

Volatility Spillover and Risk Transmission between Green and Brown Assets: A Systematic Literature Review with Thematic Analysis

Laxman Tandan, Vinod Gupta, Rudra P. Pradhan, SMRK Samarakoon and Upasana Haldar

School of Management, Indian Institute of Technology
Kharagpur, WB 721302, India

ltandan2052@gmail.com, rudrap@vgsom.iitkgp.ac.in, kithsiri@kgpian.iitkgp.ac.in,
upasanahaldar@kgpian.iitkgp.ac.in

Rana P Maradana

Department of Entrepreneurship and Management
Indian Institute of Technology Hyderabad
Sangareddy, Telangana State -502284, India
ranapratap@em.iith.ac.in

Abstract

This study presents a systematic literature review (SLR) aimed at synthesizing and assessing the existing state of knowledge within the chosen research domain. Following a systematic approach aligned with the PRISMA guidelines, 67 peer-reviewed journals published between 2015 and 2025 were selected from the Scopus and Web of Science databases. This review presents the results in two different sections: descriptive bibliometric metadata and thematic analysis, and it investigates the principal research themes, theoretical underpinnings, methodological patterns, and existing research gaps. There is a dynamic interconnection of volatility spillovers between the green and conventional assets, and the time-frequency dynamics analysis highlights that the impacts can be very over the different time periods and market scenarios. This study offers directions for future research and conclusions for policymakers, executives, regulatory bodies, and academicians.

Keywords

Spillover, Financial Assets, Volatility, Transmission, Network

1. Introduction

The global transition to the sustainable practice, there is a paradigmatic shift into the sustainable finance, with institutional and retail investors increasingly integrating the environmental, social and governance (ESG) criterion in the investment decision. This evolution has bifurcated financial market into two prominent assets: green assets, aligned with sustainability principles and brown assets aligned with the negative effects with environment (Battiston et al., 2017; Reinders et al., 2023). With theme of sustainable development goals, and Paris Agreement-2015, the raising adoption of green assets, it has become increasingly important to analyze the inter relation and pathways of volatility and systematic risk transmission between green and brown assets.

The volatility transmission and systematic risk spillover across the assets classes has been a central theme in financial econometrics, particular in turmoil, when shocks originating in one segment can cascade through interconnected

financial systems, intensifying systemic fragility (Diebold and Yilmaz, 2012; Baruník and Křehlík, 2018). Due to the evolving regulatory framework, climate transition risk and heterogeneous risks, these dynamics have gained the heightened significance in the context of green and brown finance. Yet, while conventional econometric approaches provide meaningful insights into pairwise volatility spillovers, they often fall short in capturing the intricate web of multilateral interactions and higher-order connections that characterize the increasingly complex landscape of sustainable finance.

The recent advancement in network-based connectedness such as Diebold-Yilmaz approach (2012; 2014) quantifies directional connectedness using forecast error variance decompositions from vector autoregressions (VARs), while the Baruník-Křehlík model (2018) extends this analysis into the frequency domain, enabling a decomposition of connectedness across short-, medium- and long-term investment horizons. These models have been applied to traditional market such as equities, commodities, forex, however the application to the green-brown dichotomy remains nascent and fragmented. Additionally, network topologies constructed from the connectedness metrics such as minimum spanning trees, dynamic conditional correlational networks, and spillover index frameworks have been highly effective in detecting the key systematic entities and paths of contagion within financial systems (Billio et al., 2012; Kenett et al., 2015). Integration of these methodologies in area of sustainable finance can provide the detail insights into whether green assets serve as buffers against market instability or act as channels for risk stabilizer during periods of financial stress.

Despite the recent empirical studies on the dynamic association between the green and conventional assets, however, a thorough and structured review of all the studies remain largely unexplored. This review contributes existing literatures on volatility spillovers and risk transmission between green and conventional assets in various ways. Firstly, we employed the scientometric assessment to figure out scholarly terrain of the domain, exploring the novel most influential average data like, number of authors, publication time, revision time, citations, references, article page lengths and methodological parameters. Thirdly, we conducted the bibliometric thematic analysis and synthesizing the existing body of knowledge through a meta-analysis of leading articles in aggregate offering a qualitative interpretation of prior literature. Lastly, we have offered forward-looking research framework supporting future research agendas in area of spillover of risks. The structure of this study follows; section II presents the methodological justifications of this study; section III shows the results of the study and section IV presents the conclusion and discuss about the future research avenues.

2. Data and Methodology

We follow preferred reporting items for systematic review and meta-analysis (PRISMA) 2020 approach, which has a scientific transparency and dependability, to synthesize and generalize the existing literature on volatility spillover and risk transmission among the financial assets (Page et al., 2021). We used the PRISMA structured methodology to articulate the clear research question, choose the relevant papers, grasp the methodological aspect of the study, and synthesize the key contributions (Rethlefsen et al., 2021; Muchiri et al., 2022; Ed-Dafali et al., 2025). For SLR, we chose journal articles from Scopus and Web of Science because they provide a greater journal scope, unbiased coverage across publishers, more information detail, and more bibliometric data than other sources (Pranckute, 2021).

An initial search was conducted by using a structured keyword string based on PRISMA guidelines as mentioned in Page et al. (2021). The major keywords are (*TITLE-ABS KEY* ('volatility spillover' OR 'risk transmission' OR 'risk spillover') AND *TITLE-ABS KEY* ('green assets' OR 'sustainable assets' OR 'green bond') AND *TITLE-ABS KEY* ('carbon assets' OR 'brown assets' OR 'conventional assets')).

The screening process for this SLR was systematically guided by the PRISMA protocol, covering stages, from identifying the related articles, reviewing the titles and abstracts, assessing full text eligibility and final inclusion. We primarily focused on journals published from 2015 onward, recognizing that sustainability policy adoption gained significant momentum after the 2015 Paris Agreement (Meinshausen et al., 2022). To ensure broad accessibility and consistency, we limited our research selection to studies published in English, the dominant language of academic discourse (Ramalingam et al., 2022). Furthermore, we confined the scope to subject areas including the Business Management, Accounting, Economics, Econometrics, and Finance, for relevant theoretical and practical contextual, thereby enhancing the interpretive depth and generalizability of findings (Toth et al., 2023). It can be noted that only peer-reviewed journal articles were included, as these typically adhere to rigorous methodological standards, undergo quality checks, and contribute to reducing the bias and increasing reliability (Khan et al., 2020). After applying all

inclusions, we identified 67 journal articles in between 2015 to 2025. This carefully, structured process ensures the methodological rigor, clarity, and replicability of key findings in SLR (Figure 1).

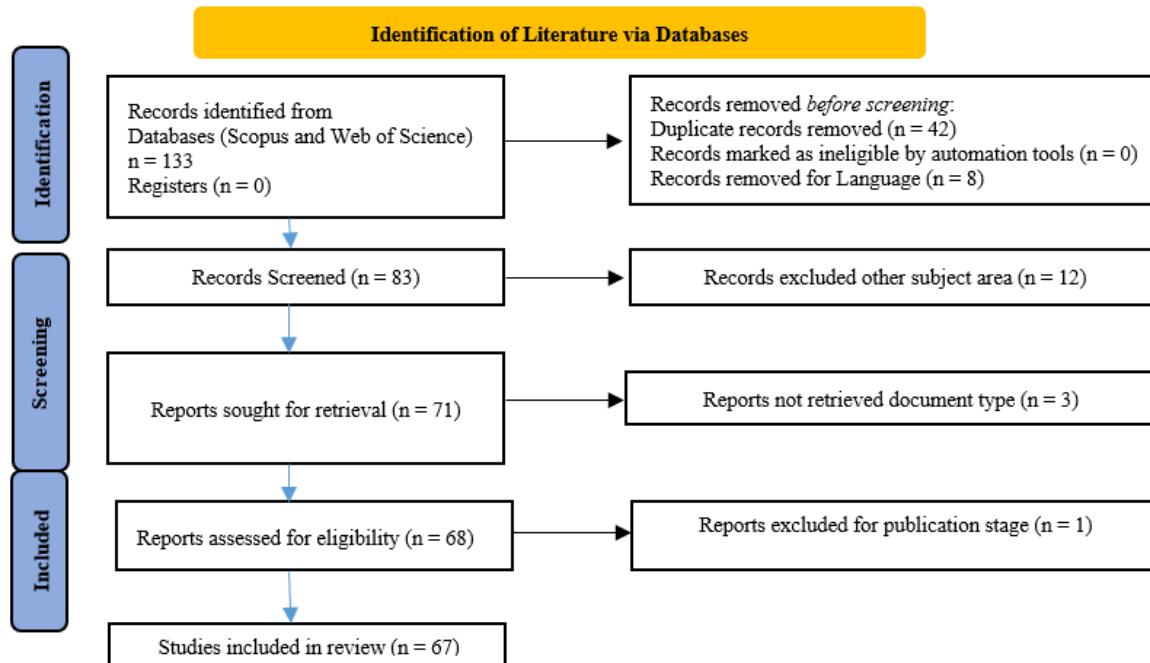


Figure 1. Reporting items for systematic review and meta-analysis

To explore the scholarly landscape in this emerging area of finance, we adopted a bibliometric approach, as employed in previous studies (Paltrinieri et al., 2019; Baker et al., 2021). This method has become increasingly valuable in identifying influential trends, key contributors, and thematic developments in academic research. Following the framework suggested by Khan et al. (2020) and Zairis (2024), our analysis was structured across two main dimensions: descriptive bibliometric metadata and thematic analysis. For data processing and visualization, we relied on widely accepted analytical tools Python, which have been frequently applied in similar research settings (Paltrinieri et al., 2019). In descriptive part, we present the visualizations of essential corpus such as yearly publication trend, journal qualities, most prolific authors, journal paper attributes journals-publishers, cartography, analysis tools, data pints and geographical distribution. The second dimension involved a thematic analysis of existing body of literatures classifying mainly into four themes emerged based on Contagion and Spillover theory. With the aim of outlining the conceptual framework and thematic structures in literatures, we analyze the major scholarly work with publication year, journal quality, and main findings and no of data points used in the study and followed by the conclusions of articles. This offers to generate a visual map of academic relationships and uncover hidden research trends.

3. Results and Discussion

This section presents and interprets the findings in two parts: the descriptive bibliometric analysis, which provides an overview of the data set, and thematic analysis, which examines the underlying patters and thematic structures within the literature.

3.1 Descriptive Bibliometric Metadata: In the first section, we presents descriptive metadata in graphically; general attributes of corpus, annual publications, journal qualities, most prolific authors, journal paper attributes (no of authors, page numbers, and time between submission to publication), journals–publishers, cartography, analysis tools, data pints and geographical distribution of data to analyze the data driven insights in the ESG disclosure.

i. General Attributes of Corpus: The general attributes of the corpus in SLR offers a fundamental overview of scope, credibility and methodological aspect of the reviewed journal articles. Corpus information supports to generalize the scholarly efforts and engagement in this field and close understanding of reviewed area (Table 1).

Table 1. General Attributes of the Corpus Analyzed in SLR

Details	Results
Main Dataset Information	
Timespan	2015-2025
Sources	Scopus and Web of Science
Subject Area	Business, Finance and Accounting, Economics, Econometrics
Document Type	Articles
Source Title	All
Publication Stage	Final
Sources Type	Journal
Language	English
Nature of Research	Empirical
Facts and Figures	
Average No Authors	3.28
Average Paper Length	20.58 Pages
Average Publication Time	4.86 Month
Average Revision Time	0.77 Time
Average No. of Citation	71.27 Per Journal
Average No of References	59.14 Per Journal
Average no of Observations	3338
Methodology	
Research Approach	Deductive Approach (Followed in All Reviewed Journal)
Research Methods	Quantitative 67 Journals (Followed in All Reviewed Journal)
Research Design	Approx. Autoregressive Models
Nature of Data	Secondary data (Green and Conventional Stock Indexes)
Data Based	Industry Level

Table 1 presents the general attributes of corpus of literatures and review examines the 67 peer-reviewed journal articles published in between 2015 to 2025, focusing into volatility spillover and risk transmission among the financial assets. All the empirical journals sourced from Scopus and Web of Science, the journals span business related discipline and written in English. On average, each study has three authors, 20 pages, 59 references, and underwent 0.77 times over the 4.86 months. The literature demonstrates strong citation impact about 71 per journal and conceptual depth. Majority of the papers have followed a deductive, quantitative approach using the industry level secondary data about the 3338 observations, with autoregressive designs supported by rigorous robustness tests to assess ESG's effect on firm value.

ii. Annual Scientific Publications: The annual publications of articles present evolution and growing research interest this research area over the last periods. This visualization identifies the pattern of publications, emerging relevance, and their movement in future.

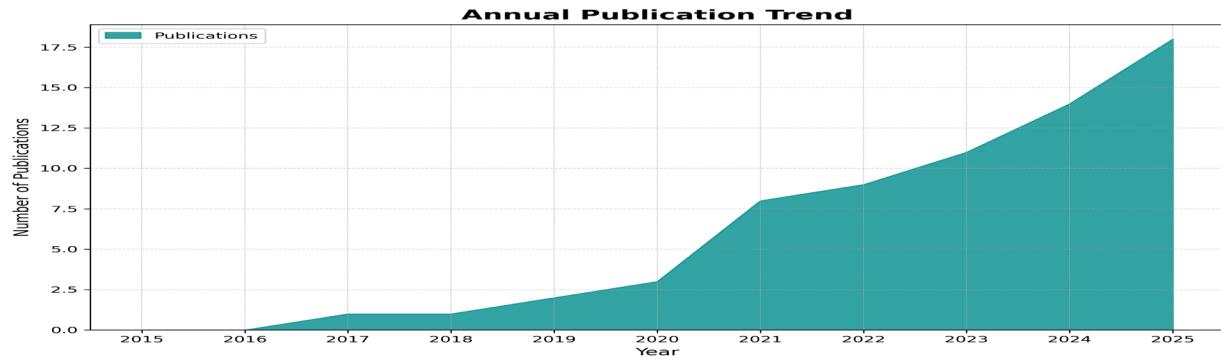


Figure 2. Annual Publication of Journals

Figure 2 presents the number of publications has generally increased over the years, reflecting the growing academic interest in this area. Particularly, after 2020, likely driven by evolving global sustainability policies and financial disclosure regulations. The peak in 2025 (18 publications) suggests that this area is rapidly emerging as a key research domain.

iii. Journal Ranking: In the review, article ranking through different ranking offer to assess the quality and credibility of the literatures included in review, ensuring that the review is based on the high impactful, academic rigor and relevance papers, thereby enriching the overall validity of the review.

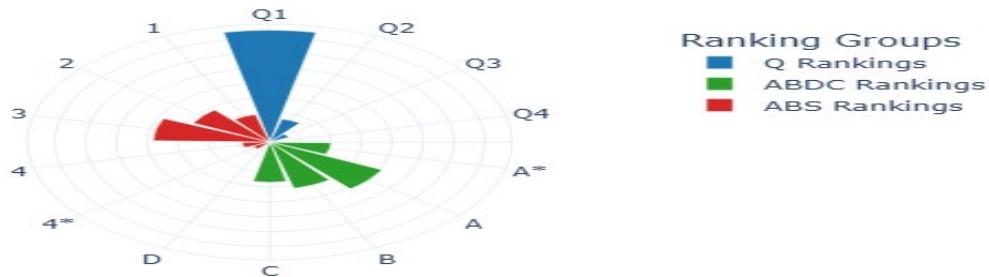


Figure 3. Journal Rankings

Figure 3 presents the journal quality ranking of articles included in this review. This analysis primarily draws from high impact and academically rigorous journals, with majority articles have published in top tier journal. Based on the ABDC classification, the review includes in percentage A* (20), A (41), B (32), and C (7) ranked journals. According to the SCImago Journal Rank (SJR), the distribution includes Q1 (75), Q2 (16), Q3 (9), and Q4 (2) journals. Additionally, the ABS ranking comprises 4* (6), 4 (9), 3 (38), 2 (28), and 1 (19) rated journals. These distributions underscore the review's strong foundation in high-quality, peer-reviewed academic literature.

iii. Most Prolific Authors: This analysis presents a few key researchers as the most prolific of authors, contributing extensively to publications and collaboration in this research arena. Basically, their scholarly work helps to note the foundations of research, gaps prevail in this area and future research directions. We have presented top twenty authors based with attributes of at least first author one time in journals.

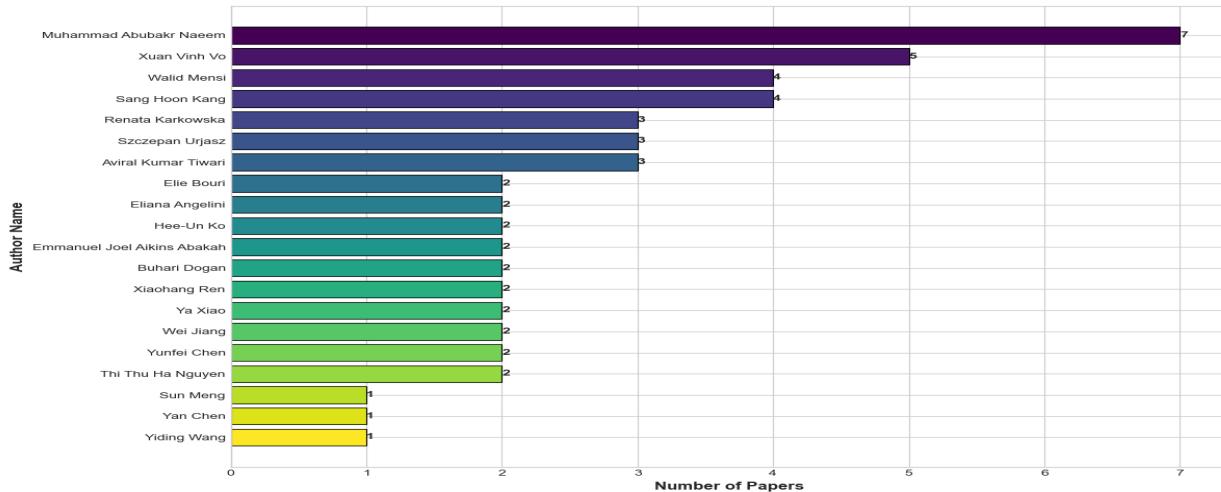


Figure 4. Most Prolific Authors

The Figure 4 shows the top 20 most prolific authors in journals reviewed in this SLR. Muhammad Abubakr Naeem leads with 7 publications, followed by Xuan Vinh Vo with 5, Walid Mensi and Sang Hoon Kang with 4 each. Several other have contributed 2 to 3 papers, highlighting a concentration of output among a few contributors in the field.

iv. Journal attributes: Presenting journal attributes (no of authors, submission to publication time, article pages length imparts an insight into publication patterns and editorial standards in this research domain. It assists to analyze depth or reteach, efficiency of publication and level of collaborations, thereby enhancing the transparency, and also guides future researchers for selecting the best articles in this academia.

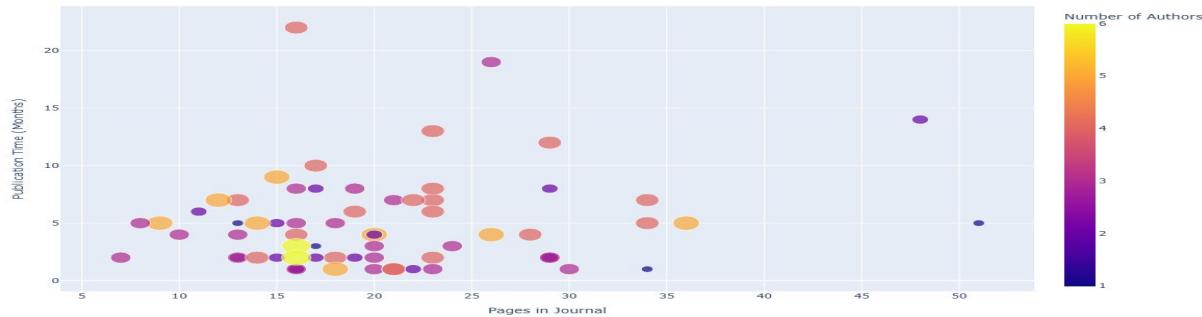


Figure 5. Journal Attributes

In Figure 5, the reviewed literatures present about 3 authors per journal, indicating a moderate collaboration, with authorship ranging from 1 to 6. Similarly, the average article publication timeline is 5 months, varying from 1 to 22 months, denoting differences in journal review process. Furthermore, the average length of article is 20 pages, with a ranging from 7 to 43 pages, presenting the variation in depth and scope of research. These pattern presents the diversity and academic rigor present in reviewed literature.

v. Journals and Publishers: In the SLR process, critical assessment of journal-publishers assist to examine the academic rigor, peer review integrating, and potential bias influencing the body of knowledge. This scrutiny presents the dynamics in knowledge dissemination, highlighting how dominant publisher can figure out research agendas.

Figure 6. Journals-Publishers Distributions

Figure 6 presents the distribution of articles across the publishers' reveals the strong concentration into a few academic publishers dominantly. Elsevier is the most prominent, publishing the majority of the reviewed articles across a wide range of journals such as *Energy Economics*, *International Review of Financial Analysis*, *Resources Policy*, *Journal of Cleaner Production*, and *Finance Research Letters*. MDPI follows, contributing through open-access outlets like *Sustainability*, *Mathematics*, and *Energies*. Springer, Taylor & Francis, and Wiley also appear consistently, each hosting several high-impact journals relevant to ESG and financial research. This pattern highlights the role of a few key publishers in shaping scholarly discourse in the ESG-finance domain, as visualized in the Sankey diagram.

vi. Keyword Analysis: Visualizing the keywords pattern identifies the central themes, research tends, and evolving emphasizes in the existing body of knowledge. It helps to mapping the technical structure of this research area, and uncovers the emerging concepts, which helps to locate the major contributions, issues, and future research areas.

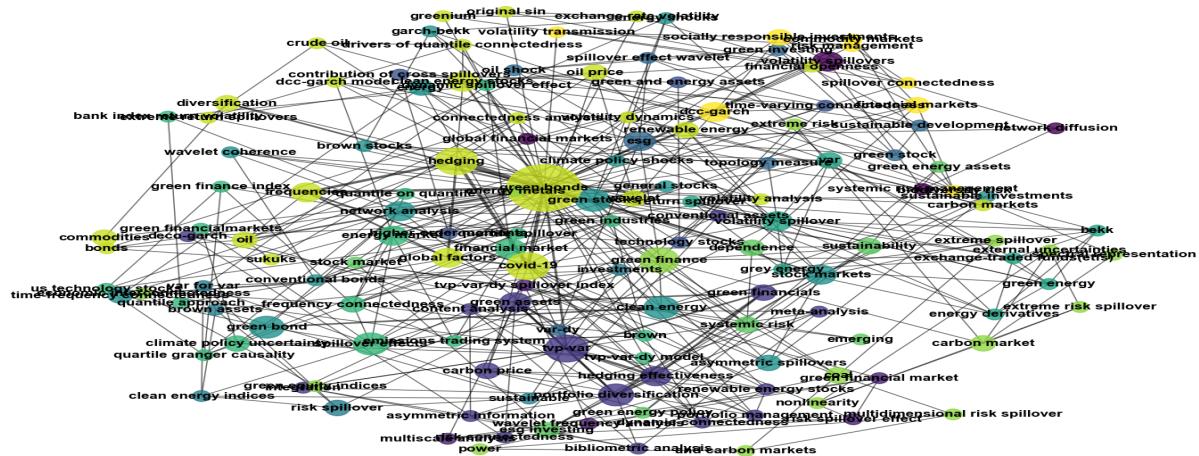


Figure 7. Cartography/Keywords analysis

Figure 7 demonstrates the major keywords used in the reviewed articles predominantly emphasize financial assets, energy, and environmental concerns, particularly via a lens of volatility, spillover and connectedness. The prominent themes consist of volatility spillovers and connectedness, primarily these association have examined among the various green and conventional financial assets. The essence of sustainable finance, green finance, impact investing,

and their market dynamisms are recurring contents. Furthermore, many keywords highlight the use of sophisticated tools for analysis, like time varying parameter (TVP), vector auto regression (VR), wavelet transform, network analysis, Diebold and Yilaz (DY), Barunik and Krehlik (BK) indices, dynamic conditional correlation (DCC), autoregressive conditional models to examine the complex associations. Similarly, the contents like risk spillover, transmission, portfolio diversification, economic shock and covid-19, are also common. The overall emphasizes is on understanding the interconnectedness within and across financial assets.

vii. Analysis Tools: Understanding the methodological landscape, offers the prompt locations of commonly applied techniques, robustness analysis tools, observe the shift in analytical approach over the time and methodological gaps. This visualization supports for logical methodological justifications for future research design and ensures the methodological transparency in SLR.

Figure 8. Analysis Tools

Based on the reviewed literatures, there are diverse set of advance econometric tools primarily focus on analyzing the time varying, spillovers and connectedness among the assets (Figure 8). A significant portion of tools revolves around to capture the dynamic associations over the periods. The prominent model used in the data analysis is time varying parameter vector autoregression (TVP-AR) to analyzing the varying value of parameter over the time. Similarly, generalized autoregressive conditional heteroskedasticity (GARCH) models, dynamic conditional correlation, and Baba, Engle, Kraft, and Kroner (BEKK) have used to capture the volatility spillovers and correlations. Further, Diebold-Yilmaz (DY) and Barunik-Krehlik (BK) spillover index methods are used to quantify the magnitude and direction among the financial assets. Additionally, some of the papers have used the Wavelet based models and Quantile regression models (QVAR, TVP-QQR) to examine the relationship across different frequencies and different parts of distribution.

viii. Data Points Analysis: Presenting the no of observations and their linkage with analysis tools offer to quickly convey the associations between data size and analysis tools. Sample size and their best fitted analysis model helps to generalize and replicate in the other research, thereby this visualization enhances methodological contribution in future research.

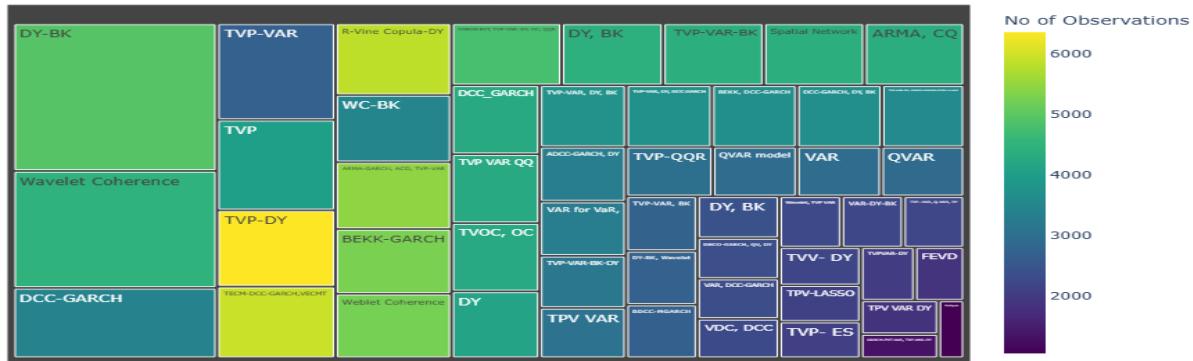


Figure 9. Data Points and Analysis Tools

Figure 9 illustrates the application of analysis tools according to data point based on the reviewed literatures. The size of rectangles corresponds to the observation point; a larger rectangle indicates that a tool was applied for large dataset. Each of the rectangle is labeled with an acronym for analysis tool. The models like TVP-VAR, DY-BK, and Wavelet coherence are using for the large set of data. Similarly, FEVD, TPL-LASSO, TPV-ES, VDC are used less often and with smaller dataset.

ix. Geographical Database: This assessment examines the key countries involved in research within these areas, highlighting their contributions to the existing knowledge base. Additionally, it explores patterns of international collaboration, regional research strengths, and identifies potential gaps in global academic participation.

Geographical Database Included in the SLR

Figure 10. Geographical Database

Figure 10 illustrates the geographic focus of reviewed papers. The most frequently mentioned countries are China and the USA, indicating that the substantial portion of literatures are centered on these two major economies. Similarly, there are few literatures covering the multi-country analysis. Additionally, there are other European countries. There are also many examples where a diverse set of countries from different continents are includes, suggesting a broad, international perspective. The data reflects a repeating trend of research concerning on a few dominant economies, a wide-ranging global scale and specific regional block.

3.2 Thematic Analysis

In this section, we have presented and assessed the major themes emerged from the reviewed journal topics. Following Creswell and Creswell (2018), we used the thematic analysis to detect and codes the emergent themes in existing body of knowledge. Themes were emerged from the identifications, analyzing and reporting the repeated patterns in research objectives of reviewed literatures (Braun and Clarke 2006). Based on the Contagion and Spillover theory, we have generated the four major themes: i. Volatility and Risk Spillover, ii. Dynamic Connectedness and Tail Risk Analysis, iii. External Shocks and Crisis Events, and iv. Network Diffusion and Systematic Risk among the brown and green assets (Dornbusch et al., 2000; Forbes and Rigobon, 2002). All the themes are analyzed below.

Theme I. Volatility and Spillover: We emerged the theme spillover and volatility concerns on how shocks in one assets spillover other, explaining the interconnected risk behavior in the financial market (Balele, 2005). Following Bensaïda et al. (2019), we have primarily emphasized on the papers related to transmission of risk, return, and volatility spillovers between green instruments such as (green bond, clean energy stock, ESG indices) and conventional markets (Oil, fossil fuels, traditional bonds, and stocks) (Table 2).

Table 2. Volatility and Risk Spillover

Paper Titles	References	SJI	Methods	Result	Data Point
<i>Volatility transmission and hedging strategies across green and conventional stocks in global markets</i>	Karkowska and Urjasz (2024)	Q1	TVP-VAR	Positive	June-2016 to Dec-2023
<i>Volatility spillovers between equity and green bond markets</i>	Park et al. (2020)	Q1	GARCH	Positive	Jan-2010 to Jan-2020
<i>Is green investment different from grey? Return and volatility spillovers between green and grey energy EFTs</i>	Rizvi et al. (2022)	Q1	BEKK	Mixed	Oct-20015 to Oct-2020
<i>Asymmetry in the returns and volatility between green financial assets, sustainable investments, clean energy, and international stock markets</i>	Dogan et al. (2025)	Q1	DY-BK	Mixed	June-2009 to June-2022
<i>Dynamic volatility among fossil energy, clean energy and major assets: evidence from DCC-GARCH</i>	Ozkan et al. (2024)	Q2	DCC-GARCH	Positive	Sep-2014 to Oct-2022
<i>Spillover effects between fossil energy and green markets: Evidence from international inefficiency</i>	Ren et al. (2024)	Q1	TVP-VAR	Positive	Nov-2017 to Nov-2022
<i>The contagion of extreme risks between fossil and green energy markets: evidence from China</i>	Ren et al. (2024)	Q1	DY, GARCH-EVT-VAR	Positive	Jan-2019 to Aug-2022
<i>Dynamic and frequency spillovers between green bonds, oil and G7 stock markets: Implications for risk management</i>	Mensi et al. (2022)	Q1	BK-GFEVD	Positive	Jan-2014 to May-2021
<i>Risk connectedness between green and conventional assets with portfolio implications</i>	Naeem et al. (2023)	Q2	DECO-GARCH	Positive	Aug-2014 to Dec-2020
<i>Risk spillovers and network connectedness between clean energy stocks, green bonds, and other financial assets: Evidence from China</i>	Chen et al. (2023)	Q1	DY-FEVD	Mixed	Jan-2015 to June-2022

Karkowska and Urjasz (2024) presents an evidence of transmitting the volatility from developed countries in to emerging countries and substantial benefits from hedging and portfolio diversification strategies. Park et al (2024) green bonds show asymmetric volatility and volatility is also sensitive to positive price shock. Rizvi et al. (2022) concludes that shocks originating in green financial market have a more impact on other market. Ozkan et al. (2024) asserts that the interconnectedness reaches peak during the market stress like Covid-19, Russia-Ukraine war and conventional assets transmits the spillover to other assets. Dogan et al. (2025) highlight that green stocks and developed stock market has the significance difference in return and spillover in short and long-time horizon. Ren et al. (2024a) spot that the market inefficiency and ripple effects vary over the period and influenced by extreme events. Ren et al. (2024b) green energy is more variable to severe risks than fossil fuels and are less stable and developing. Mensi et al. (2022) shows that green bond has more diversification benefits and co-movement is more pronounced in medium and long time. Naeem et al. (2023) confirms that both green and conventional bonds have time varying characteristics over the time periods. Chen et al. (2023) presents that clean energy markets vary in transmitting the risks and global market shocks alters the risk spillovers.

Theme II. Dynamic Connectedness and Tail Risk Analysis: We materialized the theme dynamic connectedness and tail risk frequency analysis in response to capture evolving and extreme co-movement of financial assets, how tail risks and frequency decomposition matters in the financial market (Massacci, 2017; Guo et al., 2021). In this theme, following Barunik and Krehlik (2018), we have included the papers: modeling of advance tail risk, time-frequency analysis, and multi-scale spillover using the wavelet, quantile regression, DCC-GARCH for examining the connectedness and risk under extreme shocks (Table 3).

Table 3. Dynamic Connectedness and Tail Risk Analysis

Paper Title	References	SJI	Methods	Result	Data Point
Tail risk contagion and multiscale spillovers in the green finance index and large US technology stocks	Zeng et al (2025)	Q1	QVAR, GC, TVPVAR, QQR	Positive	Jan-2015 to Mar-2023
Clean energy indices and brown assets: an analysis of tail risk spillovers through the VAR for Var model	Angelini et al. (2022)	Q1	VAR for VAR, GC	Positive	Sep-2011 to May-2019
Extreme spillovers among green finance, energy, and energy metals markets in China: Evidence under the dilemma of energy transition	Lin and Zhang (2025)	Q1	QVAR	Positive	Jan-2016 to Dec-2023
Asymmetric spillovers between green bonds and commodities	Naeem et al. (2021)	Q1	DY-BK	Mixed	Dec-2008 to dec-2020
Time-frequency comovement among green bonds, stocks, commodities, clean energy, and conventional bonds	Nguyen et al. (2021)	Q1	Wavelet Coherence	Positive	2008 to 2019
The green sin: how exchange rate volatility and financial openness affect green premia	Moro and Zaglini (2025)	Q1	CRSE	Positive	Jan-2014 to Dec-2021
Extreme risk connectedness and its determinants between carbon, green finance and energy markets	Jin (2025)	Q3	GAS/GARCH-BK	Positive	Jul-2013 to Dec-2021
Frequency spillovers between green bonds, global factors and stock market before and during Covid-19 crisis	Mensi and Kang (2023)	Q1	DY-BK, TVP, QQR	Positive	Jan-2011 to Sep-2022
Dynamic risk spillover in green financial markets: A wavelet frequency analysis from China	Wang et al. (2025)	Q1	TVP-VAR-DY	Positive	2018 to 2024

Zeng et al. (2025) presents that volatility connectedness is more pronounced at extreme tail and dynamic spillover intensifies during bullish period. Angelini et al. (2022) concludes that extreme events exert a significant spillover effect. Lin and Zhang (2025) asserts that total spillovers fluctuate over time and peaking at the time of extreme market scenario. Naeem et al. (2021) highlight for asymmetric spillovers among the financial assets across times and frequency circles. Nguyen et al. (2021) show the high correlation aftermath global financial crisis and weak correlation with commodities. Moro and Zaglini (2025) demonstrate that effect is high in developing countries than developed countries. Jin (2025) spots that extreme volatility intensify during the sudden external shocks. Mensi and Kang (2023) note that green bond as transmitters in short-run volatility dominates the long run as receiver. Wang et al (2025) state that risk transmission follows the cyclical patters and affected by external shocks in the green financial market.

Theme III. External Shocks and Crisis Events: In this theme, following Kenourgos and Padhi (2012), we evolved this theme concerning on how geopolitical risks, environmental policy uncertainties, and exogenous crisis like Covid-19, Russia-Ukraine war affects in the financial markets. In this theme, we have incorporated papers related to macro financial factor, interventions and global shocks affects volatility in the financial assets (Caldara et al., 2016) (Table 4).

Table 4. External Shocks and Crisis Events

Paper Title	Reference	SJI	Methods	Result	Data Point
Ripple effects of climate policy uncertainty: risk spillovers between traditional energy and green financial markets	Liu et al. (2025)	Q1	TVP-VAR-DY	Positive	Mar-2014 to Dec-2023
The role of uncertainty in return spillovers among digital assets: new insights from the shock of unprecedented events	Zhou et al. (2024)	Q1	TPV-VAR	Positive	July-2016 to Oct-2023
Climate policies, energy shock and spillovers between green and brown stock price indices	Albanese et al. (2025)			Mixed	Mar-2009 to Dec-2023
How does the volatility of ESG stock indices spillover in times of high geopolitical risk? New insights from emerging and developed markets	Karkowska and Urjasz (2025)	Q1	ADCC-GARCH	Positive	May-2014 to May-2023
Time-frequency connectedness among traditional/new energy, green finance, and ESG in pre-and post-Russia Ukraine war periods	Jiang et al. (2023)	Q1	DY-BK	Positive	Sep-2020 to Nov-2022
The time-frequency connectedness among carbon, traditional/new energy and material markets of China in pre-and post-Covid-19 outbreak periods	Jiang and Chen (2022)	Q1	DY-BK	Positive	Jan-2015 to July-2021
Extreme spillover effects of Covid-19 pandemic-related news and cryptocurrencies on green bond markets: a quantile connectedness analysis	Khalfaoui et al. (2023)	Q1	DY-Quantile Reg.	Positive	Jan-2020 to Jan-2022
Green shocks: the spillover effects of green equity indices on global market dynamics	Trancoso and Gomes (2024)	Q2	TVP-VAR	Positive	Aug-2013 to July-2023
Global factors and the transmission between United States and emerging stock markets	Naeem et al. (2023)	Q2	DY-BK	Mixed	Jan-1996 to Dec-2018

<i>Spillover effects between climate policy uncertainty, energy markets, and food markets: a time frequency analysis</i>	Zhang et al. (2025)	Q1	DY-BK	Mixed	Jan-2012 to Dec-2023
--	---------------------	----	-------	-------	----------------------

Liu et al. (2025) concludes that there are substantial risk spillovers with sharp shift during the policy shocks, primarily in short run than medium and long run. Zhou et al. (2024) highlight the information shock and more effect in digital assets than other assets. Albanese et al (2025) shows the climate policy and energy shock are more influential and energy shock has uniform effects. Karkowska and Urjasz (2025) concludes that geopolitics and climate shocks affect global financial market, shaping the stability. Jiang et al. (2023) note that overall connectedness rise noticeably with a stronger increase in the short run. Jiang and Chen (2022) asserts that told connectedness is high in short run and increased following the Covid-19 outbreak. Khalfaoui et al. (2025) presents the strong net information shock among the markets during the bearish conditions. Trancoso and Gomes (2024) concludes the global market moves from being a shock transmitter to a shock receiver as green finance gains influence. Naeem et al. (2023) presents the heterogeneous impact of global factors on connectedness across markets. Zhang et al. (2025) demonstrate that the climate policy shock is contributor of return shock in short run and a net recipient in medium and long run.

Theme IV. Network Diffusion and Systematic Risk: The theme network diffusion and systematic risk appeared in assessment on how the systematic linkage, architecture, and risk propagation cause effects in financial markets (Summer, 2013; Jackson and Pernoud, 2021). In this theme, following Chen (2021), we have reviewed the journals that explore the network structure of financial assets, their interconnectedness and uncontrollable risks transmission among the financial assets (Table 5).

Table 5. Network Diffusion and Systematic Risk

Paper Title	References	SJI	Methods	Result	Data Point
<i>Market volatility spillover, network diffusion, and financial system risk management; financial modeling and empirical study</i>	Meng and Chen (2023)	Q2	R-Vine Copula and DY	Mixed	2007 to 2022
<i>Network analysis of volatility spillovers between environmental, social and governance ratings stocks: evidence from China</i>	Tian et al. (2025)	Q2	VAR-DY	Positive	2013 to 2023
<i>Examining the interconnectedness of green finance: an analysis of dynamic spillover effects among green bonds, renewable energy, and carbon markets</i>	Zhang and Umair (2023)	Q1	DCC-GARCH	Positive	Oct-2013 to Jan-2020
<i>Dynamic linkage and spillover effects of biodiversity risk in socially responsible investment and commodity market</i>	Kalhoro and Ahmed (2025)	Q1	DCC-GARCH	Mixed	Dec-2014, to Dec-2022
<i>Interdependence between green financial instruments and major conventional assets: a wavelet based network analysis</i>	Ferrer et al. (2021)	Q2	Wavelet Coherence	Mixed	Oct-2010 to Nov-2020
<i>Dynamic spillovers and asymmetric connectedness between fossil energy and green financial markets: Evidence from China</i>	Deng et al. (2022)	Q2	DY Spillover Index	Positive	Mar-2018 to Nov-2021
<i>The connectedness of oil shocks, green bonds, sukuks and conventional bonds</i>	Umar et al. (2023)	Q1	GEVD	Positive	May-2009 to Mar-2022
<i>Information linkage, dynamic spillovers in prices and volatility between the carbon and energy markets</i>	Ji et al. (2018)		VAR-DR	Positive	July-2006 to Oct-2017
<i>Risk spillover in the carbon-stock system and sustainability transition: empirical evidence from China's ETS pilots and a share emission regulated firms</i>	Wang et al. (2025)	Q1	TVP-VAR-BK-DY	Mixed	May-2014 to Dec-2022
<i>Spatial spillover effect of green finance on economic development, environmental pollution, and clean energy production across China</i>	Li et al. (2022)	Q1	Spatial Durbin model	Positive	2009 to 2019

Meng and Chen (2023) concludes that there are certain aggregation characteristics and clustered volatility spillovers centered in developed European countries. Tian et al. (2025) suggest that traditional risk management should integrate ESG factors to better manage risk contagion in extreme markets. Zhang and Umair (2023) shows an evidence that points to a complementary connection between green bonds and carbon markets. Kalhoro and Ahmed (2025) concludes that raising biodiversity risk strengthens market connectedness, amplifying risk transmission across them. Ferrer et al. (2021) highlight that the green financial instruments have the weak connection with high-yield corporate bond and fossil fuel. Deng et al. (2022) note that green bond as the safe heaven characteristics receives fewer shocks from the energy shocks. Umar et al. (2023) documents the energy price shocks acts as key spillover transmitter. Ji et

al (2018) shows that conventional energy price has the spillovers effects across other assets. Wang et al. (2025) present that the market maturity has the minimal level of overall risk spillovers, however dynamic spillovers have the upwards pattern. Li et al. (2022) also supports to the geographical factors have spillover risks.

4. Findings and Future Research

4.1. Major Findings: The literatures conclude there is dynamic interconnection of volatility spillovers between the green and conventional assets. The time-frequency dynamics analysis in the literatures highlights that the impacts can be very over the different time periods and market scenario. Based on the advance econometrical analysis like TVP-VAR, DCC, DY, SK, GARCH etc. the effect is not in same direction, they often from conventional to green, however there is also evidence that their reverse spillovers during market turmoil. The reviewed literatures present the several macro factors such as monetary policy, fiscal policy, geopolitical concerns, policy uncertainty, Covid-19, Russia-Ukraine war for analyzing the degree and direction of association and spillovers among the green and conventional financial assets. The major findings reveals that during the turmoil period, there is strong connectedness between the different asset's classes. Furthermore, carbon climate policies and environmental regulations have pertinent role in shaping the volatility dynamism. The core theme in the papers is to analyze the role of green assets in portfolio diversification, whether the inclusion of green assets in the portfolio optimizes the risk-return paradox against the conventional assets-based portfolio. The evidence is mixed, however, generally suggest that the inclusion offers diversification benefit in investment decision and are time varying with multiple market scenario. The findings shows that it's important to know the details of green and brown assets, as they can behave differently, different momentum of movement, different sensitive of effect and carry the different level of risk.

4.2. Future Research: Based on the reviewed literatures, several directions for future research have emerged to deepen the clear grasp of green finance and its interconnections with other financial asset, policies, risk. Expanding the analytical scope by incorporating the broader markets, longer time horizons, more contextual based attributes, geopolitical tensions, uncertainties and new regulatory environment. Another promising research direction involves capturing the high order connectedness such as skewness, kurtosis and jumps between the green and conventional financial assets, focusing the heterogeneous market behavior in developed and developing economics with multiple time and turmoil. The presence of green finance in carbon market volatility and the spillover between emission trading systems (ETS) and emission-regulated firms also demands further exploration. More robust models are needed to measure tail risk spillovers, asymmetries, and joint dynamics of returns, volatility, and extreme risk across green bonds, green stocks, and conventional financial assets. A multi frequency analysis for detecting the short-, medium- and long-term volatility transmission analysis for creating the optimal portfolio and risk management strategies. Similarly, a comparative analysis across the counties, industries including the high, medium and low ESG aligned stocks, to assess their hedging effectiveness and diversification benefits. Similarly, a methodological robustness and innovative techniques like generalized models, Quantile models, Copula and Bayesian models incorporating the sentiment-based data. Furthermore, areas of explore are in the impact of technological innovations, transition risks, and investors' sentiment beyond the financial industries. Additionally, a rich area of investigation is in case of past and expected global shocks. In nutshell, a multidisciplinary research agenda is advance modeling, broad dataset, nuance policy adjustment, and cross comparison with some sustainability parameters.

References

Albanese, M., Caporale, G. M., Colella, I., and Spagnolo, N., Climate policies, energy shocks and spillovers between green and brown stock price indices, CESifo Working Paper No. 11747, 2025.

Angelini, E., Birindelli, G., Chiappini, H., and Foglia, M., Clean energy indices and brown assets: An analysis of tail risk spillovers through the VAR for VaR model, Journal of Sustainable Finance & Investment, vol. 1, no. 1, pp. 1–28, 2022.

Baele, L., Volatility spillover effects in European equity markets, Journal of Financial and Quantitative Analysis, vol. 40, no. 2, pp. 373–401, 2005.

Baker, H. K., Kumar, S., and Pattnaik, D., Twenty-five years of the Journal of Corporate Finance: A scientometric analysis, Journal of Corporate Finance, vol. 66, no. 1, pp. 101572, 2021.

Baruník, J., and Křehlík, T., Measuring the frequency dynamics of financial connectedness and systemic risk, Journal of Financial Econometrics, vol. 16, no. 2, pp. 271–296, 2018.

Battiston, S., Mandel, A., Monasterolo, I., Schütze, F., and Visentin, G., A climate stress-test of the financial system, Nature Climate Change, vol. 7, no. 4, pp. 283–288, 2017.

BenSaiða, A., Good and bad volatility spillovers: An asymmetric connectedness, *Journal of Financial Markets*, vol. 43, no. 1, pp. 78–95, 2019.

Billio, M., Getmansky, M., Lo, A. W., and Pelizzon, L., Econometric measures of connectedness and systemic risk in the finance and insurance sectors, *Journal of Financial Economics*, vol. 104, no. 3, pp. 535–559, 2012.

Bouri, E., Jain, A., Roubaud, D., and Kristoufek, L., Green bonds and asset classes' interlinkages: A high-frequency analysis of connectedness and causality, *Energy Economics*, vol. 107, no. 1, pp. 105825, 2022.

Braun, V., and Clarke, V., Using thematic analysis in psychology, *Qualitative Research in Psychology*, vol. 3, no. 2, pp. 77–101, 2006.

Caldara, D., Fuentes-Albero, C., Gilchrist, S., and Zakrajšek, E., The macroeconomic impact of financial and uncertainty shocks, *European Economic Review*, vol. 88, no. 1, pp. 185–207, 2016.

Chen, G., Fang, S., Chen, Q., and Zhang, Y., Risk spillovers and network connectedness between clean energy stocks, green bond, and other financial assets: Evidence from China, *Energies*, vol. 16, no. 20, pp. 7077, 2023.

Chen, H., Wang, T., and Yao, D. D., Financial network and systemic risk: A dynamic model, *Production and Operations Management*, vol. 30, no. 8, pp. 2441–2466, 2021.

Creswell, J. W., and Creswell, J. D., *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches*, Sage Publications, 2017.

Deng, J., Guan, S., Zheng, H., Xing, X., and Liu, C., Dynamic spillovers and asymmetric connectedness between fossil energy and green financial markets: Evidence from China, *Frontiers in Energy Research*, vol. 10, no. 1, pp. 986341, 2022.

Diebold, F. X., and Yilmaz, K., Better to give than to receive: Predictive directional measurement of volatility spillovers, *International Journal of Forecasting*, vol. 28, no. 1, pp. 57–66, 2012.

Diebold, F. X., and Yilmaz, K., On the network topology of variance decompositions: Measuring the connectedness of financial firms, *Journal of Econometrics*, vol. 182, no. 1, pp. 119–134, 2014.

Dogan, B., Jabeur, S. B., Tiwari, A. K., and Abakah, E. J. A., Asymmetry in returns and volatility between green financial assets, sustainable investments, clean energy, and international stock markets, *Research in International Business and Finance*, vol. 73, no. 1, pp. 102626, 2025.

Dornbusch, R., Park, Y. C., and Claessens, S., Contagion: Understanding how it spreads, *World Bank Research Observer*, vol. 15, no. 2, pp. 177–197, 2000.

Ed-Dafali, S., Adardour, Z., Derj, A., Bami, A., and Hussainey, K., A PRISMA-based systematic review on economic, social, and governance practices: Insights and research agenda, *Business Strategy and the Environment*, vol. 34, no. 2, pp. 1896–1916, 2025.

Ferrer, R., Benítez, R., and Bolós, V. J., Interdependence between green financial instruments and major conventional assets: A wavelet-based network analysis, *Mathematics*, vol. 9, no. 8, pp. 900, 2021.

Forbes, K. J., and Rigobon, R., No contagion, only interdependence: Measuring stock market co-movements, *Journal of Finance*, vol. 57, no. 5, pp. 2223–2261, 2002.

Guo, F., Chen, C. R., and Huang, Y. S., Market contagion during financial crisis: A regime-switching approach, *International Review of Economics & Finance*, vol. 20, no. 1, pp. 95–109, 2011.

Jackson, M. O., and Pernoud, A., Systemic risk in financial networks: A survey, *Annual Review of Economics*, vol. 13, no. 1, pp. 171–202, 2021.

Ji, Q., Zhang, D., and Geng, J. B., Information linkage and dynamic spillovers between carbon and energy markets, *Journal of Cleaner Production*, vol. 198, no. 1, pp. 972–978, 2018.

Jiang, W., and Chen, Y., The time-frequency connectedness among carbon, traditional/new energy and material markets of China in pre- and post-COVID-19 outbreak periods, *Energy*, vol. 246, no. 1, pp. 123320, 2022.

Jiang, W., Dong, L., and Chen, Y., Time-frequency connectedness among traditional/new energy, green finance, and ESG in pre- and post-Russia–Ukraine war periods, *Resources Policy*, vol. 83, no. 1, pp. 103618, 2023.

Jin, X., Extreme risk connectedness and its determinants between carbon, green finance and energy markets, *Asia-Pacific Financial Markets*, vol. 3, no. 2, pp. 1–34, 2025.

Jin, X., Wang, Y., and Wang, X., Climate policy risks and stock return co-movements: Evidence from global financial markets, *Finance Research Letters*, vol. 56, no. 1, pp. 104462, 2023.

Kalhoro, M. R., and Ahmed, K., Dynamic linkage and spillover effect of biodiversity risk, socially responsible investment and commodity market, *Journal of Environmental Management*, vol. 374, no. 1, pp. 124144, 2025.

Karkowska, R., and Urjasz, S., How does the volatility of ESG stock indices spill over in times of high geopolitical risk? Evidence from emerging and developed markets, *Journal of Sustainable Finance & Investment*, vol. 76, no. 9, pp. 1–47, 2025.

Karkowska, R., and Urjasz, S., Volatility transmission and hedging strategies across green and conventional stocks in global markets, *International Review of Financial Analysis*, vol. 96, no. 4, pp. 103727, 2024.

Kenett, D. Y., Preis, T., Gur-Gershgoren, G., and Ben-Jacob, E., Dependency network and node influence: Application to the study of financial markets, *International Journal of Bifurcation and Chaos*, vol. 22, no. 7, pp. 1250181, 2015.

Kenourgios, D., and Padhi, P., Emerging markets and financial crises: Regional, global or isolated shocks?, *Journal of Multinational Financial Management*, vol. 22, no. 6, pp. 24–38, 2012.

Khalfaoui, R., Mefteh-Wali, S., Dogan, B., and Ghosh, S., Extreme spillover effect of COVID-19 pandemic-related news and cryptocurrencies on green bond markets: A quantile connectedness analysis, *International Review of Financial Analysis*, vol. 86, no. 4, pp. 102496, 2023.

Khan, A., Hassan, M. K., Paltrinieri, A., Dreassi, A., and Bahoo, S., A bibliometric review of takaful literature, *International Review of Economics & Finance*, vol. 69, no. 2, pp. 389–405, 2020.

Li, C., Fan, X., Hu, Y., Yan, Y., Shang, G., and Chen, Y., Spatial spillover effect of green finance on economic development, environmental pollution, and clean energy production across China, *Environmental Science and Pollution Research*, vol. 29, no. 58, pp. 87858–87873, 2022.

Lin, B., and Zhang, Z., Extreme spillovers among green finance, energy, and energy metals markets in China: Evidence under the dilemma of energy transition, *Renewable Energy*, vol. 241, no. 7, pp. 122403, 2025.

Liu, J., Guo, J., and Man, Y., Ripple effects of climate policy uncertainty: Risk spillovers between traditional energy and green financial markets, *Sustainability*, vol. 17, no. 12, pp. 5500, 2025.

Liu, R., Carbon shock waves: Unraveling spillovers in China's carbon–sector–energy–finance system, *SSRN Working Paper No. 5161621*, 2025.

Massacci, D., Tail risk dynamics in stock returns: Links to the macroeconomy and global markets connectedness, *Management Science*, vol. 63, no. 9, pp. 3072–3089, 2017.

Meinshausen, M., Lewis, J., McGlade, C., Gütschow, J., Nicholls, Z., Burdon, R., Cozzi, L., and Hackmann, B., Realization of Paris Agreement pledges may limit warming just below 2 °C, *Nature*, vol. 604, no. 7905, pp. 304–309, 2022.

Meng, S., and Chen, Y., Market volatility spillover, network diffusion, and financial systemic risk management: Financial modeling and empirical study, *Mathematics*, vol. 11, no. 6, pp. 1396, 2023.

Mensi, W., Naeem, M. A., Vo, X. V., and Kang, S. H., Dynamic and frequency spillovers between green bonds, oil and G7 stock markets: Implications for risk management, *Economic Analysis and Policy*, vol. 73, no. 12, pp. 331–344, 2022.

Mensi, W., Vo, X. V., Ko, H. U., and Kang, S. H., Frequency spillovers between green bonds, global factors and stock markets before and during the COVID-19 crisis, *Economic Analysis and Policy*, vol. 77, no. 4, pp. 558–580, 2023.

Moro, A., and Zaghini, A., The green sin: How exchange rate volatility and financial openness affect green premia, *Review of Finance*, vol. rfa f024, pp. 1–30, 2025.

Muchiri, M. K., Erdei-Gally, S., Fekete-Farkas, M., and Lakner, Z., Bibliometric analysis of green finance and climate change in the post-Paris Agreement era, *Journal of Risk and Financial Management*, vol. 15, no. 12, pp. 561, 2022.

Naeem, M. A., Adekoya, O. B., and Oliyide, J. A., Asymmetric spillovers between green bonds and commodities, *Journal of Cleaner Production*, vol. 314, no. 6, pp. 128100, 2021.

Naeem, M. A., Farid, S., Qureshi, F., and Taghizadeh-Hesary, F., Global factors and the transmission between United States and emerging stock markets, *International Journal of Finance & Economics*, vol. 28, no. 4, pp. 3488–3510, 2023.

Naeem, M. A., Karim, S., and Tiwari, A. K., Risk connectedness between green and conventional assets with portfolio implications, *Computational Economics*, vol. 62, no. 2, pp. 609–637, 2023.

Nguyen, T. T. H., Naeem, M. A., Balli, F., Balli, H. O., and Vo, X. V., Time-frequency comovement among green bonds, stocks, commodities, clean energy, and conventional bonds, *Finance Research Letters*, vol. 40, pp. 101739, 2021.

Ozkan, O., Abosedra, S., Sharif, A., and Alola, A. A., Dynamic volatility among fossil energy, clean energy and major assets: Evidence from DCC-GARCH, *Economic Change and Restructuring*, vol. 57, no. 3, pp. 98, 2024.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., and Chou, R., The PRISMA 2020 statement: An updated guideline for reporting systematic reviews, *BMJ*, vol. 372, no. 8, 2021.

Paltrinieri, A., Hassan, M. K., Bahoo, S., and Khan, A., A bibliometric review of sukuk literature, *International Review of Economics & Finance*, vol. 86, no. 3, pp. 897–918, 2023.

Park, D., Park, J., and Ryu, D., Volatility spillovers between equity and green bond markets, *Sustainability*, vol. 12, no. 9, pp. 3722, 2020.

Pranckutė, R., Web of Science (WoS) and Scopus: The titans of bibliographic information in today's academic world, *Publications*, vol. 9, no. 1, pp. 12, 2021.

Ramalingam, S., Yunus, M. M., and Hashim, H., Blended learning strategies for sustainable English as a second language education: A systematic review, *Sustainability*, vol. 14, no. 13, pp. 8051, 2022.

Reboredo, J. C., Green bond and financial markets: Co-movement, diversification and price spillover effects, *Energy Economics*, vol. 74, no. 2, pp. 38–50, 2018.

Reinders, H. J., Schoenmaker, D., and Van Dijk, M. A., The pricing of transition risk in corporate bonds, *Journal of Financial and Quantitative Analysis*, vol. 58, no. 2, pp. 527–553, 2023.

Ren, X., Xiao, Y., Duan, K., and Urquhart, A., Spillover effects between fossil energy and green markets: Evidence from informational inefficiency, *Energy Economics*, vol. 131, no. 5, pp. 107317, 2024.

Ren, X., Xiao, Y., He, F., and Gozgor, G., The contagion of extreme risks between fossil and green energy markets: Evidence from China, *Quantitative Finance*, vol. 24, no. 5, pp. 627–642, 2024.

Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., and Koffel, J. B., PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews, *Systematic Reviews*, vol. 10, no. 1, pp. 39, 2021.

Rizvi, S. K. A., Naqvi, B., and Mirza, N., Is green investment different from grey? Return and volatility spillovers between green and grey energy ETFs, *Annals of Operations Research*, vol. 313, no. 1, pp. 495–524, 2022.

Summer, M., Financial contagion and network analysis, *Annual Review of Financial Economics*, vol. 5, no. 1, pp. 277–297, 2013.

Tian, M., Li, S., Cao, X., and Wang, G., Network analysis of volatility spillovers between ESG rating stocks: Evidence from China, *Mathematics*, vol. 13, no. 10, pp. 1586, 2025.

Toth, A., Suta, A., Pimentel, J., and Argoti, A., A comprehensive semi-automated systematic literature review design: Application to P-graph research with a focus on sustainability, *Journal of Cleaner Production*, vol. 415, no. 12, pp. 137741, 2023.

Trancoso, T., and Gomes, S., Green shocks: The spillover effects of green equity indices on global market dynamics, *Economies*, vol. 12, no. 3, pp. 83, 2024.

Umar, Z., Abrar, A., Hadhri, S., and Sokolova, T., The connectedness of oil shocks, green bonds, sukuks and conventional bonds, *Energy Economics*, vol. 119, no. 2, pp. 106562, 2023.

Wang, Y., Zeng, Y., and Wu, Z., Risk spillover in the carbon–stock system and sustainability transition: Evidence from China's ETS pilots, *Sustainability*, vol. 17, no. 10, pp. 4274, 2025.

Wang, Y., Zhao, X., and Shang, J., Dynamic risk spillover in green financial markets: A wavelet frequency analysis from China, *Energy Economics*, vol. 143, no. 4, pp. 108301, 2025.

Zairis, G., Liargovas, P., and Apostolopoulos, N., Sustainable finance and ESG importance: A systematic literature review and research agenda, *Sustainability*, vol. 16, no. 7, pp. 2878, 2024.

Zeng, H., Abedin, M. Z., Lucey, B., and Ma, S., Tail risk contagion and multiscale spillovers in the green finance index and large US technology stocks, *International Review of Financial Analysis*, vol. 97, no. 8, pp. 103865, 2025.

Zhang, T., Li, P. F., and Zhou, W. X., Spillover effects between climate policy uncertainty, energy markets, and food markets: A time-frequency analysis, *Finance Research Letters*, vol. 12, no. 1, pp. 107553, 2025.

Zhang, Y., and Umair, M., Examining the interconnectedness of green finance: Dynamic spillover effects among green bonds, renewable energy, and carbon markets, *Environmental Science and Pollution Research*, vol. 30, no. 31, pp. 77605–77621, 2023.

Zhou, Y., Xie, C., Wang, G. J., and Zhu, Y., The role of uncertainty in return spillovers among digital, green, and traditional financial assets, *International Review of Financial Analysis*, vol. 103, no. 1, pp. 104225, 2025.

Biographies

Laxman Tandan is a PhD candidate at the Vinod Gupta School of Management, Indian Institute of Technology Kharagpur. His research interests encompass corporate, project finance, and business analytics. His scholarly contributions include numerous publications in national and international refereed journals, addressing topics such as finance and innovation. He has actively participated in organizing various national and international conferences, serving as a convenor and contributing to the academic discourse in his fields of expertise.

Rudra Prakash Pradhan is a Professor at the Vinod Gupta School of Management, Indian Institute of Technology Kharagpur. He holds a Ph.D. from Indian Institute of Technology Kharagpur and has been a faculty member at this

school since 2007. Prof. Pradhan's research interests encompass infrastructure and project finance, business analytics, financial economics, and transport economics. His scholarly contributions include numerous publications in national and international refereed journals, addressing topics such as innovation, economic growth, and the nexus between finance and infrastructure. He has actively participated in organizing various national and international conferences, serving as a convenor and contributing to the academic discourse in his fields of expertise.

SMRK Samarakoon is a PhD scholar at the Indian Institute of Technology Kharagpur, India. His research interests encompass corporate, project finance, and business analytics. His scholarly contributions include numerous publications in national and international refereed journals, addressing topics such as derivatives markets. He has actively participated in organizing various national and international conferences, serving as a convenor and contributing to the academic discourse in his fields of expertise.

Rana P Maradana is a faculty at the Indian Institute of Technology Hyderabad, India. His research interests encompass corporate, project finance, and business analytics. His scholarly contributions include numerous publications in national and international refereed journals, addressing topics such as finance and innovation. He has actively participated in organizing various national and international conferences, serving as a convenor and contributing to the academic discourse in his fields of expertise.

Upasana Haldar is a PhD scholar at the Indian Institute of Technology Kharagpur, India. Her research focuses on the operation management. Her research interests encompass operations management, project finance, and business analytics. His scholarly contributions include numerous publications in national and international refereed journals, addressing topics such as innovation, and infrastructure. He has actively participated in organizing various national and international conferences, serving as a convenor and contributing to the academic discourse in his fields of expertise.