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Abstract

Higher temperatures during turning adversely affect the cutting tool owing to thermal softening. The heightened
material dispersion compromises the quality of the machined component. This research encompasses a study that
experimentally examines and statistically evaluates the impact of various cutting settings on the turning performance
of AISI 1045 steel. A statistical method such as analysis of variance (ANOVA) and full factorial design were used to
accomplish this study. Furthermore, this paper presents the results of a series of experiments that used a hybrid
artificial neural network (ANN) and genetic algorithms (GA) to optimize the cutting temperature to improve the
surface quality. The results revealed that the machined surface undergoes significant tool type, cutting speed, feed
rate, and depth of cut. A typical carbide insert tool, cutting speed of 80 m/min, a depth of cut of 0.5 mm, and a feed
rate of 0.045 mm/rev were employed in the experiments to achieve a minimum cutting temperature of 412.9 °C.
Utilizing a hybrid ANN-GA with the same values of parameters yields a cutting temperature of 436.7 °C.
Consequently, ANN-GA has improved the cutting temperature and is more effective in attaining the desired result.
Therefore, the cutting temperature of hybrid algorithms has been enhanced, rendering them more efficient.
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1. Introduction

Increased temperature during machining adversely affects tool performance and longevity, as thermal softening results
in excessive tool wear, thereby reducing tool lifespan. Additionally, heightened material diffusion compromises
surface integrity and changes the function of the machined component (Dhar and Kamruzzaman 2007; Nouari et al.
2003; Dosbaeva et al. 2015; Shalaby and Veldhuis 2019). Moreover, Machining at higher temperatures affects the
formation of chips. Ribbon chips and snarl chips are also possible outcomes of this (Klocke and Eisenblaetter 1997).
Given that temperature significantly influences tool wear, surface quality, and subsurface integrity in machining,
precise monitoring of temperature fields in this process yields several advantages. Accurate microscale monitoring of
thermal fields may enhance tool designs, materials, and coatings, therefore minimizing temperatures and reducing
wear in machining (Davies, Cooke, and Larsen 2005). The high cutting temperature in the cutting zone leads to the
cutting tools failing too soon, which in turn leads to inaccurate dimensions, making it very difficult to achieve these
qualities (Magalhaes et al. 2022).

Consequently, temperature monitoring and prediction have been the subject of research for several decades. The tool-
chip interface thermocouple was initially investigated by (Herbert 1926), (Trigger 1948), (Stephenson 1993), and
others. This approach possesses significant value; nevertheless, it does not yield spatial specified temperature
distributions. (DAS 1984) used micro-hardness data to determine temperature distributions in high speed steel tools.
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These readings were constrained in space by the indenter's dimensions and were instead temperature distributions
averaged over time. Although (Boothroyd 1961) approximated tool and chip temperature distributions using infrared-
sensitive film, the method's spatial and temporal precision were constrained by technical limitations. High spatial and
temporal resolution measurements of machining have shown promise with modern, small, electronic photodetectors
(Davies et al. 2003), although these measurements have exhibited differences with expectations. In an effort to
circumvent the complexities of emissivity, these devices may be utilized as two- or three-color pyrometers (Miiller et
al. 2004; Al Huda et al. 2002). They are also capable of measuring the radiation released by the rake face.

Using an uncoated carbide and moderate cutting speeds, (Essel 2006) investigated the effects on flank wear, chip
temperature, and cutting force during dry turning of AISI 1045 and other alloyed variants of AISI 1045 steels.
(Denkena et al. 2007) established that alterations in cutting temperature, cutting forces, and chip formation resulted
from a substantial increase in cutting speed under the high speed turning of AISI 1045 steel using a coated insert.
(Davies, Cooke, and Larsen 2005) examined the distributions of temperature when cutting AISI 1045 steel for various
cutting parameters; however, they neglected to account for cutting tool wear. (Qasim et al. 2015) optimized process
settings for high speed machining of AISI 1045 steel. The researchers used various cutting tools to reduce cutting
temperature and forces.

On the other hand, the cutting inserts' edge shape significantly affects process reactions, including cutting temperature,
cutting forces, and surface roughness for cutting operations. Two common cutting-edge geometries are the classic
round-nose and the more modern wiper. Achieving a satisfactory surface quality without further grinding is now
possible with the help of the later, wiper inserts. The use of wiper inserts in machining may increase cutting force and
temperature, which can be detrimental (Abbas et al. 2020). The impact of the wiper insert on the amount of metal
removal, tool wear, cutting force, temperature, and surface integrity has been examined in several studies on
machining performance (Rocha et al. 2017; A. Kumar, Pradhan, and Jain 2020). Although wiper inserts enhance metal
removal rates and improve surface topography compared to conventional inserts (Zhang, Liu, and Guo 2017), they
also increase cutting force and power consumption (Gaitonde et al. 2009). Additionally, it was discovered that using
wiper inserts during machining causes the tool rake face to become hotter, leading to increased residual stresses and
tool wear than when using conventional inserts (Jiang and Wang 2019). However, while it comes to tool wear, some
prior research has shown that wiper inserts work better than conventional ones (Gaitonde et al. 2009). Furthermore,
there was a lot of chip curling when wiper inserts were used, which means the chip separated from the tool rake face
earlier (Zhang, Liu, and Guo 2017).

To decrease the cutting temperature of AISI 1045 steel for the turning operation, it is beneficial to comprehend the
effects of altering the input process variables. The aim of this study was to determine the optimal combination of
turning process parameters for AISI 1045 steel. Artificial Neural Networks are effective tools for engineering methods
characterized by complex and nonlinear interactions between output and input parameters. ANNs have proven to be
valuable in several engineering domains. Some examples of engineering challenges that ANNs have helped model,
analyze, optimize, and predict include manufacturing (Khorasani and Yazdi 2017; Kant and Sangwan 2015; El-
Bahloul 2020; Dabwan et al. 2025), welding (Sivagurumanikandan et al. 2018; Turkson et al. 2016), and 3D printing
processes (Kaid et al. 2023; Shirmohammadi, Goushchi, and Keshtiban 2021; Giri et al. 2021). (R. Kumar et al. 2021)
optimized Grey-Fuzzy Hybrid and Cascade Neural Network Modeling in the hard turning of AISI D2 steel to
accomplish the optimum settings for cutting input variables concerning chip morphology, chip reduction coefficients,
and flank wear. (Panda, Das, and Dhupal 2020) aimed to optimize tool wear, roughness, and cutting force when hard
turning D3 steel with a mixed ceramic tool. (Panda, Ranjan Das, and Dhupal 2019) conducted an analysis of machining
performance, developed mathematical models, executed multiple output response parametric optimization, and
calculated the lifespan of the cutting tool while milling AISI 4340 hardened steel. (Senthilkumar, Sudha, and
Muthukumar 2015) optimized the turning process and discovered a significant improvement in the required
performance index using the Grey Fuzzy term. Since (Das et al. 2016) discovered a substantial improvement in grey
fuzzy grade when related to grey relational grade, it was hoped that the optimization problem would be effectively
addressed using the grey-fuzzy term.

Previous research indicated that the dry turning of AISI 1045 steel primarily affects cutting temperature, cutting forces,
tool wear, surface quality, and chip formation. Investigations seldom indicate the application of improving these
responses using artificial neural networks and various algorithms for temperature reduction. Therefore, the dry cutting
method concerning cutting temperature needs further elaboration to satisfy surface quality in the machining field.
Moreover, the use of a hybrid model combining artificial neural networks and evolutionary algorithms with the cutting
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parameters is hardly executed. Given the aforementioned reasons and to achieve the ideal configuration for reducing
input parameters, a hybrid model integrating artificial neural networks and genetic algorithms has proven to be a more
effective tool (Kaid et al. 2023); hence, it is employed in the present study to determine the optimal combination of
input variables To further predict surface quality, a framework for quality part monitoring was also established to
monitor and control the cutting temperature. In light of this, a detailed experimental examination and optimization are
required. Figure 1 shows the conceptual outline for the present work.
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Figure 1. A structure for the present study
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2. Materials and Methods

The cutting temperature obtained by turning AISI 1045 using a wiper and conventional carbide inserts was earlier
documented by (Abbas, El Rayes, et al. 2023; Abbas, Al-Abduljabbar, et al. 2023). The present study employs data
from (Abbas, El Rayes, et al. 2023; Abbas, Al-Abduljabbar, et al. 2023) as a substantial addition. This part begins by
providing a concise summary of the treated material, containing its composition of chemical and mechanical
characteristics. The machining setup, comprising the lathe, cutting tools, and characterization devices, is shown. The
subsequent sector delineates the experimental design employed to execute the experiments. The hybrid model
integrating artificial neural networks and genetic algorithms, together with their operational variables, is explained
comprehensively.

2.1 Materials

This research utilizes AISI 1045 steel, often used in various industrial applications that need good wear resistance and
strength. AISI 1045 exhibits excellent machinability throughout all machining processes, such as turning, drilling,
milling, and broaching. The chemical composition of AISI 1045 steel alloy comprises Carbon (C) 0.45%, Phosphorus
(P) 0.03%, Iron (Fe) 98.75%, Manganese (Mn) 0.65%, and Sulfur (S) 0.04% (Abbas, El Rayes, et al. 2023; Abbas,
Al-Abduljabbar, et al. 2023). The mechanical qualities of AISI 1045 encompass an ultimate tensile strength of 565
MPa, a yield tensile strength of 310 MPa, an elongation at break (over 50 mm) of 16%, a reduction of area of 40%, a
modulus of elasticity of 200 GPa, and a Vickers hardness of 170 (Abbas, El Rayes, et al. 2023; Abbas, Al-Abduljabbar,
et al. 2023).

2.2 Machining setup

The parts were machined using a traditional lathe machine by Emco Company (Salzburg, Austria), the EMCOMAT-
20D. The computerized speed controls allow the machine to reach speeds of up to 3000 rpm, and the drive motor is
5.3 kW. Between 0.045 and 0.787 mm/rev is the range of the longitudinal feed rate. The cutting tool is made by
Sandvik (Stockholm, Sweden) and has a DCMT11 T304-PF 4315 conventional insert and a DCMX11 T304-WF 4315
wiper cutting insert. The holder is type SDJCR 2020K 11. For every set of trials, the cutting length was 30 mm, and
the workpiece sample had dimensions of 70 mm in diameter and 120 mm in length.

2.3 Quality Evaluation

The quality of the components was assessed based on the measured cutting temperature. The minimal cutting
temperature yields superior quality in component. Figure 2 shows the experimental work test rig, which includes
cutting temperature measuring equipment and test component machining sets. The thermal pictures were captured
using a thermographic camera of the ThermoPro-TP8 type, which was supplied by Guide (Wuhan, China). In order to
evaluate temperatures, the camera must be focused on the target and the distance between them must be recorded.
This data is then supplied to the analysis program. The surface between the cutting tool and the workpiece during the
turning operation is the target of interest in this experiment, as illustrated in Figure 2.

ta
_-il-‘i‘

Figure 2. Experimental setup for machining test components and monitoring cutting temperature measurements
(Abbas, El Rayes, et al. 2023)

© IEOM Society International



Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

There were 54 tests performed utilizing a full factorial design. The parameters included two levels of tool types
(conventional and wiper carbide inserts) and three levels of depth of cut (0.5, 0.75, and 1.0 mm), feed rate (0.045,
0.09, and 0.135 mm/rev), and cutting speed (80, 120, and 160 m/min). The response is the cutting temperature (T) in
degrees Celsius.

2.3 Hybrid Neural Network Algorithm with Genetic Algorithm

Artificial Neural Networks (ANN) constitute a prevalent model for calculating output based on various input
parameters through hidden layers, as shown in Figure 3. Although artificial neural networks (ANNs) can monitor the
intricate and nonlinear bond between independent input and output variables, they are hindered by restrictions,
including poor learning rates. Thus, the utilization of optimization methods, particularly meta-heuristic algorithms,
can significantly improve the efficiency of artificial neural networks (ANNs). Many academics presently use artificial
neural networks with genetic algorithms (Cao et al. 2018; Azadeh et al. 2007; Li et al. 2003; Kaid et al. 2023; Dabwan
et al. 2025) to identify optimal fitness values for one or multiple-target optimization challenges. This work employed
ANN-GA hybrid algorithms to determine the optimum turning process variables for AISI 1045 steel concerning
cutting temperature.

Input Hidden
/ Hy H, H,

Figure 3. ANN structure

3. Results and Discussion

3.1 ANOVA analysis

Table 1 shows an ANOVA result for the cutting temperature after non-significant components were removed. The
variables that significantly impact the output include tool types (T), depth of cut (d), feed rate (f), and cutting speed
(S). The ANOVA Forward Selection technique was employed to eliminate non-significant variables, except for non-
significant two-way interaction variables such as T and f, T and d and f and S, which could not be removed due to the
presence of significant three-way interaction variables associated with these non-significant two-way interactions.
Furthermore, as seen in Table 1, the variables T, f, d, and S substantially affected cutting temperature. The
relationships between T and S, and d and S significantly impact the cutting temperature. The three-way interactions
of T, f, and S, together with T, d, and S, significantly influence the cutting temperature. The adjusted R-squared value
indicates that the model accounts for around 80.29% of the variability in the data. The disparity between the R-square
and adjusted R-square values indicates that certain variables may not contribute much to explaining strength; yet the
model remains robust overall. The predicted R-squared shows that 54.81% of the variance is from unidentified
nuisance variables. Exploring neural networks or alternative machine learning methodologies may significantly
improve the model's prediction performance.
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Table 1. ANOVA results for minimum cutting temperature

Source DF | AdjSS | AdjMS | F-Value | P-Value
Model 29 | 23948.1 | 825.79 8.44 0.000
T 1 1515.0 | 151495 | 15.49 0.001
f 2 | 4851.4 | 2425.71 | 24.80 0.000
d 2 | 20063 | 1003.13 | 10.26 0.001
S 2 | 4700.8 | 2350.39 | 24.03 0.000
2-Way Interactions | 14 | 8461.7 | 604.40 6.18 0.000
T*f 2 95.3 47.67 0.49 0.620
T*d 2 559.1 279.53 2.86 0.077
T*S 2 | 59955 |2997.75 | 30.65 0.000
f*S 4 213.8 53.44 0.55 0.703
d*S 4 | 1598.0 | 399.50 4.09 0.012
3-Way Interactions | 8 | 2413.0 | 301.62 3.08 0.015
T**S 4 | 1150.7 | 287.67 2.94 0.041
T*d*S 4 | 12623 | 315.57 3.23 0.030
R-sq =91.07% R-sq (adj) =80.29%  R-sq (pred) = 54.81%

3.2 Optimization of the ANN-GA model

This study presents a hybrid Artificial Neural Network (ANN) and Genetic Algorithm (GA) approach to optimize the
turning process's input variables for AISI 1045 steel components, utilizing the software of MATLAB R2022b to
minimize cutting temperature. The optimum outcomes were achieved with the ANN-GA (Ghasri 2023) MATLAB
code. The artificial neural network has been trained to predict cutting temperature using 54 sets of process factors
(tool type, cutting speed, depth of cut, and feed rate) and the corresponding output (cutting temperature). The
significance of different variations and combinations is illustrated by subsequent findings, obtained through rigorous
training and validation by artificial neural networks. Table 2 shows the ANN-GA model's goodness of fit, employed
to assess the influence of transfer functions, network topology in the hidden and output layers, and the optimization
method. The dependent variable's correlation coefficient, determination coefficient, and sum of squares errors can
differ between topologies. Upon evaluating all potential permutations and combinations, the minimal root mean square
error meets the requirements for choosing the optimal ANN-GA model. A reduced root-mean-squared error and a
tightly correlated relative error allow for better prediction of the output variable. The Levenberg-Marquard training
method and the ANN-GA approach were used for predicting the response values. Merging Tansig on the hidden layer
with the Tansig transfer function on the output layer improves performance. Figure 4 displays the correlation between
the actual and predicted values of cutting temperature by the ANN-GA.

Table 2. Experimental and predicted output by ANN-GA (experimental data was reported by (Abbas, El Rayes, et

al. 2023)
No. Experimental | Predicted Relative Error
1 468.9 470.9943 0.004466
2 412.9 436.6897 0.057616
3 464.1 462.0137 0.004495
4 470.6 457.5325 0.027768
5 534.6 521.8665 0.023819
6 459.8 458.5879 0.002636
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7 490.6 490.7451 0.000296
8 494.5 482.665 0.023933
9 449.6 458.0093 0.018704
10 462.8 457.5409 0.011364
11 460.3 467.9514 0.016623
12 464 461.6216 0.005126
13 462.6 457.7098 0.010571
14 475.5 469.6736 0.012253
15 465.8 470.987 0.011136
16 476.3 476.2325 0.000142
17 445.1 457.4842 0.027823
18 472.6 457.5962 0.031747
19 477.8 469.6242 0.017111
20 472.7 470.8456 0.003923
21 479.7 469.8277 0.02058
22 484.6 483.5911 0.002082
23 467 465.5567 0.003091
24 460.5 470.987 0.022773
25 450.7 447.9677 0.006062
26 464.1 470.9944 0.014855
27 472.1 471.4638 0.001348
28 473.2 470.9891 0.004672
29 485.12 486.0242 0.001864
30 477.9 470.9887 0.014462
31 462.1 464.3786 0.004931
32 471 471.7507 0.001594
33 461.9 470.7691 0.019201
34 512.7 515.2582 0.00499
35 462.8 465.2703 0.005338
36 487 469.5838 0.035762
37 457.2 457.4962 0.000648
38 474.8 470.9875 0.00803
39 554.4 556.8942 0.004499
40 511.1 509.4556 0.003217
41 472.7 470.9895 0.003619
42 462.6 470.0943 0.0162
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43 469.9 468.4235 0.003142
44 493.7 489.3734 0.008764
45 476.2 482.665 0.013576
46 461 457.5348 0.007517
47 478.9 474.3954 0.009406
48 484.7 469.8591 0.030619
49 463.7 465.791 0.004509
50 474.2 468.4658 0.012092
51 4193 455.589 0.086547
52 489.1 470.9684 0.037071
53 476.4 482.2558 0.012292
54 490 469.4853 0.041867
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The pooled standard deviation was used to calculate the intervals.

Figure 4. Comparing the actual and predicted temperature

Table 3 displays the t-test results that were performed for comparing the predicted and actual temperatures. This table
shows several statistical measures, such as the T-value, p-value, standard deviation, mean, and standard error of the
mean. According to the analysis of statistics performed for this work, the p-value for comparing the mean actual
temperature with the mean predicted temperature is 0.81, as Table 3 illustrates. This p-value shows that there is no
substantial difference between the actual and predicted temperature means. Therefore, the hybrid ANN-GA can predict
optimal parameters based on the optimization outcomes.

Table 3. Two-sample t-test for actual and predicted temperature

N Mean StDev SE Mean T-Value P-Value
Actual Temperature 54 473.4 22.3 3.0 0.24 0.81
Predicted Temperature 54 472.5 18.8 2.6
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The optimal R-value of 0.90549 was found using the Levenberg-Marquardt method (refer to Figure 5). This method
was quicker, but it consumed more memory. After eight iterations, the training data identifies the best solution as
shown in Figure 6, and the epochs by default terminate when the MSE of the validating samples starts rising. At the
eighth epoch, a validation performance of 205.241 was reached. An optimum parameter for a genetic algorithm (GA)
would have the following settings: 300 iterations, 90 population size, 0.4 crossover %, 0.8 mutation percentage, and
6 hidden layers. After adjusting all of these settings to the lowest possible values, a conventional carbide insert type,
depth of cut of 0.5 mm, feed rate of 0.045 mm/rev, and cutting speed of 80 m/min result in a minimum cutting
temperature of 436.7 °C.

Train Data: R=0.92193

Validation Data: R=0.9752
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Figure 5. The ANN's regression plot
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Figure 6. Plotting an ANN mean square error

Table 2 reveals that the largest relative error is 0.086, whilst the smallest is 0.000142. The comparison of these
numbers indicates that there is no noticeable distinction between the actual and predicted values. In conclusion, the
GA approach can be used in conjunction with the constructed neural network to significantly decrease cutting
temperature. Evaluation and results from the neural network led us to the conclusion that the selected multilayer
perceptron neural network is capable of predicting cutting temperature for components made of turned AISI 1045
steel. The experimental matrix indicates that employing a conventional carbide insert tool at a feed rate of 0.045
mm/rev, a cutting speed of 80 m/min, and a depth of cut of 0.5 mm results in the lowest cutting temperature of 412.9
°C, whereas optimization using the aforementioned ANN-GA parameters produces a cutting temperature of 436.7 °C.

3.3 Quality part monitoring framework

The Quality Part Monitoring Framework was developed to monitor and control the cutting temperature. This
framework will be utilized to predict surface quality based on the current temperature and correlate it with the surface
value stored in the database. A schematic depiction of the Quality Part Monitoring Framework is shown in Figure 7.
The temperature of the cutting process is measured online during the turning process, and the signal is communicated
to a computer for storing in a database. The temperature results are then compared to the stored data from the previous
study mentioned by (Abbas, El Rayes, et al. 2023) that related to surface roughness. The low temperature is associated
with good surface quality, whereas the high temperature is associated with bad surface quality, which suggests that
there is a connection between the quality of the surface and the temperature of the cutting process. Throughout the
machining process, the temperature of the cutting operation would be immediately monitored by this proposed
framework, which would result in higher surface quality. High temperatures during the cutting process are associated
with a poor surface quality, whereas low temperatures during the cutting process are associated with a higher surface
quality. If a higher temperature is seen at any point throughout the process, the system will continually reset the
parameters of the process until a lower temperature is reached, which will result in an improved surface quality of the
part. This suggested framework would economically reduce the cost and time required for establishing surface quality
measurement in the machining process post-operation.
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Figure 7. Framework for Monitoring Quality Components

4. Conclusion

Cutting temperature during dry turning of AISI 1045 steel is investigated in this article as a function of input process
variables. The diversity of input factors was identified, and 54 experiments were then generated for this study. A full
factorial design was conducted to investigate the cutting temperature of a turned AISI 1045 steel component. The
influence of process variables, for example, tool type, feed rate, depth of cut, and cutting speed, was investigated.
Furthermore, the AISI 1045 steel component's turning process parameters were enhanced using a hybrid approach
utilizing an artificial neural network and a genetic algorithm (ANN-GA). In order to find the best combination of input
parameters, genetic algorithms were used to combine the experiment matrix after training. The optimal parameter
values have been empirically determined and evaluated in order to validate the models. According to the investigation,
the process variables of feed rate, depth of cut, cutting speed, and tool type have an impact on the cutting temperature.
A framework for Quality part monitoring was established to supervise and control cutting temperature in order to
predict surface quality. During the studies, a conventional carbide insert tool was utilized to obtain a minimal cutting
temperature of 412.9 °C to enhance the high surface quality of part. This was accomplished by maintaining a feed rate
of 0.045 mm/rev, a depth of cut of 0.5 mm, and a cutting speed of 80 m/min. When using a hybrid ANN-GA tool with
conventional carbide, a feed rate of 0.045 mm/rev, a cutting depth of 0.5 mm, and a cutting speed of 80 m/min, the
resulting cutting temperature is 436.7 °C. Consequently, ANN-GA has improved the cutting temperature and is more
efficient in achieving this outcome. Thus, for AISI 1045 steel, the efficacy of the turning process variables is improved
by employing meta-heuristic algorithms.
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