency room operations. 
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4.1 Comparative Performance of Predictive Models 
The performance of each machine learning model, as evaluated through the 5-fold cross-validation protocol, is 
summarized in Table 1. The results provide a clear and quantitative comparison across the three key performance 
metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the Coefficient of Determination (R2). 
The analysis reveals a distinct hierarchy of performance among the tested architectures. The baseline Linear 
Regression model, while providing some predictive capability beyond a simple average, demonstrated the highest 
error rates and the lowest explanatory power. The Support Vector Machine and Random Forest models offered 
substantial improvements, with the Random Forest emerging as the best-performing single model. However, the 
hyperparameter-tuned Stacked Ensemble Model significantly outperformed all other contenders across every 
evaluation metric. It achieved the lowest MAE and RMSE, indicating the highest average accuracy and the smallest 
large errors. Most notably, it yielded a coefficient of determination (R2) of 0.9473, a result that signifies an 
exceptionally strong correlation between the model's predictions and the actual observed wait times (Table 1). 
  

Table 1. Comparative Performance of Machine Learning Models 
 

Model Mean Absolute Error 
(MAE) (minutes) 

Root Mean Squared 
Error (RMSE) (minutes) 

Coefficient of 
Determination (R2) 

Linear Regression 35.41 48.15 0.6871 

Support Vector Machine 
(SVM) 

21.89 30.52 0.8735 

Random Forest 14.23 20.11 0.9218 

Stacked Ensemble 
Model 

10.80 15.64 0.9473 

  
4.2 Discussion of Findings 
The empirical results strongly support the efficacy of a stacked ensemble architecture for predicting ER wait times. 
The superior performance of this model is not arbitrary but is rooted in its fundamental design. By hierarchically 
combining the outputs of diverse base learners, the stacked model can learn a more complex and nuanced decision 
boundary. It effectively synthesizes the strengths of different algorithms; for instance, the robustness of tree-based 
methods and the non-linear mapping capabilities of kernel methods—thereby mitigating the individual biases and 
weaknesses of any single approach (Mahajan et al., 2023). This architectural advantage allows it to more accurately 
encapsulate the "intricate and nonlinear dynamics inherent in ER operations," as stated in the abstract. 
 
The achievement of an R2 value of 0.9473 is a particularly profound finding. In a system as complex and often 
perceived as chaotic as an emergency room, this high level of explanatory power suggests that patient wait times are 
not a product of randomness but are largely a deterministic outcome of a set of measurable variables. This realization 
has powerful managerial implications, as it reframes the challenge of ER management from one of "coping with chaos" 
to one of "engineering a predictable system." If the system's behavior can be known with high accuracy, it can be 
controlled and optimized. 
 
The practical implications of deploying such a validated, high-accuracy model are transformative for hospital 
administration. The model serves as a powerful decision-support tool, enabling a shift from a reactive to a proactive 
operational posture. 
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• Proactive Resource Management: By providing accurate forecasts of impending periods of high patient 

volume and long wait times, the model allows administrators to take preemptive action. This can include 
adjusting staffing schedules to match anticipated demand, opening designated overflow capacity before 
bottlenecks occur, or strategically diverting low-acuity patients to alternative care settings. This proactive 
management smooths patient flow prevents the onset of dangerous overcrowding, and ensures that resources 
are allocated more efficiently. 

• Ameliorated Patient Communication: A validated predictive model allows the ER to provide patients with 
dynamic, data-driven estimates of their expected wait time upon arrival. This simple act of transparent 
communication can significantly reduce patient anxiety, manage expectations, and improve overall 
satisfaction scores. It transforms waiting from a period of frustrating uncertainty into a managed and 
understood part of the care process. 

 
Furthermore, the successful implementation of this predictive model can initiate a virtuous cycle of continuous 
improvement. Better predictions lead to more effective resource management, which in turn leads to smoother patient 
flow and reduced wait times. A system operating with less extreme variance and fewer bottlenecks is inherently more 
stable and, consequently, easier to predict. Therefore, the model does not merely describe the system; it becomes an 
active agent in its stabilization and optimization over time, with each successful intervention making future predictions 
even more reliable. 
 
Despite the strong results, this study has limitations. The model was developed and validated using a dataset from a 
single healthcare facility, which may limit its direct generalizability to other hospitals with different patient 
populations, operational workflows, or resource constraints. Future research should focus on validating and 
recalibrating the model across a diverse range of hospital systems. Further enhancements could involve the 
incorporation of additional real-time data streams, such as laboratory and radiology test turnaround times, which are 
often significant contributors to delays. Finally, exploring more advanced deep learning architectures, such as Long 
Short-Term Memory (LSTM) networks, could offer further improvements by more explicitly modeling the time-series 
nature of patient arrivals and departmental congestion.  
 
4.3 Data Visualization and Feature Insights 
Prior to model development, exploratory data analysis through visualization provided critical insights that guided 
feature engineering and confirmed the relevance of the selected variables (Figure 1 and Figure 2). 
 

• Wait Time Distribution: A histogram of the total ER wait times revealed a right-skewed distribution. The 
mean wait time was 81.92 minutes, substantially higher than the median of 60.00 minutes. This disparity 
indicates that while a typical patient waits about an hour, a significant number of patients experience much 
longer delays, confirming the presence of outliers and underscoring the complexity of the prediction 
challenge. 
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Figure 1. Frequency distribution of total patient wait times in the emergency room. The histogram reveals a 

right-skewed distribution, with a mean wait time of 81.92 minutes and a median of 60.00 minutes. 
 

• Feature Correlation: A Pearson correlation matrix was used to assess the linear relationships between numeric 
features and the total wait time. The analysis revealed a strong positive correlation of 0.69 between the Nurse-
to-Patient Ratio and Total Wait Time, quantitatively confirming that a higher patient load per nurse is strongly 
associated with longer waits. In contrast, features such as Specialist Availability and Facility Size showed 
negligible linear correlation, suggesting their impact is likely more complex and non-linear. 
 

 
 

Figure 2. Pearson correlation matrix illustrating the linear relationships between numeric features. The 
matrix highlights a strong positive correlation (r = 0.69) between the Nurse-to-Patient Ratio and Total Wait 

Time, while other features show negligible linear correlation 
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• Temporal Patterns: Charting average wait times against the hour of the day revealed a distinct bimodal 
distribution, with peaks in the late morning and early evening, confirming the necessity of the time of day 
feature. Similarly, plotting wait times by day of the week showed elevated levels on Mondays and weekends, 
while seasonal plots indicated longer waits during winter months, validating the inclusion of these temporal 
factors. 

 
These visualizations were instrumental not only in validating the feature selection process but also in highlighting the 
complex, non-linear interactions between variables. For example, the impact of a low staffing ratio was visibly more 
severe during peak arrival times. This underscored the limitations of simple linear models and reinforced the decision 
to employ more sophisticated, non-linear architectures like tree-based ensembles and the final stacked model, which 
are better suited to capture such intricate relationships. 
 
Despite the strong results, this study has limitations. The model was developed and validated using a dataset from a 
single healthcare facility, which may limit its direct generalizability to other hospitals with different patient 
populations, operational workflows, or resource constraints. Future research should focus on validating and 
recalibrating the model across a diverse range of hospital systems. Further enhancements could involve the 
incorporation of additional real-time data streams, such as laboratory and radiology test turnaround times, which are 
often significant contributors to delays. Finally, exploring more advanced deep learning architectures, such as Long 
Short-Term Memory (LSTM) networks, could offer further improvements by more explicitly modeling the time-series 
nature of patient arrivals and departmental congestion. 
 
5. Conclusion 
This study addressed the critical operational challenge of protracted patient waiting times in hospital emergency 
rooms, a problem with severe consequences for patient satisfaction, clinical outcomes, and institutional efficiency. By 
leveraging a real-world dataset of patient encounters, this research successfully developed and validated a robust 
machine learning framework for accurate prediction of these wait times. 
 
The central finding of this paper is the demonstrated superiority of a hyperparameter-tuned Stacked Ensemble Model. 
Through a rigorous comparative analysis against other standard machine learning algorithms and a robust 5-fold cross-
validation protocol, the stacked architecture proved most effective, achieving a coefficient of determination (R2) of 
0.9473. This result indicates an exceptionally strong predictive capability, validating the model's capacity to capture 
the complex, non-linear dynamics that govern ER patient flow. 
 
The practical value of this research lies in its delivery of a validated, data-driven tool for hospital administrators. The 
model empowers a shift from reactive problem-solving to proactive resource management, enabling more efficient 
staff allocation and workflow optimization. It also provides a mechanism for improving patient communication and 
managing expectations, thereby enhancing the overall patient experience. Ultimately, this study underscores the 
transformative potential of applying advanced analytics to solve systemic inefficiencies within healthcare. It presents 
a clear trajectory toward a more efficient, predictable, and patient-centric emergency care environment, where clinical 
resources are allocated more efficaciously and the quality of care is improved. 
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