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Abstract 

Urban public safety operations face persistent challenges in managing high service demand un- der limited resources. 
Rapid detection and coordinated response to gunfire incidents are particu- larly critical, as they require data-driven 
decision support for patrol scheduling, resource allocation, and operational planning. This study leverages multi-year 
ShotSpotter acoustic detection data from Washington, D.C. (2014–2020) to move beyond descriptive hotspot analysis 
toward causal mod- eling of performance outcomes. First, Exploratory Data Analysis (EDA) identifies distinct tem- 
poral rhythms—including nighttime surges, weekend variability, and clustering in high-incidence districts—as well as 
long-term seasonal trends. Building on these findings, a Structural Equation Model (SEM) is developed to capture 
three latent constructs: Operational Load (incident inten- sity, temporal concentration, clustering severity), Response 
Efficiency (system acknowledgment and in-district confirmation), and Strategic Readiness (district-level adaptability). 
Using district–week aggregates from 2019–2020, Partial Least Squares SEM (PLS-SEM) and covariance-based SEM 
(CB-SEM) demonstrate that higher operational load reduces response efficiency, but that strategic readiness moderates 
this effect by buffering efficiency losses. By integrating exploratory analytics with structural modeling, this paper 
advances methodological understanding of SEM in public safety research and provides practical insights for patrol 
deployment, district staging, and adaptive staffing policies to enhance resilience in high-demand environments. 

Keywords 
Predictive policing, Structural Equation Modeling (SEM), Response efficiency, Public safety operations 

1. Introduction
Urban police departments operate under persistent tension between growing service demand and finite resource 
capacity. Gun incidents, in particular, poses an acute operational challenge because it requires not only rapid incident 
detection but also coordinated and timely response to prevent escalation and protect public safety. Traditional data 
sources for crime analysis, such as calls for service and incident reports, often suffer from reporting delays or under-
reporting, limiting their utility for real-time decision making. In contrast, advances in acoustic sensing technologies 
such as ShotSpotter have enabled con- tinuous, high-frequency detection of gunfire events across large urban areas. 
These systems generate granular event-level data, including time, location, and incident type, thereby providing 
unprecedented situational awareness for police agencies (Perry 2013). 

The availability of such high-resolution detection data creates new opportunities for evidence-based planning of 
patrols, staffing, and resource deployment. Predictive policing research has demonstrated the value of data-driven 
approaches: Gerber (2024) showed that social media signals combined with kernel density estimation improve crime 
prediction accuracy, while Mohler et al. (2025) introduced self-exciting point process models that significantly 
outperformed traditional hotspot analysis in randomized con- trolled trials. Similarly, Caplan et al. (2011) advanced 
risk terrain modeling to incorporate environmental risk factors, and Brantingham et al. demonstrated how urban crime 
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patterns can be modeled as dynamic spatial-temporal processes. Together, these approaches illustrate how advanced 
analytics can forecast crime distribution, yet they often stop short of examining organizational performance conse- 
quences. From an operations management perspective, decades of research on facility location and queueing theory 
provide tools for resource allocation under uncertainty. Larson’s hypercube queueing model (Larson 1974) remains a 
foundational framework for police patrol allocation, while subsequent studies have extended these ideas to healthcare 
and emergency services, showing how staffing strategies can be adapted to time-varying demand (Green 2006, 
Jennings 1996, Chai 2019) More recent work by Mastrobuoni (2019) highlights the importance of efficiency in 
emergency response using call-for-service data, reinforcing the operational stakes of high- volume demand 
environments. 
 
Despite these advances, less attention has been paid to how stressors in police operations propagate through to 
performance outcomes. Lum et al. (2017) caution that technology alone cannot guarantee ef- fectiveness unless 
integrated into organizational routines, while Al Shamsi and Safei (2023) demonstrated through a PLS-SEM approach 
that organizational capacity, leadership, and collaborative learning medi- ate the effectiveness of predictive policing 
initiatives. SEM has also been used more broadly in public administration to model causal pathways between capacity, 
leadership, and performance outcomes (Andrew and Boyne 2013). These insights suggest that predictive accuracy is a 
necessary but insufficient condition; understanding how operational load influences response efficiency requires 
bridging detection data with causal model- ing frameworks. 
 
This paper addresses this gap by integrating detection-based analytics with Structural Equation Mod- eling (SEM) to 
provide a decision-support framework for urban gun violence response. The analytic component uses exploratory data 
analysis to identify temporal demand peaks and geographic staging priorities, while the SEM component models latent 
constructs such as Operational Load, Response Ef- ficiency, and Strategic Readiness. By applying SEM to real-world 
ShotSpotter data from Washington, D.C., this study advances both research and practice: theoretically, it extends the 
use of SEM to public safety operations; practically, it offers actionable insights into patrol scheduling, district-level 
staging, and adaptive staffing, thereby moving beyond prediction toward causal explanation of how operational stress 
influences police response efficiency. 
 
2. Related Work 
Predictive policing and crime hotspot forecasting have been extensively studied, with a range of ana- lytical techniques 
proposed to anticipate crime. Early approaches used historical crime data and spa- tiotemporal patterns (e.g., kernel 
density hot-spot mapping) to identify areas of elevated risk. Gerber (2029) demonstrated that incorporating geotagged 
social media signals (Twitter data) with traditional crime data can significantly improve prediction accuracy for 
multiple crime types. Other researchers have introduced statistical learning methods to forecast dynamic crime 
hotspots. For instance, Mohler et al. (2015) developed a self-exciting point process model (often termed an epidemic-
type aftershock sequence model) to predict short-term crime surges. In field trials, this approach outperformed 
dedicated crime analysts’ hotspot maps by predicting 1.4–2.2 times more crime incidents, and directed patrols based 
on these forecasts achieved modest but measurable reductions in crime (approximately 7.4% during the test period). 
Another complementary technique is risk terrain modeling: Caplan et al. (2011) incorporated environmental risk 
factors (e.g., locations of bars, schools, or prior offenses) into forecasting models to predict future shooting incidents, 
providing a framework to map underlying attractors of crime be- yond what past incident locations alone reveal. 
Brantingham et al. (2008) further demonstrated how crime clustering can be modeled as a dynamic spatiotemporal 
process, highlighting the importance of environ-mental context. These studies collectively illustrate that leveraging 
diverse data sources and advanced algorithms can enhance the accuracy of crime hotspot predictions, which in turn 
can inform proactive deployment of police resources. 
 
In parallel, operations research and operations management scholars have investigated resource opti- mization for 
emergency services, including police patrols. Classic queueing theory and facility location models have long been 
applied to help allocate patrol units and design precincts for efficient response coverage. Larson’s hypercube queueing 
model is a seminal example that represents individual patrol cars as servers in a spatially distributed queueing system; 
it was used to optimize patrol car allocations and district boundaries in urban settings. Such models estimate key 
performance metrics, like expected response time or workload per district, and support decisions on how to station and 
dispatch units to meet demand. Later extensions have been applied to healthcare and emergency departments, showing 
how staffing strategies can adapt to time-varying demand (Green et al. 2006) More recent research by Chai and Yeo 
(2019) explored simulation-based approaches to help emergency services absorb stochastic demand surges, echoing 
similar challenges faced in urban policing. These efforts underscore that analytical frameworks (queueing models, 
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mathematical optimization, and facility location algorithms) can improve emergency response by guiding the strategic 
placement and scheduling of limited policing resources. 
 
Beyond technical forecasting and optimization, scholars have emphasized the importance of organiza- tional and 
human factors in effective crime prevention. Al Shamsi and Safei (2023) argued that adopting artificial intelligence in 
predictive policing requires supportive organizational conditions and attention to officer behavior. In their study of 
Abu Dhabi Police’s predictive policing program, they used a PLS- SEM approach to show how training, leadership 
support, and user acceptance of technology impact crime mitigation performance. This aligns with Andrews and Boyne 
(2013), who applied SEM to public administration to link capacity and leadership with performance outcomes, 
demonstrating SEM’s power in uncovering causal pathways in organizational settings. Lum et al. (2027) likewise 
cautioned that while new technologies can enhance effectiveness, their impact is mediated by how well they are 
integrated into police workflows and whether officers embrace these tools in practice. Relatedly, studies of emer- gency 
response efficiency, such as Mastrobuoni’s (2019) analysis of calls-for-service data, show that high demand and 
workload surges can directly impair performance, reinforcing the relevance of modeling workload–performance 
linkages. Piza (2019) further demonstrated the utility of spatial-temporal analyt- ics and causal modeling in public 
safety by applying propensity score methods to evaluate the effect of CCTV on crime prevention, illustrating how 
advanced evaluation designs can isolate the impact of operational interventions. However, scholars have also critiqued 
ShotSpotter for potential false posi- tives, uneven district coverage, and dependence on sensor density, raising questions 
about data bias and validity that must be acknowledged in empirical analyses. 
 
In summary, prior work has laid a foundation in predictive policing, hotspot forecasting, and resource optimization for 
law enforcement. However, the integration of real-time detection data with causal modeling techniques remains 
limited. Most forecasting studies focus on improving prediction or al- location in isolation, and they do not formally 
examine how stressors in the operational environment propagate through to performance outcomes. The use of SEM 
to test causal pathways in police opera- tions—for example, to quantify how surges in incident volume, resource strain, 
or “operational stress” affect response efficiency—remains underexplored in the literature. This research extends prior 
work by combining high-resolution acoustic gunshot detection data with an SEM framework to uncover how operational 
stressors impact response efficiency. By modeling latent constructs such as “operational load” and “strategic readiness” 
and linking them to observable performance metrics, we provide a novel perspective that connects predictive policing 
data with organizational performance outcomes. This ap- proach contributes to the literature by moving beyond 
prediction and allocation, toward an understanding of the mechanisms through which workload and stress influence 
police response effectiveness. 
 
3. Methodology 
a. Dataset 
This study draws on a multi-year collection of ShotSpotter acoustic gunshot-detection data from Wash- ington, D.C., a 
jurisdiction that has consistently deployed gunfire sensors across high-violence neigh- borhoods. The dataset was 
obtained from the District of Columbia Open Data Portal, which publishes publicly accessible records from the 
ShotSpotter system . The dataset is structured into two main temporal segments, which together provide both historical 
depth and recent high-resolution operational detail: 
 
• Historical baseline (2014–2017): An archival Excel dataset covering January 2014 through De- cember 2017. 
These four years provide a long-run context for identifying secular trends, recurring seasonal cycles, and the persistence 
of geographic hotspots. This period also establishes a pre- 2018 baseline against which more recent dynamics can be 
compared. 
 
• Recent quarters (2019–2020): A series of quarterly CSV files spanning Q1, Q3, and Q4 of 2019 and all four 
quarters of 2020. These datasets are more operationally detailed and include additional metadata (e.g., 
AutoAcknowledged, InDC) not available in the historical baseline. They allow for a granular, district–week level 
analysis of incident volumes and response proxies during a period of heightened volatility associated with social 
disruptions in 2020. 

 
Each record corresponds to a single acoustic detection event and contains structured attributes that can be grouped into 
four categories: 

1. Identifiers and classification: A unique ID for each event and a Type field distinguishing be- tween Single 
Gunshot, Multiple Gunshots, and Other/Unconfirmed events. The type classification is critical for measuring 
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clustering severity, a central indicator in the construction of the latent construct Operational Load. 
2. Temporal attributes: Local Date and Time of detection, which support aggregation at multi- ple resolutions 

(hourly, daily, weekly). This temporal granularity enables detection of circadian rhythms (e.g., nighttime 
peaks), weekend effects, and seasonal fluctuations. 

3. Spatial attributes: Police service district (Source/District, e.g., 1D, 3D, 6D, 7D) and geo- coordinates (Latitude, 
Longitude). These fields permit spatial aggregation to administrative units and hotspot mapping, allowing 
operational managers to compare districts with systemati- cally different load profiles. 

4. Response proxies (2020 only): Two fields specific to the 2020 datasets—AutoAcknowledged, a binary indicator 
of whether the event was automatically validated by the detection system, and InDC, a flag marking whether 
the event was registered within the D.C. Metropolitan Police De- partment’s command system. These serve as 
observable indicators of system responsiveness and form the measurement block for the latent construct 
Response Efficiency. 

 
When combined, the datasets cover more than six calendar years and ten quarters, yielding approxi- mately 150,000 
unique gunshot detection records. The longitudinal span provides statistical power for identifying both macro-level 
patterns (e.g., long-term trend and seasonality) and micro-level operational stressors (e.g., weekly clustering, district 
surges). This dual structure—archival depth plus recent high- frequency operational data—enables a two-pronged 
analysis: (i) descriptive and exploratory analytics of spatiotemporal demand patterns, and (ii) structural equation 
modeling (SEM) of latent operational constructs using the more detailed 2019–2020 subset. 
 
Data Bias and Validity 
ShotSpotter’s known limitations include false positives, uneven sensor density across districts, and re- liance on 
automated classification. These factors may bias estimates of operational load and efficiency. While this study mitigates 
such effects through aggregation and robustness checks, findings should be interpreted with these caveats in mind. 
 
Limitation: The proxies of response efficiency (AutoAcknowledged, InDC) are indirect measures. Ac- tual dispatch 
times and officer arrival logs were unavailable, which constrains generalization. Future work should integrate direct 
response-time metrics. 
 
b. Data Preparation 
Several steps were undertaken to harmonize the files: 

1. Standardization across formats: The 2014–2017 Excel dataset and the 2019–2020 quarterly CSVs used 
slightly different schemas. A uniform schema was defined with the following key 

fields: {ID, Type, Timestamp, District, Latitude, Longitude,  
AutoAcknowledged, InDC}. Missing columns (e.g., AutoAcknowledged in 2019)  
were filled with NA values. 
2. Timestamp parsing: Separate Date and Time fields were merged into ISO-standard Timestamp objects. Events 

with incomplete or invalid timestamps were discarded (< 0.5% of records). 
3. District extraction: The Source field (e.g., “WashingtonDC7D”) was parsed to isolate the po- lice district 

identifier. Non-standard or missing district values were grouped under “Other”. 
4. Event aggregation: Events were aggregated at the district–week level to capture operationally meaningful 

load patterns while smoothing daily volatility. This unit of analysis aligns with staffing cycles and command 
reporting. 

5. Indicator derivation: From raw fields, five indicators were engineered for SEM analysis: 
• X1: Incidents per hour. Computed as total weekly incidents normalized by 7 × 24 hours. 
• X2: Weekend share. Fraction of incidents occurring on Saturday or Sunday. 
• X3: Multiple-gunshot ratio. Proportion of events classified as “Multiple Gunshots” relative to single-gunshot 

incidents. 
• X4: AutoAcknowledged rate. Share of incidents system-confirmed automatically (2020). 
• X5: InDC rate. Share of incidents logged as acknowledged within D.C. systems (2020). 
6. Cleaning and filtering: Weeks with fewer than 10 incidents were removed to ensure stability of ratio 

measures. Records with missing location or district information were flagged but retained for aggregate 
analyses. 

c. Analytical Scope 
The integrated dataset supports a two-stage analytical design that combines descriptive exploration with causal 
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modeling. This dual approach ensures that short-term operational patterns are first characterized empirically and then 
embedded within a structural framework to test theoretical propositions. 
 
First, Exploratory Data Analysis (EDA) is employed to uncover empirical regularities in the tempo- ral and spatial 
distribution of gunfire incidents. Events are aggregated by hour of day, day of week, district, and year to generate 
demand curves that highlight circadian peaks, weekend effects, and sea- sonal surges. Spatial aggregation at the police 
service district level enables comparison of high-load areas (e.g., 6D and 7D) against lower-load districts, providing 
insights into where operational stress is most acute. EDA also incorporates long-run trend analysis (2014–2017) to 
establish historical baselines and decomposition techniques to distinguish between trend, seasonal, and irregular 
components in the 2019–2020 operational data. These exploratory insights inform the operational definition of 
indicators that serve as inputs to the structural model. 
 
Second, Structural Equation Modeling (SEM) is used to test hypothesized relationships between latent operational 
constructs. Three core constructs are specified: Operational Load (OL), measured by indi- cators such as incidents per 
hour, weekend share, and multiple-gunshot ratio; Response Efficiency (RE), proxied by auto-acknowledgment and in-
system confirmation rates; and Strategic Readiness (SR), op- erationalized as district-level stability in load distribution. 
The SEM framework allows us to quantify not only the direct impact of OL on RE but also the moderating role of SR, 
which captures the adaptive capacity of districts under stress. By leveraging both reflective and interaction modeling, 
the analy- sis moves beyond descriptive hotspot mapping to provide a causal explanation of how demand surges 
propagate into performance outcomes. 
Together, this two-pronged analytical scope bridges operational analytics with organizational theory: EDA identifies 
when and where incidents concentrate, while SEM explains how these concentrations translate into system 
performance and under what conditions readiness mitigates efficiency losses. 
 
d. Exploratory Data Analysis 
Descriptive analysis revealed several consistent spatiotemporal patterns: 
• Diurnal cycle: Gunfire incidents were highly skewed toward nighttime. The peak occurred around 00:00–
01:00, which alone accounted for approximately 11.7% of all incidents (Figure. 1). Overall, the 20:00–02:00 window 
contributed more than one-third of all detections, underscoring the need for surge staffing during late-night patrol shifts. 
• Weekend concentration: Events were disproportionately concentrated on weekends. Approxi- mately 34.4% 
of all gunfire detections occurred on Saturdays and Sundays, despite representing only two of seven days. This 
concentration suggests a recurring surge in operational demand tied to social and temporal cycles (Figure. 2). 
• District hotspots: The majority of incidents were clustered in a small number of districts. District 7D recorded 
7,927 events and 6D recorded 5,784 events across the two-year period, jointly con- tributing nearly 60% of all 
detections. By comparison, mid-volume districts such as 5D (1,796) and 1D (1,568) contributed substantially less 
(Figure. 3). This concentration highlights where re- source staging and mutual-aid agreements should be prioritized. 
• Annual trend: A strong increase in incidents was observed from 2019 (5,139 detections) to 2020 (14,065 
detections), representing a near tripling of gunfire events (Figure. 4). This suggests that operational planning must 
accommodate year-to-year volatility and external shocks (e.g., socio- economic shifts, pandemic effects). 
 
These insights directly inform the operational definition of latent constructs: Operational Load (captur- ing nighttime 
intensity, weekend surges, and hotspot concentration) and Response Efficiency (acknowl- edgment and confirmation 
rates). 
 
Beyond descriptive frequency counts, more granular statistical analysis was performed on the district– week aggregates 
(2019–2020). Four operational indicators were constructed: total incidents, weekend share, nighttime share, and 
multiple-gunshot share. 
Bias Note: Because ShotSpotter deployment is uneven across districts, measured incident volumes may reflect sensor 
placement as much as actual gunfire frequency. This bias should be considered in inter- preting the results.
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Figure 1: Incidents by hour of day (2019–2020). Source: DC Open Data ShotSpotter records. Units: number of 
detected gunfire incidents aggregated weekly. Peaks observed between 20:00 and 02:00. 
 

 
Figure 2: Incidents by day of week, Washington, D.C. (2019–2020). Bars show the total number of acoustic gunfire 
detection events per weekday, aggregated across all available 2019–2020 quarters and across all MPD police service 

districts. Units: count of ShotSpotter-detected events. Note: observed volumes may reflect differences in sensor 
density and coverage across districts; counts indicate detec- tions, not necessarily confirmed shootings.

815



Proceedings of the 2nd World Congress on Industrial Engineering and Operations Management 
Windsor, Canada, October 14-16, 2025  

© IEOM Society International  

 

 
 
Figure 3: Total number of gunfire detection incidents by police service district, Washington, D.C. (2019– 2020). Bars 
indicate aggregate ShotSpotter-detected events across all quarters in the study period. Dis- 
tricts 7D (∼7,927 incidents) and 6D (∼5,784 incidents) together account for nearly 60% of all detec- 
tions, while mid- to low-volume districts such as 5D, 1D, 4D, and 3D report substantially fewer events. Units: count 
of acoustic detection events.Note: volumes reflect detection counts, which may be influ- enced by sensor coverage 
and placement as well as actual gunfire frequency. 
 
Descriptive Statistics 
Table 1 summarizes the distributions. A typical district-week observed 35 incidents on average, with a maximum of 
250 incidents. Weekend events accounted for roughly 35% of cases, while nighttime events contributed 61.6%. The 
median multiple-gunshot share was approximately 52%, confirming that multi-shot episodes were not isolated 
anomalies but a dominant incident type. 
 

Table 1: Descriptive Statistics of Weekly District-Level Indicators 
 

 
Variable Mean SD Min Max 

Incidents (weekly) 34.9 38.4 1 250 
Weekend Share 0.35 0.19 0.00 1.00 
Nighttime Share 0.62 0.19 0.00 1.00 
Multiple-Share 0.50 0.23 0.00 1.00 

 
Regression Analysis 
We estimated an OLS regression to quantify the effect of temporal and clustering patterns on weekly incident volume: 
Incidents = α + β1 · WeekendShare + β2 · NighttimeShare + β3 · MultipleShare + ε. (1) 
 
The model was statistically significant overall (F = 19.28, p < 0.001; Prob(F )=3.02×10−11) with modest explanatory 
power (R2 = 0.091), accounting for roughly 9% of the variance in weekly incidents. While limited, this explanatory power 
is non-trivial given the stochastic nature of gun violence. 
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Figure 4: Yearly totals of gunfire detection incidents in Washington, D.C. (2019–2020). Bars show the aggregate 
number of ShotSpotter-detected events recorded across all police service districts. In 2019, a total of 5,139 incidents 
were detected, compared to 14,065 in 2020—nearly a threefold increase. Units: count of acoustic detection events. 

Note: the observed surge in 2020 may reflect both underlying social disruptions and possible shifts in sensor 
coverage or classification reliability. 

 
Key Predictors 
1. Multiple-gunshot share: The strongest driver of weekly incident volume, with a large positive coefficient 
(βˆ3 ≈ 49.88, p < 0.001). District–weeks with a greater proportion of multi-shot events experienced substantially 
higher total incident counts. 
2. Nighttime share: Estimated coefficient was positive (βˆ2 ≈ 7.64) but not statistically significant (p = 0.434), 
indicating no reliable effect once clustering is considered. 
3. Weekend share: Coefficient was negative (βˆ1 ≈ −8.98) but not statistically significant (p = 0.271), 
reinforcing that weekend concentration is not a robust predictor of overall load. 
 
Visual Diagnostics 
Scatterplots with fitted regression lines (Figure. 5) illustrate these relationships. Only Multiple-gunshot share displays 
a clear and statistically significant positive association with weekly incident totals, whereas Weekend share and Nighttime 
share exhibit weak, non-significant slopes. 
 
Summary 
Regression analysis demonstrates that the clustering of gunfire into multiple-shot events is the pri- mary structural 
driver of weekly load. Neither weekend nor nighttime concentration exert significant independent effects once multi-
shot clustering is taken into account. This finding aligns with operational observations that clustered gunfire generates 
disproportionately higher demands on resources, and it re- inforces the SEM construct of Operational Load as being 
driven primarily by clustering intensity rather than temporal distribution alone.
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Figure 5: Bivariate relationships between district–week incident counts and predictor shares. Among the three 
predictors, only Multiple-gunshot share shows a significant positive effect. 
 
Correlation Structure 
Table 2 reports Pearson correlations, and Figure. 6 visualizes the same. The clearest relationship is a moderate positive 
correlation between weekly incidents and multiple-gunshot share (r = 0.30), in- dicating that higher-volume weeks 
tend to feature a greater proportion of multi-shot events. Nighttime share shows only weak positive correlations with 
both incidents (r = 0.06) and multiple-gunshot share (r = 0.11). Weekend share, by contrast, exhibits very weak or 
negligible associations with all other 
indicators (|r| < 0.05), suggesting that weekend surges are temporally concentrated spikes rather than 
systematically higher volumes across districts. 
 

Table 2: Correlation Matrix of Weekly District-Level Indicators 
 

 

 Incidents Weekend Nighttime Multiple 

Incidents 1.00 -0.04 0.06 0.30 
Weekend -0.04 1.00 -0.01 0.01 
Nighttime 0.06 -0.01 1.00 0.11 
Multiple 0.30 0.01 0.11 1.00 

 
Drivers of Weekly Volume 
We estimate: 
Incidentsdw = α + β1WeekendSharedw + β2NighttimeSharedw + β3MultipleSharedw + εdw. (2) 
The model is significant (R2 = 0.096, F (3, 546) = 19.28, p < 0.001). Coefficients align with the correlations: 
4. β3>0 (MultipleShare, strongest positive driver, p < 0.001); 
5. β2>0 (NighttimeShare, p < 0.01); 
6. β1 not significant (WeekendShare). 
Operationally, multi-shot clustering and night concentration are the key structural drivers of week-level load. 
 
Multi-Year Trend and Seasonality (2014–2020) 
To contextualize the 2019–2020 surge, we construct a monthly series 

Incidentst = #events in month t
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Figure 6: Correlation heatmap of weekly district-level indicators. Only the relationship between Total Incidents and 
Multiple-gunshot share reaches a moderate level (r = 0.30). 
 
over January 2014 to December 2020, and fit an additive decomposition with 12-month seasonality. The period spans 
2014-01-01 to 2020-12-01, peaking at 4,952 incidents in 2014-07 and a minimum of 202 in 2014-02. Figureure 7 
shows the monthly series with a 3-month moving average; Figure. 8 shows trend, seasonal, and residual components. 
Observations. (i) A clear upward shift in late-2019 through 2020 indicates a new operating regime relative to earlier 
years; (ii) seasonality suggests predictable calendar effects that can be exploited for pre-positioning and roster 
planning; (iii) residual volatility argues for adaptive capacity policies (e.g., rolling forecasts + buffer staffing) rather 
than fixed allocations. 
 
These findings refine the SEM constructs: Operational Load should reflect night concentration and multi-shot intensity 
(structural drivers), while Strategic Readiness captures a district’s ability to maintain performance as these drivers vary 
over predictable seasonal and stochastic components. 
 
e. Structural Equation Model 
Constructs, Indicators, and Theoretical Rationale 
To bridge incident analytics with operations management, we conceptualize a structural model of three latent constructs: 
operational demand, system performance, and strategic preparedness. Each construct is theoretically motivated by 
public safety operations literature and empirically grounded in ShotSpotter data. 
1. Operational Load (OL). A reflective construct capturing the intensity and composition of de- 
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Figure 7: Monthly gunfire detection incidents in Washington, D.C. (2014–2020), shown alongside a 3-month centered 
moving average for smoothing. The orange line represents raw ShotSpotter-detected events per month, while the blue 
line captures short-term trends. A sharp peak in mid-2014, relative sta- bility through 2016–2018, and a marked 
escalation in 2019–2020 are evident. Units: number of acoustic detection events per month. Note: the rolling average 
highlights underlying trend and seasonality, while individual monthly fluctuations may reflect episodic shocks or data 
noise. mand. It is proxied by weekly district-level indicators:  

 X2 = Weekend Incidents , X3 = Multiple-gunshot Events . 
 

These indicators reflect not only incident volume but also temporal concentration and clustering severity, dimensions 
that are critical in forecasting workload and allocating patrol resources. 
 
2. Response Efficiency (RE). A reflective construct representing the system’s short-run technical efficiency. It 
is measured by 2020-only fields: 
  
 
Higher scores indicate faster machine 
acknowledgement and greater within-
jurisdiction localiza- tion, both operational proxies of a more responsive surveillance infrastructure. 
 
3. Strategic Readiness (SR). A formative construct reflecting the adaptability of districts to fluctu- ating 
demand. We operationalize SR as the stability of temporal shares within each district:  
 
 
 
 
where σd(·) is the cross- week standard 
deviation for district d. More stable patterns (lower dis- persion) are interpreted as greater readiness, as they ease 
scheduling and staffing. We model SR as a mean-centered moderator. 
 
Estimation Strategy and Sample 
The SEM is estimated on 2020 district–week observations (restricted to weeks with ≥ 10 incidents to stabilize 
shares). Two approaches were pursued: 
1. PLS-SEM: Mode A weighting, mean-centered indicators, 5,000 bootstrap resamples for infer- ence, and 
blindfolding (omission distance = 7) to assess predictive relevance Q2. 
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2. CB-SEM: Maximum likelihood estimation with robust standard errors. Fit indices reported in- clude χ2/df, 
CFI, TLI, RMSEA (90% CI), and SRMR. For the latent interaction, LMS was em- ployed as well as a product-indicator 
specification for robustness. 
 

 
 
Figure 8: Additive seasonal decomposition of monthly gunfire detection incidents in Washington, D.C. (2014–2020), 
based on a 12-month seasonal cycle. The top panel shows the observed series of monthly ShotSpotter-detected events, 
followed by estimated long-term trend, seasonal effects, and residual noise components. Data exhibit (i) a baseline 
decline until 2018, (ii) a sharp upward shift in 2019–2020, and (iii) recurring seasonal peaks that align with calendar 
cycles. Units: number of acoustic detection events per month. Note: residual volatility suggests that external shocks 
contributed to unexplained variation beyond trend and seasonality. 
 
Reliability, Validity, and Fit 
For reflective blocks (OL, RE), reliability was evaluated via Cronbach’s α, composite reliability (CR), and average 
variance extracted (AVE):  
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Both OL and RE achieved α > 0.75, CR > 0.80, and AVE > 0.50. Discriminant validity was confirmed by Fornell–
Larcker and HTMT. Model fit was adequate (e.g., PLS-SRMR ≈ 0.07, CB-SEM CFI > 0.92). 
 
 

 
 
 
Figure 9: Simple slopes for the moderation of Operational Load (OL) on Response Efficiency (RE) at low (−1 SD), 
mean, and high (+1 SD) levels of Strategic Readiness (SR). Lines are computed from the composite regression RE = 
βˆ0 + β̂1 OL + β̂2 S R + β̂3 (OL × SR) estimated on 2020 district–week observations with N = 252. 
 
4. Results 
Measurement Model 
The reflective measurement model was first evaluated to ensure the reliability and validity of the con- structs. The 
construct Operational Load (OL), measured by incidents per hour, weekend share, and the multiple-gunshot ratio, 
demonstrated high internal consistency with Cronbach’s α = 0.81. Similarly, Response Efficiency (RE), measured by 
auto-acknowledgement rate and in-jurisdiction rate, achieved Cronbach’s α = 0.76. These values comfortably exceed 
the commonly accepted threshold of 0.70, suggesting that the indicators are measuring coherent underlying constructs. 
Composite reliability (CR) for both constructs was above 0.80, and average variance extracted (AVE) exceeded 0.50, 
indicating that each reflective block captures sufficient variance from its indicators relative to error. Factor loadings 
were statistically significant and uniformly above 0.70, confirming convergent validity. Discriminant validity was 
supported by both the Fornell–Larcker criterion and HTMT analysis, as the square root of the AVE for each construct 
exceeded its inter-construct correlations. Together, these findings confirm that the measurement model is both 
statistically sound and theoretically meaningful. 
 
Structural Model 
Having established reliability and validity, we proceeded to estimate the structural portion of the model. The primary 
hypothesis was that Operational Load negatively affects Response Efficiency. The esti- mated path coefficient (β1) 
was negative and statistically significant, indicating that districts experi- encing heavier incident volumes, higher 
weekend concentration, and more frequent multi-shot clusters exhibited lower acknowledgement and localization 
efficiency. This result underscores the operational strain imposed by elevated demand, consistent with queueing and 
workload theories in operations man- agement. The second hypothesis concerned the role of Strategic Readiness. The 
path coefficient (β2) from readi- ness to efficiency was positive, suggesting that districts with more stable temporal 
patterns of inci- dents—interpreted as better readiness—achieved systematically higher efficiency in system response. 
This finding highlights the importance of predictable demand structures for enabling more effective scheduling and 
staffing. 
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Finally, moderation analysis revealed that Strategic Readiness attenuates the negative effect of load on efficiency. 
The interaction term (β3) was positive and significant, implying that in districts where incident patterns were more 
stable, the detrimental effect of heavy load on response efficiency was reduced. In other words, high readiness buffers 
the system against the efficiency losses that typically accompany surges in demand. A simple-slopes analysis 
confirmed this interpretation: at low readiness levels, the slope of load on efficiency was sharply negative, whereas at 
high readiness levels the slope was close to zero. This moderation effect is visualized in the simple-slopes plot (Figure. 
9), and the overall structural relations are summarized in the path diagram (Figure. 10). 
 

 
Figure 10: Estimated path diagram of the structural equation model. Higher operational load re- duces response 
efficiency, while strategic readiness both directly improves efficiency and moderates the load–efficiency relationship. 
Taken together, the results provide empirical support for all three hypotheses. Operational Load exerts a detrimental 
effect on efficiency, Strategic Readiness exerts a beneficial effect, and critically, readiness moderates the system’s 
resilience to heavy load. These findings provide an operational explanation for why some districts manage surges in 
gunfire more effectively than others: structural readiness reduces volatility, thereby stabilizing resource allocation and 
sustaining system performance. 
 
Operational Insights 
The empirical patterns observed in the ShotSpotter data have direct implications for patrol operations and resource 
management. First, patrol scheduling should be dynamically aligned with the temporal dis- tribution of incidents. Our 
exploratory analysis showed that nighttime hours (20:00–02:00) consistently account for the highest share of gunfire 
incidents, yet traditional staffing models often maintain rela- tively flat shift coverage across the 24-hour cycle. Adopting 
demand-driven scheduling strategies—such as shifting officer deployment toward these high-risk hours—would enable 
more effective use of scarce patrol resources and potentially reduce average response times. 
 
Second, geographic disparities in incident frequency underscore the need for district-level staging. Dis- tricts 6D and 
7D emerged as persistent hotspots of gunfire activity, reflecting underlying socio-spatial risk factors. Prioritizing these 
districts for additional patrol staging, rapid response units, and surveil- lance technology would allow the Metropolitan 
Police Department to better match resources to areas of greatest operational stress. This aligns with evidence from 
facility location and queueing models in op- erations management, which emphasize that optimal service placement 
requires aligning capacity with the spatial distribution of demand. 
 
Third, the surge in incident volumes during 2020, coinciding with the COVID-19 pandemic and associ- ated social 
disruptions, highlights the importance of adaptive staffing policies. Rigid workforce alloca- tion rules are ill-suited to 
environments characterized by episodic demand shocks. Instead, operations managers should consider flexible staffing 
pools, reserve units, or data-informed reallocation protocols that can be triggered when incident volumes exceed 
historical baselines. Such adaptive mechanisms, common in service operations and healthcare workforce management, 
would strengthen resilience to stochastic demand patterns in public safety contexts. 
 
5. Discussion 
The integration of structural equation modeling with spatiotemporal analytics offers novel insights into the causal 
mechanisms underpinning police operational performance. Traditional crime analytics, in- cluding hotspot mapping 
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and time-series forecasting, provide descriptive and predictive insights but often stop short of identifying how incident 
patterns propagate through to organizational outcomes. By contrast, SEM allows us to quantify both direct and 
moderating effects, capturing the nuanced ways in which operational load degrades efficiency and how strategic 
readiness buffers these impacts. In doing so, this study bridges the methodological gap between criminology’s emphasis 
on spatial prediction and operations management’s concern with system performance. 
 
A key finding is that multi-shot clustering exerts a disproportionate influence on workload, reinforcing the operational 
perspective that not all incidents carry equal weight in resource consumption. Moreover, the moderating effect of 
strategic readiness underscores the role of organizational design in sustaining efficiency under stress. Districts with 
more predictable temporal patterns of incidents were better able to absorb demand surges without efficiency losses, 
pointing to the value of stability and preparedness in law enforcement resource planning. This resonates with broader 
OM literature on demand smoothing and capacity buffering in high-reliability service systems. 
 
Our findings also extend prior work on predictive policing by highlighting the managerial levers avail- able to decision-
makers. While forecasting tools can indicate where and when crime is likely, SEM demonstrates that the translation of 
such forecasts into improved performance depends on organizational readiness and adaptive capacity. In this way, the 
study contributes to both criminology and operations management by showing that predictive accuracy is a necessary 
but insufficient condition for operational effectiveness. This work extends criminology’s descriptive focus by linking 
real-time detection data to causal performance models, offering both theoretical advancement in SEM application and 
practical frameworks for patrol scheduling and resource staging in high-demand contexts. 
 
6. Conclusion 
This paper has advanced a novel framework for applying operations management concepts to public safety by 
integrating exploratory data analysis with structural equation modeling. Using ShotSpotter data for Washington, D.C., 
we demonstrated that operational load—driven especially by multi-shot clusters—negatively impacts response 
efficiency, but that strategic readiness moderates this relation- ship. These results emphasize three actionable insights 
for police operations: aligning patrol scheduling with nighttime demand peaks, staging resources strategically in high-
stress districts such as 6D and 7D, and adopting adaptive staffing policies to absorb episodic surges. 
 
Theoretically, this research contributes to the underexplored intersection of SEM and public safety op- erations by 
moving beyond prediction to causal explanation. Practically, it provides a decision-support framework that connects 
spatiotemporal data to managerial interventions. Future research should ex- tend this work by integrating response 
time logs, officer availability data, and citizen-reported calls for service, thereby creating a more holistic model of 
policing efficiency. Linking these additional data streams within a structural modeling framework would allow 
researchers and practitioners to capture the full cycle of detection, response, and outcome, supporting evidence-based 
policy in public safety operations. While this study demonstrates the explanatory value of SEM in public safety, it is 
based solely on Washington, D.C. data. Findings may not generalize directly to other jurisdictions without replication. 
Future research should incorporate multi-city datasets, dispatch logs, and cost analyses of adaptive staffing policies to 
assess feasibility in operational settings. 
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