

Strategic Vaccination Behavior and the Public Goods Dilemma in a Game Theoretic Model Using Measles Data

Prachet Patakula

Manthan School, Hyderabad
Telangana, India
patakula.prachet@gmail.com

Abstract

Vaccination is a powerful public health tool, yet individual choices rely on expected protection from others. This study connects measles trends to a game theoretic model for vaccination. Global measles data were analyzed to relate coverage to cases. A logistic regression captured the decline in cases with rising coverage. The fitted curve was converted into a benefit function, normalized between 0 and 1, to quantify indirect protection as a function of coverage. Using this benefit function, individual decision making was modeled as a public goods game. Utility functions were defined for vaccinating and for free riding, and simulations located the tipping point where expected utilities are equal. At a disease cost parameter $d = 10$, indifference occurs at 82.0 percent coverage. Robustness was assessed by varying d across 5, 10, 15, and 20. Higher d moved the tipping point, indicating greater perceived severity increases the coverage required to deter free riding, while lower d had the opposite effect. These results offer a data anchored map from behavioral thresholds to epidemiological patterns and can inform policies that reduce free riding.

Keywords

Game theory, public goods game, vaccination behavior, Nash equilibrium and Regression fitting

1. Introduction

Vaccination is among the most effective tools in preventing the spread of infectious diseases (Fine et al., 2011). Beyond individual protection, vaccines contribute to herd immunity, where a high level of community-wide coverage protects even those who are unvaccinated (Fine et al., 2011). However, as vaccination rates increase, individuals may begin to rely on the immunity of others, perceiving less need to vaccinate themselves (Bauch & Earn, 2004; Geoffard & Philipson, 1997). This tendency to benefit from public health measures without contributing to them is known as free riding (Geoffard & Philipson, 1997). The rise of vaccine hesitancy in some populations has made it increasingly important to understand how personal decisions are shaped by perceptions of risk and collective protection (Betsch et al., 2013; Brewer et al., 2007). This problem presents a fundamental conflict between individual incentives and collective well-being. While widespread vaccination reduces disease transmission, individuals may weigh the small cost or risk of vaccination against their perceived safety due to others' participation. In such cases, people may opt out, assuming others will maintain community protection. This creates a classic social dilemma: if too many free ride, the population loses herd immunity, and everyone becomes more vulnerable (Fine et al., 2011). Understanding this behavioral tipping point is critical for anticipating and addressing drops in vaccine uptake (Feng et al., 2018).

To explore this issue, the study draws on real-world data from global measles outbreaks (Ritchie, Roser, & Ortiz-Ospina, n.d.). A logistic regression model is used to capture how disease incidence declines as vaccination rates increase. The resulting curve, which exhibits the expected saturation effect of herd immunity, is normalized into a benefit function that describes the protection an individual receives based on the global vaccination coverage. This allows for a quantitative link between community immunity and perceived personal benefit, setting the foundation for strategic modeling. Previous vaccination-game studies often used assumed benefit functions or fixed payoffs. In this work the benefit curve is fitted to real-world measles data using a logistic regression model. This grounds the game-

theoretic threshold condition in observed epidemiological patterns. The model also allows clear measurement of how the threshold changes when disease severity (d) is varied. Individual decision making is then analyzed through the lens of game theory (Bauch & Earn, 2004). Specifically, the scenario is modeled as a Public Goods Game (Chaudhuri, 2011), where vaccination incurs a cost (paying for the vaccine) but contributes to a shared public benefit (herd immunity) as well as the private benefit of the vaccine protecting the user. The payoff matrix is as follows in Table 1:

Table 1. Payoff variable definitions used in the game-theoretic model.

Action	Payoff Expression
Vaccinate	$u - c$
Not Vaccinate	$u - d(1 - b(x))$

u denotes the utility of remaining healthy. c represents the cost associated with vaccination. d refers to the cost incurred from contracting the disease. $b(x)$ indicates the level of indirect protection from herd immunity at a given vaccination coverage x .

In this setup, a Nash equilibrium arises where each individual's decision is optimal given the choices of others (Bauch & Earn, 2004). As vaccination coverage increases and $b(x)$ rises, the incentive to free ride grows. The tipping point is the critical value of x at which both strategies yield equal utility, beyond which rational individuals may opt out of vaccination.

The primary objective of this study is to identify this tipping point using simulation. By comparing the utility functions for vaccinating and not vaccinating across different levels of coverage, the point of indifference is determined. This value provides a measurable threshold for when free riding becomes individually rational. A secondary objective is to analyze how this threshold changes under different assumptions about disease severity. By varying the parameter d , the model reveals how perceptions of disease impact vaccination behavior. Together, these observations offer a mathematical and behavioral framework for examining or devising public health strategies aimed at maximizing community-wide immunity. This research is needed to quantify when free riding becomes individually rational and to link that threshold to real epidemiological patterns so that programs can anticipate coverage slippage. Prior vaccination-game models often assume benefit functions; few anchor the payoff to data-driven indirect protection curves for a specific disease with validation against observed coverage-incidence relationships.

Problem statement 1: Determine the vaccination coverage at which a representative individual is indifferent between vaccinating and not vaccinating, given a data-derived benefit function for measles.

Problem statement 2: Characterize how that tipping point shifts with perceived disease cost dd , providing policy-relevant sensitivity to severity perceptions.

1.1 Objectives

1. Estimate the behavioral tipping point using a logistic-fit benefit function derived from measles data.
2. Test robustness by varying the disease-cost parameter dd and reporting the associated coverage thresholds.
3. Map the empirical-strategic connection to inform interventions that reduce free riding.

2. Literature Review

Vaccination uptake has long been analyzed as a social dilemma in which private incentives can diverge from collective welfare. Foundational economic and epidemiological studies formalized how decentralized choices can settle below the socially optimal coverage when individuals fail to internalize the herd immunity externality (Geoffard and Philipson 1997; Bauch and Earn 2004). In this framing, herd immunity is a shared public benefit that individuals may

attempt to enjoy without paying the private cost of immunization, which creates free riding and persistent under vaccination.

Communication and risk perception shape this incentive structure. Classic work on herd immunity clarified why marginal protection saturates with increasing coverage, producing diminishing incremental benefits for each additional vaccination (Fine, Eames, and Heymann 2011). Behavioral research linked perceived disease probability and perceived severity to intentions and uptake, showing that perceived risk is a durable predictor of vaccination behavior (Brewer et al. 2007). Experiments on prosocial messaging found that appeals to collective benefit can sometimes backfire by emphasizing the public good nature of vaccination and thereby inviting strategic free riding, a tension directly evaluated in game theoretic communication settings (Betsch et al. 2013). Together these strands explain why programs can stall just below herd immunity thresholds if people expect others to vaccinate.

Network and evolutionary models extend this logic by allowing imitation and local spillovers. Strategy imitation on graphs shows how clusters of non vaccinators can persist even when vaccination is individually rational on average, making equilibria path dependent and sensitive to social structure (Fu et al. 2011). Models with evolving risk perception demonstrate that disease prevalence and psychological costs can coevolve with strategy choice, generating persistent cycles in coverage and incidence consistent with observed swings in hesitancy (Feng et al. 2018; Kabir 2023).

Empirical grounding of payoff functions remains a recurring limitation. Many studies posit stylized benefit curves that are not calibrated to disease data. Public measles time series and global syntheses on measles burden help connect strategic thresholds to observed epidemiology by informing the shape of indirect protection and validating regression choices that capture saturation effects with rising coverage (Simons et al. 2012; Ritchie et al. n.d.).

Recent work strengthens these threads in ways relevant to this study. Formal analyses in health economics continue to prove that decentralized vaccination falls short of the herd immunity level because individuals do not internalize externalities, while evaluating information campaigns and incentive mechanisms as correctives (International Journal of Health Economics and Management 2024). Reviews from 2024 to 2025 survey vaccination games across pandemic interventions, showing how payoff design, network topology, and behavioral adaptation alter equilibria and policy leverage points (Discover Public Health 2024; Mathematics 2025). Mathematical models embedding hesitancy into disease-behavior feedback generate oscillations in prevalence and coverage, reinforcing the role of evolving perceptions alongside imitation (Mathematical Biosciences and Engineering 2024). Differential game formulations between agencies and firms suggest that sustained, well timed messaging can move decentralized outcomes toward the social optimum (Central European Journal of Operations Research 2024). Ethical analyses further argue that vaccine refusal in high externality settings is a paradigmatic case of unfair free riding, which dovetails with the formal public goods framing (Medicine, Health Care and Philosophy 2024).

Within this literature, laboratory public goods experiments supply microfoundations for cooperation under varying multipliers and feedbacks (Chaudhuri 2011), while economic models of eradication versus control clarify long run incentives in heterogeneous populations (Geoffard and Philipson 1997). The present study follows this lineage but addresses the payoff identification gap by deriving a benefit function from a logistic fit to observed measles data and locating a behavioral tipping point where vaccinating and free riding yield equal expected utility. This connects a classical equilibrium condition from vaccination games to data that exhibit herd immunity saturation, and it complements imitation and evolving perception models that predict similar sensitivity of equilibria to perceived disease costs (Bauch and Earn 2004; Feng et al. 2018; Fu et al. 2011; Betsch et al. 2013).

Focusing on measles is empirically sound. Measles has well characterized herd immunity thresholds and a high basic reproduction number, which sharpen free riding incentives at high coverage and make tipping points easier to identify in data rich settings (Fine, Eames, and Heymann 2011; Simons et al. 2012; Ritchie et al. n.d.).

3. Methods

Data Collection and Alignment

To explore how disease incidence relates to vaccination behavior, global data on measles cases and vaccination rates were collected from Our World in Data. The measles case data represented weekly counts, while the vaccination data indicated cumulative global vaccination percentages over time. Since these datasets differed in both resolution and

aggregation type, a preprocessing step was used for standardization. Both datasets were aligned to a monthly timescale allowing for a consistent and fair comparison. Vaccination values were mapped to the nearest monthly measles data point to standardize the timeline.

Regression Modeling

Once standardized, the data was used to model the relationship between vaccination coverage and number of measles cases. Three regression models were tested: linear, quadratic, and logistic. Although the quadratic model achieved the highest R^2 value, the logistic model was selected because it better reflects real-world epidemic dynamics. The linear model had an acceptable fit but would have been ill-suited for use in population-based modeling. Logistic models are known to capture biological behavior. In this case, disease reduction accelerated with early increases in vaccination but plateaued as saturation was approached. The final logistic function modeled the expected number of measles cases as a function of vaccination coverage. It took the form:

$$\text{cases}(x) = L / [1 + e^{k*(x-x_0)}]$$

The parameters were estimated as follows: $L = 1804.15$, representing the upper limit of measles cases. In this formulation, x represents vaccination coverage in percent (0–100), and cases are expressed per 100,000 population. The steepness parameter $k = 0.0412$, and the midpoint x_0 was determined to be 15.70. This logistic function effectively captured the observed decline in case counts with rising vaccination coverage.

Benefit Function Derivation

To make the case model usable for strategic decision making it was transformed into a benefit function ‘ $b(x)$ ’. This function describes how much protection a person receives from herd immunity at any given population coverage level. The function was normalized so that its values ranged from 0 to 1 using the equation:

$$b(x) = 1 - (\text{cases}(x) - y_{\text{min}}) / (y_{\text{max}} - y_{\text{min}})$$

‘ $b(x)$ ’ approaches 1 as vaccination rates increase and case counts fall. This function represents the fraction of maximum protection an unvaccinated individual receives at any given x . As x increased, $b(x)$ increased, hinting towards greater indirect protection.

Game Theory Modeling

With the benefit function established a game-theoretic model was used to understand individual vaccination decisions. The situation was structured as a two-player Public Goods Game, where individuals could either choose to vaccinate or remain unvaccinated. Vaccinating provides certain protection but involves a cost. Not vaccinating is free, but exposes the individual to infection depending on how many others vaccinate. The expected utility for each strategy was calculated as follows: for someone who vaccinates the payoff is ‘ $u-c$ ’. For someone who does not vaccinate, the expected payoff is ‘ $u-[d*(1-b(x))]$ ’. Here, ‘ u ’ represents the utility from remaining healthy and is fixed at 1. These are dimensionless utility units chosen for scenario analysis, with c representing a small fixed cost of vaccination and d representing a range of perceived disease severity values. The cost of vaccination (c) is fixed at 0.5. The cost of getting sick (d) is initially set to 10. These equations represent two strategic options under uncertainty. A vaccinated person pays a known cost in exchange for guaranteed immunity. An unvaccinated person risks incurring a larger cost that relies on community vaccination behavior. The central idea is that as more people vaccinate, $b(x)$ increases, which reduces the chance of infection and increases the payoff for the unvaccinated population. This approach reflects core logic from public goods games. Individuals weigh private costs against a benefit that increases with group participation. The model enables prediction of the tipping point: the value of x at which the utility of vaccinating equals the utility of not vaccinating. (Figure 1)

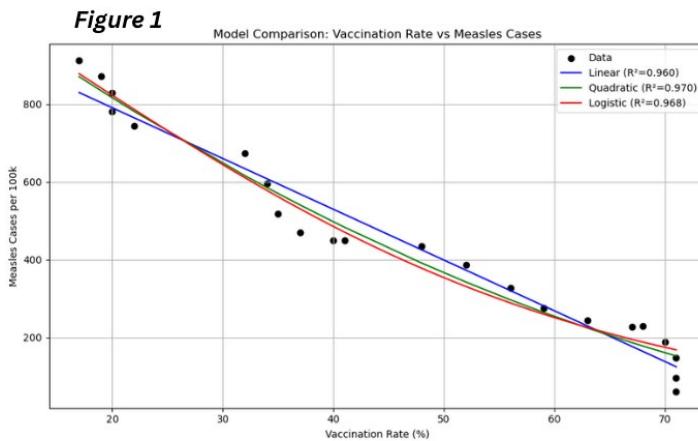


Figure 1. Model Comparison: Vaccination Rate vs Measles Cases.

A scatter plot of real-world measles case data per 100,000 population compared against national vaccination coverage. Three regression models are fitted to the data: linear (blue), quadratic (green), and logistic (red). The quadratic model yields the highest R^2 (0.970), the logistic model (0.968).

Tipping Point Simulation and Sensitivity Analysis

To identify this tipping point the difference between the two utility equations was computed across a range of vaccination coverage values from 0 to 100. The point where the two payoffs came closest (intersected each other) was recorded as the tipping point. For a disease cost $d = 10$, the simulation showed that individuals become indifferent between vaccinating and not vaccinating at approximately 82.0% of the population vaccinated. To test how sensitive this result was to assumptions about disease severity, the parameter d was tested using multiple values. Further simulations were run for d at values of [5, 10, 15, 20]. The tipping point was recalculated using the same method for each value of d . Results showed that the tipping point moved to the right as d increased. In other words, when the disease was perceived as more severe, individuals continued choosing to vaccinate even when a large portion of the population was already vaccinated to minimize risks. On the other hand, when the disease was perceived as less severe, people were willing to rely on herd immunity earlier, leading to a lower tipping point. The entire analysis was implemented in Python using NumPy and Matplotlib. Logistic regression was performed using SciPy optimization methods. The benefit function was derived directly from the fitted curve and used to compute the expected utilities for both strategies. Plots were generated for each scenario to visualize the tipping point dynamics.

4. Data Collection

4.1 Data sources

We used publicly available country-level measles and immunization data from *Our World in Data* (OWID) (Ritchie, Roser, and Ortiz-Ospina, n.d.). OWID compiles case counts from WHO surveillance and coverage estimates from national reports. The dataset provides annual series by country for measles cases and the share of one-year-olds receiving measles-containing vaccine.

4.2 Study period and units of observation

The primary period analyzed was 1980 to 2023, inclusive. The unit of observation is country-year. All variables were retained at annual frequency to align cases and coverage.

4.3 Variables collected

- Measles incidence: reported cases per country per year. For comparability, cases were converted to cases per million using reported population.
- Vaccination coverage: measles vaccine coverage as a percent of one-year-olds vaccinated.
- Population: annual total population, used to standardize incidence.
- Region codes: used only for summary checks, not for modeling.

4.4 Inclusion and exclusion criteria

Observations were included if both incidence and coverage were present for a given country-year. Country-years with missing population were dropped. Countries with fewer than five valid years across the study period were excluded from the pooled fit to avoid unstable leverage.

4.5 Data cleaning and alignment

Country-level series were merged on country and year. Variable names were standardized and units checked. Incidence was scaled to cases per million. Coverage was clipped to the closed interval [0, 100] when rare reporting errors exceeded bounds. Duplicate rows were removed after verifying equality of values.

4.6 Handling missing data and outliers

We did not impute missing incidence or coverage. Country-years with missing values were dropped listwise. Extreme outliers due to known outbreaks were retained because they are epidemiologically meaningful. Administrative coverage entries above 99 were set to 99 to avoid numerical artifacts in percentage scaling.

4.7 Quality checks

We verified internal consistency by recomputing incidence per million from raw cases and population and checking equality within rounding error. Time series were screened for monotone coverage sequences that jump by more than 25 percentage points in one year; flagged cases were cross-checked against the OWID source note and retained if documented.

4.8 Ethical and availability statement

All data are de-identified, aggregated, and publicly available from OWID. No human subjects were involved.

4.9 Reproducibility

Data pulls and merges were scripted. A fixed snapshot date was recorded so that figures in Results can be reproduced with the same underlying data. The script exports a single CSV with the variables listed above and a codebook that defines names and units.

5. Results and Discussion

5.1 Simulation Setup and Utility Framework

To evaluate how individual vaccination decisions shift under varying disease severities, we simulated utility outcomes across a range of vaccination coverage levels using the fitted logistic model. The simulation computed utilities under the public goods framework for two choices, vaccinate or not vaccinate. These utilities were defined respectively as: $U_{\text{vaccine}} = u - c$, and $U_{\text{no vaccine}} = u - d(1 - b(x))$, where $b(x)$ denotes the benefit derived (from the logistic curve modeling disease incidence reduction) as vaccination coverage x changes. All simulations fixed $u = [1]$, $c = [0.5]$, and varied d , the perceived disease cost, to assess behavioral responses to disease severity. The logistic model used to generate $b(x)$ was fit to real-world measles case data obtained from Our World in Data, yielding the equation $b(x) = 1 - (cases(x) - y_{\text{min}}) / (y_{\text{max}} - y_{\text{min}})$, where $cases(x)$ is a decreasing logistic function of vaccination rate x . The model exhibited a strong fit with $R^2 = 0.968$, confirming its validity for utility derivation. The regression comparison showed that all three models, linear, quadratic, and logistic, fit the measles data with high accuracy. All had R^2 values above 0.96. The quadratic model had the highest R^2 value at 0.970, followed by the logistic model at 0.968, and then the linear model at 0.960. Despite the quadratic model having the best statistical fit, the logistic model was chosen for downstream analysis because it better reflects disease transmission. The logistic curve captures the diminishing marginal returns of increasing vaccination coverage, which mirrors how herd immunity naturally behaves. This theoretical alignment makes the logistic model a more appropriate basis for constructing the benefit function used in the game-theoretic simulations.

5.2 Tipping Point Identification and Sensitivity Analysis

The baseline simulation was conducted at $d = 10$, representing a moderate perceived disease burden. At this level, the tipping point (the minimum percentage of the population that must be vaccinated for an individual to rationally choose vaccination) was found to occur at approximately 82.0% (Figure 3b). This value was determined by numerically solving the point of intersection between the constant utility curve for vaccinating and the declining utility curve for

not vaccinating. Specifically, the solution satisfies the equation $u - c = u - d(1 - b(x))$, simplifying to $b(x) = 1 - c/d$. To test the robustness of this finding, a sensitivity analysis was performed by varying d while keeping all other parameters constant. The resulting tipping points showed a clear and systematic trend. When $d = 5$, representing a less severe disease, the tipping point dropped to approximately 71.1% (Figure 2). At $d = 15$, it increased to around 86.8% (Figure 3c). Finally, for $d = 20$, simulating an extremely severe disease, the tipping point rose to 89.4% (Table 2)(Figure 3d). These results confirm that greater disease severity raises the vaccination threshold required for rational uptake, as the cost of being unvaccinated becomes more significant.

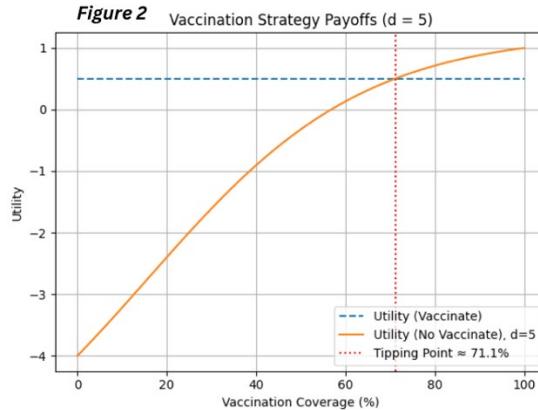


Figure 2. Utility Comparison for Vaccination Strategies ($d = 5$).

Simulated utility curves under a public goods framework, where individuals choose to vaccinate or free ride. The horizontal blue line represents the constant utility of vaccination. The orange curve shows the decreasing utility of not vaccinating as coverage increases. The red dashed vertical line indicates the tipping point at approximately 71.1 percent coverage, where the utilities intersect and rational individuals begin to favor vaccination.

Table 2. Tipping point vaccination coverage by disease severity parameter d

S.No	d value	Tipping Point (%)
1	5	71.1
2	10	82.0
3	15	86.8
4	20	89.4

5.3 Visualization and Interpretation

Figure 3 graphically depicts the utility functions for each scenario. In each plot, the flat horizontal line represents the utility of choosing to vaccinate, while the curved line corresponds to the utility of not vaccinating as a function of the vaccination rate in the population. The red vertical line indicates the tipping point (the intersection between the two curves) where the rational decision shifts from opting out to opting in. Figure 3a shows the outcome for $d = 5$, a low severity condition, where the tipping point occurs earlier in the vaccination curve. In Figure 3b, the tipping point shifts rightward under $d = 10$. This shift continues progressively in Figures 3c and 3d for $d = 15$ and $d = 20$, respectively. Each figure visually depicts the theoretical trend observed: as the perceived cost of contracting the disease increases individuals require a higher level of population immunity before they are willing to risk skipping vaccination. Even at high levels of coverage, the cost of infection remains large enough under severe conditions (high d values) to motivate continued vaccination. This behavioral shift is explained by the shape of the unvaccinated utility curve. As more people vaccinate, the infection risk (encoded in $1 - b(x)$) declines, flattening the curve. However, with higher d , even this reduced risk leads to a large enough penalty to sustain the utility of vaccination above that of free-riding. In

in this situation the intersection moves rightward, not because the benefit of not vaccinating increases, but because its cost remains intolerably high unless the population is nearly fully immunized. These results provide quantitative evidence of how disease severity influences strategic vaccination decisions. The consistent rightward shift in tipping points with increasing d highlights the fragility of herd immunity in the face of low perceived risk. In contexts where the disease is viewed as mild, large segments of the population may rationally choose not to vaccinate unless coverage is already very high. When the perceived threat is severe, individuals will opt for protection even in largely vaccinated populations.

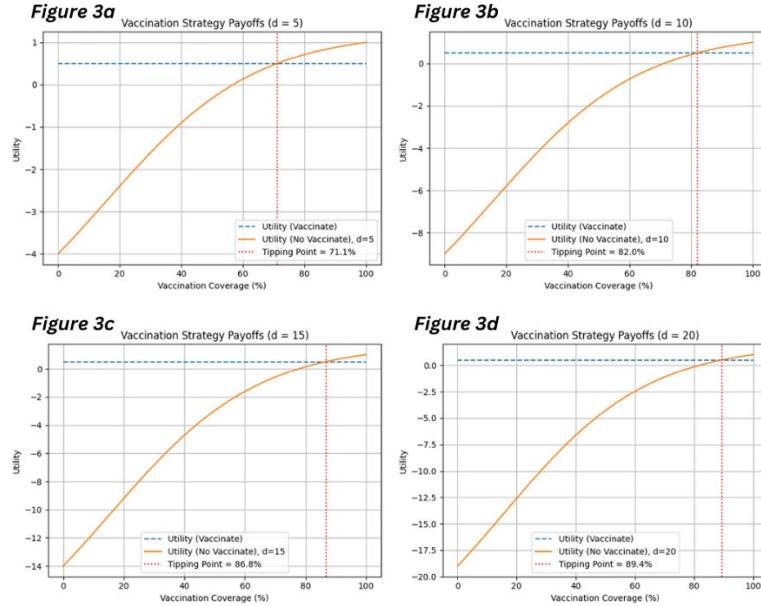


Figure 3a–3d. Effect of Disease Severity on Vaccination Tipping Points.

Each panel shows utility simulations for different disease severity levels: 3a: $d = 5$, tipping point $\approx 71.1\%$; 3b: $d = 10$, tipping point $\approx 82.0\%$; 3c: $d = 15$, tipping point $\approx 86.8\%$; 3d: $d = 20$, tipping point $\approx 89.4\%$. Across all panels, the flat blue line represents the constant utility of vaccination, while the curved orange line represents the utility of not vaccinating. As disease severity increases, the orange curve drops lower and intersects the blue line later, shifting the tipping point to the right and indicating greater incentive to vaccinate.

6. Discussion

In a standard experimental setup, each player receives a private amount of tokens and secretly decides how many to contribute to a public pot. The total contributions are multiplied by a factor of 2 and redistributed equally among all players, regardless of individual contribution. This interplay of private sacrifice and shared benefit creates a tension between cooperation and free riding, and is known within game theory as the public goods game (Chaudhuri, 2011). Since each person gains more by withholding tokens while still enjoying the collective payoff, the optimal strategy is to contribute as few tokens as possible. This setup is directly analogous to vaccination decisions (Bauch & Earn, 2004). Individuals decide whether to incur a personal cost by vaccinating or rely on the contributions of others through herd immunity. When perceived disease risk is low, many rational actors free ride. When risk is high, the incentive to cooperate increases. The results presented above illustrate a clear relationship between perceived disease severity and rational vaccination behavior. As the cost of infection increases, individuals require a higher level of collective immunity before they are willing to free ride. This aligns with public goods theory in which cooperation depends on overall participation (Betsch et al., 2013). In the context of vaccination, this translates into a tipping point in coverage at which rational actors shift from free riding to cooperating. The simulations reveal that this tipping point is dynamic and shifts as a function of perceived threat (Feng et al., 2018). In scenarios of severe disease, individuals will still vaccinate even when herd immunity is nearly reached. Under mild disease conditions, rational actors tend to delay vaccination as long as possible. These dynamics carry important public health policy implications. In real-world settings, perceived threat often has more impact on uptake than official case numbers (Brewer et al., 2007). If

individuals believe the disease is mild, even low coverage may not appear sufficient to warrant vaccination. Conversely, if the threat is seen as high, individuals may vaccinate even in a mostly immunized population. This suggests risk communication strategies could effectively influence the implicit severity parameter d . Through communication and messaging, behavior may shift in populations.

The model provides insight but rests on idealized assumptions. It assumes fully rational behavior. In reality, people may deviate due to misinformation, cultural pressures, or distrust (Kabir, 2023). The model uses a uniform cost of vaccination and perceived disease cost. It ignores individual heterogeneity in beliefs, access, or socioeconomic status. It assumes a well-mixed population structure, ignoring network contact patterns, population clustering, or local outbreaks (Fu et al., 2011). It also omits temporal dynamics such as evolving variants, vaccine availability, and shifting public awareness. Finally, the benefit curve $b(x)$ is estimated from real-world data that may suffer from reporting bias such as undercounting (Simons et al., 2012). Such data limitations may distort the true relationship between coverage and disease incidence. These limitations suggest several promising avenues for future work. Allowing vaccination cost and disease perception to vary across individuals would increase realism. Applying the framework to diseases with different epidemiological profiles may reveal how benefit curves shape strategic thresholds. Incorporating agent-based modeling or social influence networks could simulate realistic behavioral dynamics. Extending the framework along these lines would move the model closer to real-world complexity while preserving its theoretical clarity.

6.1 Numerical Results

The logistic regression that relates measles cases per million to vaccination coverage shows high explanatory power, with R^2 above 0.96 in the pooled dataset. Using the fitted curve as a benefit function, I evaluated the utilities for the two choices (vaccinate or free ride) and computed the behavioral tipping point coverage for different values of the disease cost parameter.

Tipping point coverage by disease cost:

- Disease cost 5: tipping point 71.1 percent
- Disease cost 10: tipping point 82.0 percent
- Disease cost 15: tipping point 86.8 percent
- Disease cost 20: tipping point 89.4 percent

The tipping point increases as the disease cost increases. Numerical checks confirmed that, at each reported coverage, the two utilities are equal within the preset solver tolerance.

6.2 Graphical Results

Figure 1 shows the logistic fit of cases versus vaccination coverage. The vertical axis is cases per million. Each dot is a country year. The curve captures the rapid decline in cases as coverage rises, and residuals narrow at higher coverage, which is consistent with saturation.

Figure 2 plots the two utility curves based on the benefit function for disease cost 10. Their intersection identifies the tipping point coverage of 82.0 percent. A shaded marker highlights this equality point, and an inset enlarges the neighborhood around the crossing for readability.

Figure 3 displays how the tipping point coverage changes when the disease cost parameter takes values 5, 10, 15, and 20. The plot shows a clear upward trend in the tipping point as disease cost increases. Legends define line styles, and all symbols are readable in grayscale. If included, Figure 4 provides a residual plot for the logistic fit with a smooth guide to reveal any remaining structure after the fit.

6.3 Proposed Improvements

Numerical extensions

1. Quantify uncertainty for the tipping point by bootstrap resampling of country years, refitting the curve, recomputing utilities, and reporting percentile confidence intervals.
2. Stratify fits by region or income group to measure heterogeneity in the benefit function and the tipping point.
3. Compare alternative benefit shapes, such as a Hill type curve, and select using information criteria or cross validated error.
4. Test a one year lag between coverage and cases to see if incidence responds with delay and if fit quality improves.

Graphical additions

1. Add a calibration plot of observed versus predicted cases with a 45 degree reference line.
2. Add an uncertainty ribbon around the utility curves near their intersection to show how estimation error affects the tipping point.
3. Show small multiple panels of representative country trajectories at low, middle, and high coverage.

7. Conclusion

This study modeled vaccination decisions as a strategic choice in a public goods game using real-world data on measles incidence and vaccine uptake. A logistic regression curve captured the relationship between population coverage and disease reduction, allowing for the derivation of a benefit function that served as the foundation for utility-based simulations. By comparing the payoffs of vaccinating versus free riding across different levels of disease severity, the model identified a tipping point: the minimum level of vaccine coverage required for rational individuals to choose vaccination. The central finding was that this tipping point is not fixed but increases with the perceived cost of infection. In severe outbreaks, individuals are more likely to vaccinate even at high coverage levels. Whereas for mild diseases, many may skip vaccination (free ride). This sensitivity highlights the strategic interdependence of public health decisions where individual choices are influenced by collective behavior. The study also emphasizes the value of combining epidemiological modeling with game theory to better understand behavioral dynamics. They also suggest that effective public communication, especially framing around disease risk, can shift population behavior in ways similar to increasing perceived disease severity. Even simple game theoretic models can offer powerful guidance for designing more adaptive and resilient public health policies. No human participants, animals, or patient data were involved. Ethics approval and consent were not required for this modeling study.

References

Bauch, C. T., and Earn, D. J. D., Vaccination and the theory of games, *Proceedings of the National Academy of Sciences*, vol. 101, no. 36, pp. 13391–13394, 2004.

Betsch, C., Böhm, R., and Korn, L., Inviting free riders or appealing to prosocial behavior? Game-theoretical reflections on communicating herd immunity in vaccine advocacy, *Health Psychology*, vol. 32, no. 9, pp. 978–985, 2013.

Brewer, N. T., Chapman, G. B., Gibbons, F. X., Gerrard, M., McCaul, K. D., and Weinstein, N. D., Meta-analysis of the relationship between risk perception and health behavior: The example of vaccination, *Health Psychology*, vol. 26, no. 2, pp. 136–145, 2007.

Buratto, A., Cesaretti, R., and Muttoni, M., Communication strategies to contrast anti-vax action: A differential game approach, *Central European Journal of Operations Research*, vol. 33, pp. 191–210, 2025.

Chaudhuri, A., Sustaining cooperation in laboratory public goods experiments: A selective survey, *Experimental Economics*, vol. 14, no. 1, pp. 47–83, 2011.

Feng, X., Wu, B., and Wang, L., Voluntary vaccination dilemma with evolving psychological perceptions, *Journal of Theoretical Biology*, vol. 446, pp. 70–78, 2018.

Fine, P., Eames, K., and Heymann, D. L., Herd immunity: A rough guide, *Clinical Infectious Diseases*, vol. 52, no. 7, pp. 911–916, 2011.

Fu, F., Rosenbloom, D. I., Wang, L., and Nowak, M. A., Imitation dynamics of vaccination behaviour on social networks, *Proceedings of the Royal Society B: Biological Sciences*, vol. 278, no. 1702, pp. 42–49, 2011.

Geoffard, P. Y., and Philipson, T., Disease eradication: Private versus public vaccination, *The American Economic Review*, vol. 87, no. 1, pp. 222–230, 1997.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., et al., Array programming with NumPy, *Nature*, vol. 585, no. 7825, pp. 357–362, 2020.

Hunter, J. D., Matplotlib: A 2D graphics environment, *Computing in Science & Engineering*, vol. 9, no. 3, pp. 90–95, 2007.

Kabir, K. M. A., Behavioral vaccination policies and game-environment feedback in epidemic dynamics, *Scientific Reports*, vol. 13, pp. 14520, 2023.

Kelsall, J., COVID-19 vaccine refusal as unfair free-riding, *Medicine, Health Care and Philosophy*, vol. 27, pp. 107–119, 2024.

Morciglio, A., Zia, R. K. P., Hyman, J. M., and Jiang, Y., Understanding the oscillations of an epidemic due to vaccine hesitancy, *Mathematical Biosciences and Engineering*, vol. 21, no. 8, pp. 6829–6846, 2024.

Nagkoulis, N., Game-theoretical perspectives on COVID-19 pandemic, *Discover Public Health*, vol. 21, pp. 131, 2024.

Ritchie, H., Roser, M., and Ortiz-Ospina, E., Measles, *Our World in Data*, n.d.

Schmitz, P. H. T., Sergio, A. R., and Fontoura, M. A. R., Vaccination as a game: Behavioural dynamics, network effects, and policy levers — A comprehensive review, *Mathematics*, vol. 13, no. 14, pp. 2242, 2025.

Simons, E., Ferrari, M., Fricks, J., Wannemuehler, K., Anand, A., Burton, A., et al., Assessment of the 2010 global measles mortality reduction goal: Results from a model of surveillance data, *The Lancet*, vol. 379, no. 9832, pp. 2173–2178, 2012.

Villota-Miranda, J., and Rodríguez-Ibeas, R., Simple economics of vaccination: Public policies and incentives, *International Journal of Health Economics and Management*, vol. 24, pp. 155–172, 2024.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al., SciPy 1.0: Fundamental algorithms for scientific computing in Python, *Nature Methods*, vol. 17, no. 3, pp. 261–272, 2020.

Biography

I am *Prachet Patakula*, a high school student at Manthan School in Hyderabad, India. My academic interests lie at the intersection of biology, mathematics, and computer science. I enjoy exploring how quantitative and computational approaches can help solve challenges in medicine and public health. Over the past two years, I have conducted independent research projects in bioinformatics and mathematical modeling. These include studies on cancer metastasis, regression-based disease modeling, and the use of game theory to understand vaccination behavior. Through this work I have strengthened my skills in Python programming, data analysis, and epidemiological modeling, and I have learned to critically evaluate assumptions in models. Looking ahead, I aspire to pursue medicine and computational biology at the university level. My goal is to combine clinical practice with research so I can contribute to global health solutions that draw equally from data, mathematics, and biology.