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Abstract

The quality of water is a crucial criterion for various aspects such as public health, environmental sustainability, and
economic growth. Health of individuals largely depends on the water they consume, making regular monitoring
essential. Such monitoring can help in detecting outbreaks of waterborne diseases like cholera and typhoid, which
pose significant public health risks. Additionally, the aquatic ecosystem relies on a delicate balance of chemical and
physical properties; effective quality checks can identify pollution sources that may disrupt this balance and harm
aquatic life. The agricultural and food industries also heavily depend on good quality water for crop irrigation and
food processing, making water quality a vital factor in food security and safety. The proposed model “Aqua Purity -
Water Quality Analysis using Machine Learning,” as the name suggests, aims to analyses water quality by training a
model using various machine learning algorithms. This analysis will assist in identifying pollutants, detecting
anomalies, and classifying water bodies based on quality indicators such as pH, chemical composition, and microbial
presence. By integrating real-time data collection and advanced analytical techniques, the project seeks to develop a
framework that can categorize water drinkability and forecast potential water quality issues, allowing for timely
intervention.
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1. Introduction

Water is one of the most essential natural resources, fundamental to human health, agriculture, industry, and ecological
stability. However, the rapid pace of urbanization and industrial growth has severely affected water quality across the
globe. Increasing levels of pollutants, including heavy metals, agricultural chemicals, and microbial contaminants,
have made many water sources unsafe for consumption and daily use. Contaminated water continues to be a major
global challenge, causing widespread health issues such as cholera, typhoid, and dysentery, particularly in developing
regions where access to clean water is limited. As a result, maintaining high water quality standards has become a
critical priority for safeguarding public health, protecting ecosystems, and supporting sustainable development.

© IEOM Society International


https://doi.org/10.46254/IN05.20250056
mailto:ranitadey789@gmail.com
mailto:dipanitasharma01@gmail.com
mailto:atefakhatun786@gmail.com
mailto:rk4701700@gmail.com
mailto:dharitri713166@gmail.com
mailto:sagnik.dutta.1973@gmail.com

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

Traditional methods of water quality assessment primarily depend on laboratory-based chemical and microbiological
testing. Although these approaches are accurate, they are often time-consuming, expensive, and labour-intensive.
Manual analysis cannot efficiently handle the vast and continuously growing data generated from multiple monitoring
sources such as rivers, reservoirs, and treatment plants. Moreover, such methods are typically reactive detecting
contamination only after it has occurred rather than offering preventive insights. This limitation underscores the need
for advanced, automated, and intelligent systems capable of continuously analysing and predicting water quality in
real time.

The model “Aqua Purity — Water Quality Analysis Using Machine Learning” addresses these challenges by integrating
data-driven approaches into water monitoring systems. Machine Learning (ML), a branch of Artificial Intelligence
(AI), enables computers to learn patterns from data and make informed predictions without explicit programming. By
applying ML techniques to water quality datasets, the project aims to identify complex relationships among parameters
such as pH, dissolved oxygen, temperature, nitrate, BOD etc., through this approach, the model can uncover hidden
patterns and correlations that traditional analytical methods may overlook, offering deeper insights into water quality
dynamics.

One of the most valuable strengths of ML lies in its predictive capability. Trained on historical water quality data, the
model can forecast variations caused by seasonal changes, industrial activities, or agricultural runoff. These
predictions enable early warning and preventive actions before water conditions deteriorate. Furthermore, the system
can classify water samples into distinct categories such as potable, non-potable, or suitable for irrigation thereby
assisting authorities in efficient resource allocation and management.

The integration of machine learning also facilitates real-time water monitoring through sensor and IoT-based data
collection. Continuous data streams are analysed instantly, allowing rapid detection of anomalies such as sudden
pollutant spikes or deviations in key parameters. This immediate response system enhances decision-making and
minimizes the risk of health hazards. Additionally, the insights generated by ML models can help policymakers and
researchers identify the major contributors to water pollution and design effective mitigation strategies.

1.1 Objectives

The primary objective of this research is to develop an intelligent, machine learning based model capable of analysing
and predicting water quality with greater precision and efficiency than traditional methods. The study focuses on
leveraging data-driven techniques to enhance the speed and reliability of water quality monitoring, allowing for more
accurate detection of contamination patterns and environmental changes. By examining relationships among multiple
physical, chemical, and biological parameters, the model aims to identify the key factors that most significantly
influence water pollution levels.

Furthermore, this research seeks to build a predictive framework that can classify water samples into distinct categories
such as potable or non-potable. Through analytics, the project intends to detect potential contamination risks at an
early stage, enabling authorities and researchers to implement timely preventive measures. Ultimately, the objective
is to promote sustainable water resource management by combining technological innovation with environmental
responsibility. By automating and optimizing the assessment process, this project contributes to public health
protection, informed decision-making, and the long-term preservation of water quality.

2. Literature Review

Recent advancements in water quality assessment have shifted from traditional physicochemical analysis and GIS-
based spatial modeling toward machine learning (ML) driven predictive frameworks. Early works employed statistical
and GIS-integrated approaches to map spatial variability and pollution sources, as demonstrated in studies on the
Ganga River and groundwater in West Bengal, which emphasized parameters such as pH, dissolved oxygen (DO),
turbidity, conductivity, and temperature as key indicators influencing potability classification (Ali et al. 2021). These
methods laid the groundwork for modern predictive systems integrating remote sensing and ML. The emergence of
supervised algorithms such as Support Vector Machines (SVM) and Random Forests (RF) has notably enhanced
prediction accuracy by capturing nonlinear relationships between water parameters and quality indices (Azamathulla
and Wu 2011). Ensemble approaches, including bagging, boosting, and voting classifiers, have further improved
robustness and generalization, as their comparative evaluations revealed superior performance in ranking and
classification tasks across diverse environmental datasets (Plaia et al. 2022). Studies leveraging Sentinel-3 OLCI
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imagery for water quality and algal bloom monitoring showcased the growing synergy between remote sensing data
and ML models, enabling real-time assessment over large spatial extents (Joshi et al. 2024). Recent reviews underscore
how RF and improved SVM algorithms outperform traditional Water Quality Index (WQI) models in terms of
prediction reliability and interpretability (Sakaa et al. 2022) (Uddin et al. 2023). Moreover, integrating multivariate
statistical techniques with ML has facilitated contamination source identification, supporting more effective
environmental management (Zhang et al. 2022). Overall, the literature reveals a transition from empirical modeling
toward hybrid frameworks that integrate statistical, GIS, and ensemble ML techniques for holistic water quality
analysis, emphasizing parameter-driven feature selection and the predictive superiority of ensemble models in
classifying potability and ecological health (Mondal et al. 2016).

3. Methods

The proposed study adopts a machine learning (ML) pipeline incorporating Ensemble Learning techniques to predict
water quality and determine its potability. The methodology consists of five key stages: data acquisition, data
preprocessing, data splitting, model training and model evaluation. Each stage is designed to ensure reliability,
accuracy, and scalability of the developed model.

3.1 Data acquisition

The dataset used in this research was obtained from reliable water quality repositories containing various
physicochemical parameters such as pH, Biological Oxygen Demand (BOD), Conductivity, and Dissolved Oxygen
(DO) etc. These parameters provide essential indicators for assessing water quality and serve as the input features for
the predictive model.

3.2 Data Preprocessing

Before training, the dataset undergoes a series of preprocessing operations to ensure data consistency and accuracy.
Handling Missing Values, missing entries in key attributes such as pH, Conductivity, and Nitrate are treated using
imputation techniques such as mean or forward-fill methods. This step ensures that incomplete data do not bias the
model’s learning process. Encoding Categorical Features, categorical variables, such as state are converted into
numerical form using one-hot encoding, enabling compatibility with ML algorithms. Feature Selection, non-
informative attributes are removed to reduce noise and improve model performance.

3.3 Data Splitting
After preprocessing, the cleaned dataset is divided into training and testing subsets in an 80:20 ratio. The training set
is used to fit the models, while the testing set evaluates their generalization performance on unseen data.

3.4 Model Training

The training phase employs an ensemble-based architecture that combines the strengths of multiple machine learning
classifiers. The base models include Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR),
Gradient Boosting (GB). Each model is trained independently on the training dataset to learn distinct patterns. Their
outputs are then aggregated using a Voting Classifier with soft voting, which computes the weighted average of
probabilities from each classifier. This ensemble mechanism enhances predictive accuracy, reduces variance, and
improves overall model robustness.

3.5 Model Evaluation

The performance of both individual models and the ensemble classifier is assessed using standard evaluation metrics
such as accuracy, precision, recall, F1-score, and confusion matrix. These metrics provide a comprehensive
understanding of the model’s predictive capability and reliability. Experimental results indicate that the ensemble
classifier consistently outperforms the individual base learners in terms of overall accuracy and stability.

4. Data Collection

The dataset used for this research was collected from the Central Pollution Control Board (CPCB) website,
encompassing river water quality data for the years 2021, 2022, and 2023. The raw data included key physical,
chemical and biological parameters such as Temperature, Dissolved Oxygen (DO), pH, Conductivity, Biochemical
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Oxygen Demand (BOD), Nitrate, Fecal Coliform, and Total Coliform, along with corresponding station information
and water drinkability labels.

The initial dataset consisted of 4,494 samples from various monitoring stations across India. Each record represented
water quality readings at a particular location and time. Preliminary inspection revealed the presence of inconsistent
values, outliers, and data entry errors such as extreme values for pH (>14), BOD (>1000 mg/L), and conductivity
(>40,000 uS/cm). These were handled through domain-based clipping and scaling transformations to ensure reliability
in downstream analysis. After collecting the data properly, we checked the missing data percentage to find the best
way to fill those missing values. Data with below 15% missing value were filled with median while data with 20-30%
missing values were filled with KNN impute. While feature column like fecal streptococci with more than 50%
missing values was dropped (Figure 1).
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Figure 1. Missing value percentage of features.

Finally, we got a dataset of size 4488 rows. Also, based on the CPCB guideline the labels were set with the data, if
the water is drinkable, it was assigned label 1 and if it was not drinkable it was assigned label 0. Preprocessing was
done on the dataset and then we plot the data along with the label and the correlation we found among the data and
label is shown below in Figure 2.

Correlation Matrix of Dataset Features

TEMPERATURE 0.09 0.29 0.21 0.04 -0.00 -0.01 -0.18
0.8
DO 1.00 0.14 -0.66 -0.24 -0.09 -0.09 031
- 0.6
pH-  0.09 014 1.00 021 -0.07 0.06 -0.07 0.06 -0.03
-04
CONDUCTIVITY - 0.29 0.21 1.00 0.35 0.23 -0.08 -0.07
-02
BOD - 0.21 0.66 -0.07 035 0.30 0.18 0.18 -0.47
NITRATE - 0.04 -0.24 0.06 0.23 0.30 -0.06 -0.04 -0.14 -0o0
FECAL COLIFORM - -0.00 0.09 -0.07 0.08 018 -0.06 0.93 -0.20 - 0.2
TOTAL COLIFORM - -0.01 -0.09 -0.06 -0.07 0.18 -0.04 0.93 -0.20 04

Drinkable - -0.18 031 -0.03 n -0.47 -0.14 -0.20 -0.20
-0.6
| 0 0 0 0

]
< 3 9 & & -
@‘% ® & \,SL £ ,\Qé & &
Q@? 0\5" &
& &
&

1.0

Correlation Coefficient

Figure 2. Correlation matrix of features and label.
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5. Results and Discussion

5.1 Numerical Results
The raw dataset’s numerical distribution is summarized in Table 1, highlighting extreme skewness and kurtosis in

several attributes, especially BOD, Nitrate, and Coliform counts, suggesting the presence of strong outliers.

Table 1. Numerical Summary of Raw Dataset

Feature Mean Median Std. Dev Skewness Kurtosis
Temperature 23.15 24.00 4.63 -1.17 1.95
DO 6.86 7.15 1.67 -1.13 3.01
pH 7.82 7.67 7.17 48.46 2636.75
Conductivity 782.65 345.00 2304.04 9.68 119.02
BOD 4.89 2.00 45.62 61.88 4026.87
Nitrate 2.73 1.08 12.70 28.38 1059.12
Fecal Coliform 1.25%10° 248.75 8.30x10° 10.31 190.60
Total Coliform 5.71x10° 1037.50 3.98x107 10.82 206.60

The initial model used a Voting Classifier (SVM, Random Forest, Gradient Boosting, Logistic Regression) and
achieved an accuracy of 98%, with a macro F1-score of 0.98, as shown below in Table 2,

Table 2. Results we get from raw data

Class Precision Recall F1-Score Support
0 1.00 0.97 0.98 438
1 0.97 1.00 0.98 460
Accuracy 0.98 898

After outlier handling, log transformation, and scaling, the revised dataset exhibited improved normality, as

summarized in Table 3.

Table 3. Numerical Summary After Preprocessing

Feature Mean Median Std. Dev Skewness Kurtosis
Temperature 0.00 0.18 1.00 -1.17 1.95
DO 0.00 0.17 1.00 -1.16 2.88
pH 0.00 0.05 1.00 -1.17 542
Conductivity 0.12 0.00 0.98 1.09 3.30
BOD 0.39 0.00 1.33 2.51 7.38
Nitrate 0.23 0.00 0.81 2.02 6.67
Fecal Coliform 0.12 0.00 0.69 0.82 0.15
Total Coliform 0.14 0.00 0.75 1.05 0.97

Following these improvements, the Voting Classifier performance increased to 99% accuracy with F1 = 0.99,
confirming the effectiveness of preprocessing.

Table 4. Result from processed data

Class Precision Recall F1-Score Support
0 1.00 0.97 0.99 438
1 0.98 1.00 0.99 460
Accuracy 0.99 898
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The model exhibited high classification capability both before and after preprocessing. However, the marginal gain
from 98% to 99% accuracy indicates that handling extreme outliers and scaling enhanced the model’s stability and
generalization.

5.2 Graphical Results

The graphical distribution of features before preprocessing showed severe skewness in figure 3, particularly for BOD,
Nitrate, and Coliform counts, which deviated significantly from normal distribution. After applying log transformation
and scaling, the feature distributions became more symmetric in Figure 4, improving learning performance.
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Figure 3. Distribution of raw water quality parameters before transformation.
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Figure 4. Normalized feature distributions after log scaling.

5.3 Proposed Improvements

To further enhance prediction accuracy and generalization, the following improvements are proposed, Incorporating
Additional Features, include parameters such as Turbidity, Total Dissolved Solids (TDS), and Chemical Oxygen
Demand (COD) for richer environmental representation. Secondly, temporal Trend Analysis for time-series models
(LSTM) to capture seasonal variations across years. Use of spatial Mapping where integrate geospatial models to
visualize water quality trends across different river basins, and also model ensembling to introduce advanced stacking
frameworks with meta-learners to improve decision boundaries. Numerical and graphical results from extended
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datasets are expected to show improved predictive accuracy (= 99.5%) and enhanced interpretability through heatmaps
and trend visualizations. Add this model with IoT to make water quality test easily accessible.

5.4 Validation

Model validation was performed using cross-validation to ensure generalization across subsets. Multiple models were
evaluated individually: SVM achieved an accuracy of 89%, Gradient Boosting reached 98%, and Random Forest and
Logistic Regression showed comparable performance. Combining these models into a Voting Classifier yielded the
best overall accuracy of 99%, demonstrating the effectiveness of ensemble learning in improving predictive
performance and stability across the dataset.

6. Conclusion

This study successfully addressed all research objectives by analysing and predicting river water drinkability using
machine learning techniques. Water quality data from the CPCB for the years 2021 to 2023 were collected, cleaned,
and pre-processed to handle noise, outliers, and extreme values. Feature transformation and scaling were applied to
normalize highly skewed parameters such as BOD, Nitrate, and Coliform counts, ensuring the dataset was suitable for
robust model training. Multiple models were evaluated individually, SVM achieved an accuracy of 89%, Gradient
Boosting reached 98%, while Random Forest and Logistic Regression showed strong but slightly lower performance.
By integrating these models into a Voting Classifier, the study achieved the highest accuracy of 99%, demonstrating
the benefits of ensemble learning in improving predictive reliability and stability across diverse river systems.

The unique contribution of this research lies in designing a hybrid ensemble framework optimized for environmental
datasets with high variance and non-normal distributions, which can be generalized to other water bodies. The results
emphasize the potential of machine learning models for real-time water quality monitoring and decision-making,
providing actionable insights for environmental management authorities. Moreover, this framework lays a foundation
for future enhancements, including the integration of temporal trends, geospatial analysis, and additional water quality
parameters, ultimately supporting sustainable water resource management and public health protection.
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