
Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

Proceedings of the International Conference on Industrial Engineering and Operations Management

Publisher: IEOM Society International, USA
Published: November 6, 2025

DOI: 10.46254/IN05.20250097

 Hybrid Metaheuristics for Pareto-based Bi-objective

Optimization in a JIT Unrelated Parallel Machine
Scheduling Problem

Sona Babu and B. S. Girish

Department of Aerospace Engineering
Indian Institute of Space Science and Technology

Valiamala, Thiruvananthapuram, Kerala, India
sonababu.sct@gmail.com, girish@iist.ac.in

Abstract

This paper considers the simultaneous optimization of makespan and total weighted earliness-tardiness in an unrelated
parallel machine scheduling problem in a just-in-time manufacturing environment, with distinct due windows,
machine eligibility constraints and sequence-dependent setup times, permitting idle times in the schedules. Two hybrid
metaheuristics are proposed to tackle the NP-hard problem. The paper presents an exact method for generating a
piecewise linear convex trade-off curve between the objectives for a particular job sequence. The Pareto front of the
trade-off curves obtained for multiple job sequences, generated by the hybrid metaheuristics, is constructed using a
method from the literature. The comparative performance evaluation reveals that the proposed hybrid multi-objective
particle swarm optimization – local search (MOPSO-LS) algorithm shows superior performance for smaller problem
instances, and the proposed hybrid Pareto archived multi-objective cuckoo search – local search (PAMOCS-LS)
algorithm shows superior performance for larger problem instances.

Keywords
Metaheuristics, Makespan, Total weighted earliness-tardiness, Pareto optimization, Parallel machine scheduling

1. Introduction
Parallel machine scheduling problem (PMSP) is one of the extensively researched machine scheduling problems in
the literature (Sterna, 2021; Ying et al., 2024). PMSPs are classified into three categories, namely identical PMSP,
non-identical or uniform PMSP and unrelated PMSP (Ying et al., 2024). The findings of a cluster analysis of the
literature on PMSP, performed by Ying et al. (2024), revealed that the majority of the research in PMSP focused on
unrelated parallel machines, emphasizing the significance of the problem in today’s industry. The unrelated parallel
machine scheduling problem (UPMSP) is also the closest to real-world manufacturing environments and is complex
to solve (Wang et al., 2023). In this paper, we have considered a UPMSP in a just-in-time (JIT) manufacturing
environment.

Machine scheduling problems in JIT manufacturing systems involve assigning optimal completion times to a set of
jobs that are to be delivered at their associated due dates or due windows, the deviations from which incur earliness
and tardiness penalties (Babu and Girish, 2025). The necessity for a trade-off between earliness and tardiness penalties
resulted in numerous works in the literature on the simultaneous optimization of earliness and tardiness in JIT-UPMSP
(Sterna, 2021), most of which are based on the weighted sum optimization method. Assigning weights to earliness
and tardiness objectives according to their respective priorities in the weighted sum optimization approach has resulted
in the total weighted earliness-tardiness (TWET) objective, the minimization of which is one of the objectives
considered in this paper. Optimizing TWET in scheduling problems results in scheduling the jobs closer to their
earliest due dates with idle times inserted in the schedule, resulting in the jobs forming clusters in the schedule (Girish

https://doi.org/10.46254/IN05.20250097

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

et al., 2022). The time of completion of the last job in the schedule, across all the machines in a PMSP, termed
makespan, is another scheduling objective widely discussed in the UPMSP (Ying et al., 2024). Though the
minimization of TWET ensures JIT production in the system, makespan has to be minimized in conjunction with
TWET to ensure the efficient utilization of available resources and better throughput (Babu and Girish, 2025). Most
works in the literature on the simultaneous optimization of makespan and TWET in UPMSP, have used the weighted-
sum optimization approach, employing heuristics and metaheuristics to solve the problem (Ɖurasević and Jakobović,
2023). The weighted sum optimization approach provides a single optimal solution for each job sequence
corresponding to the priorities for the objectives, which are assigned as weights. Therefore, the weighted-sum
optimization approach requires the end users to specify their preferences for the objectives prior to scheduling
(Neufeld et al., 2023). In contrast, the Pareto-based optimization approach provides several optimal solutions on a
Pareto front. This allows the end users to choose a solution from the Pareto solution set, according to their priorities
for the objectives (Neufeld et al., 2023). However, there exists no work in the literature on the simultaneous
optimization of makespan and TWET in UPMSP using Pareto-based approaches, except Azevedo et al. (2023). In this
paper, we have addressed the simultaneous optimization of makespan and TWET using a Pareto-based optimization
approach.

The UPMSP has also been widely researched for the multi-objective optimization of several other objectives,
considering additional parameters and constraints, viz., machine eligibility constraints, sequence-dependent setup
times (SDST), etc. (Ying et al., 2024). It is evident from the literature that most works on the simultaneous
optimization of makespan and TWET in the UPMSP have employed heuristics and metaheuristics (Ying et al., 2024).
This is because the UPMSP is strongly NP-hard, even without considering the additional parameters and constraints
(Ɖurasević and Jakobović, 2023). This paper considers the simultaneous optimization of makespan and TWET in a
UPMSP with distinct due windows, machine eligibility constraints and sequence-dependent setup times, permitting
idle times in the schedules, which is clearly NP-hard. We have adapted two population-based metaheuristic algorithms,
namely the Pareto archived multi-objective cuckoo search (PAMOCS) algorithm and the multi-objective particle
swarm optimization (MOPSO) algorithm, and hybridized each of them with a local search (LS) procedure that
generates multiple job sequences. A job sequence may result in a piecewise linear convex trade-off curve between
makespan and TWET since the problem permits inserting idle times into the schedules, similar to the works in the
literature (Babu and Girish, 2024, 2025; Jacquin et al., 2018). No existing studies on the Pareto-based optimization of
makespan and TWET in UPMSP have considered the insertion of idle times into the schedules. We have therefore
adapted an exact method from the literature (Babu and Girish, 2025) to generate piecewise linear convex trade-off
curves between makespan and TWET for the sequences of jobs generated by the hybrid metaheuristics. The Pareto
front of the trade-off curves obtained for multiple sequences of jobs, generated using an exact Pareto front generation
method adopted from the literature (Babu and Girish, 2024), which is also composed of line segments and points,
provides the end users with a Pareto solution set from which they can choose the solutions that best satisfy their
preferences and priorities. This is the first study to present an exact timing algorithm for the generation of all possible
trade-offs between makespan and TWET for a given sequence of jobs in a UPMSP, allowing the insertion of idle
times in the schedule. This is also the first study to present hybrid population-based metaheuristics for a bi-objective
UPMSP in a JIT production environment, generating a Pareto front composed of line segments and points.

The subsequent sections of the paper are structured as follows. Section 2 discusses the mathematical formulation of
the problem. Section 3 discusses the proposed exact method for the generation of the trade-off curve between
makespan and TWET. Section 4 discusses the proposed hybrid metaheuristics. Section 5 discusses the performance
evaluation of the proposed hybrid metaheuristics. Section 6 discusses the practical implications, and Section 7
concludes with the possible avenues for future research.

2. Mathematical formulation of the problem
The UPMSP addressed in this paper assumes 𝑛𝑛 jobs released simultaneously to be processed non-preemptively on 𝑚𝑚
parallel machines. Let 𝑖𝑖, 𝑗𝑗(𝑖𝑖, 𝑗𝑗 = 1,2, … , 𝑛𝑛) denote the job index, and 𝑘𝑘(𝑘𝑘 = 1,2, … , 𝑚𝑚) denote the machine index.
Each job 𝑖𝑖 requires processing exactly one operation on a machine, and the set of all the machines eligible for
processing job 𝑖𝑖 is denoted by 𝑀𝑀𝑖𝑖. Let 𝑃𝑃𝑘𝑘𝑘𝑘 denote the processing time of job 𝑖𝑖 on machine 𝑘𝑘: 𝑘𝑘 ∈ 𝑀𝑀𝑖𝑖. Let 𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘 denote
the setup time to switch to job 𝑗𝑗 from job 𝑖𝑖 on machine 𝑘𝑘. Let [𝑑𝑑𝑑𝑑𝑖𝑖, 𝑑𝑑𝑑𝑑𝑖𝑖] denote the due window of job 𝑖𝑖, where 𝑑𝑑𝑑𝑑𝑖𝑖
and 𝑑𝑑𝑑𝑑𝑖𝑖 respectively represent the earliest and latest due dates. All job descriptors are predefined and deterministic,
and all the machines are continuously available. Let 𝐶𝐶𝑖𝑖 denote the completion time of job 𝑖𝑖. Then, the earliness is
expressed as 𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑑𝑑𝑑𝑑𝑖𝑖 − 𝐶𝐶𝑖𝑖) , and the tardiness is expressed as 𝑇𝑇𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝐶𝐶𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑖𝑖) . Let 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 ,

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

respectively, denote the penalties imposed for early and tardy completion of job i. The mathematical representation of
the problem is as follows (Nogueira et al., 2014).

Input Parameters:
𝑀𝑀𝑖𝑖: Set of all the machines eligible for processing job i
𝐽𝐽𝑘𝑘: Set of all the jobs eligible for allocation on machine k, including the dummy job 0

Decision Variables:
 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘 = � 1: if job 𝑗𝑗 succeeds job 𝑖𝑖 on machine 𝑘𝑘

 0: otherwise

𝐶𝐶𝑖𝑖 = completion time of job 𝑖𝑖
𝐸𝐸𝑖𝑖 = earliness of job 𝑖𝑖
𝑇𝑇𝑖𝑖 = tardiness of job 𝑖𝑖

Objective:
Minimize ∑ (𝛼𝛼𝑖𝑖𝐸𝐸𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑇𝑇𝑖𝑖)𝑛𝑛

𝑖𝑖=1 (1)
Minimize 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 (𝐶𝐶𝑖𝑖) (2)
Subject to:
∑ 𝑋𝑋𝑘𝑘0𝑗𝑗𝑗𝑗∈𝐽𝐽𝑘𝑘 = 1 ∀𝑘𝑘 (3)
∑ 𝑋𝑋𝑘𝑘𝑘𝑘0𝑖𝑖∈𝐽𝐽𝑘𝑘 = 1 ∀𝑘𝑘 (4)
∑ ∑ 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗∈𝐽𝐽𝑘𝑘:𝑗𝑗≠𝑖𝑖 𝑘𝑘∈𝑀𝑀𝑖𝑖 = 1 ∀𝑖𝑖: 𝑖𝑖 = 1,2, … , 𝑛𝑛 (5)
∑ ∑ 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖∈𝐽𝐽𝑘𝑘:𝑖𝑖≠𝑗𝑗𝑘𝑘∈𝑀𝑀𝑗𝑗 = 1 ∀𝑗𝑗: 𝑗𝑗 = 1,2, … , 𝑛𝑛 (6)
∑ 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖∈𝐽𝐽𝑘𝑘:𝑖𝑖≠𝑗𝑗 = ∑ 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙∈𝐽𝐽𝑘𝑘:𝑙𝑙≠𝑗𝑗 ∀𝑘𝑘, 𝑗𝑗: 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘 & 𝑗𝑗 ≠ 0 (7)
𝐶𝐶𝑗𝑗 ≥ ∑ (𝑃𝑃𝑘𝑘𝑘𝑘 . 𝑋𝑋𝑘𝑘0𝑗𝑗𝑘𝑘∈𝑀𝑀𝑗𝑗), ∀𝑗𝑗: 𝑗𝑗 = 1,2, … , 𝑛𝑛 (8)
𝐶𝐶𝑗𝑗 ≥ 𝐶𝐶𝑖𝑖 − 𝑀𝑀 + (𝑃𝑃𝑘𝑘𝑘𝑘 + 𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑀𝑀) 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘 ∀𝑘𝑘, 𝑖𝑖, 𝑗𝑗: 𝑖𝑖 ∈ 𝐽𝐽𝑘𝑘 & 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘, 𝑖𝑖 ≠ 0, 𝑗𝑗 ≠ 0 (9)
𝑇𝑇𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑖𝑖 ∀𝑖𝑖, 𝑘𝑘 (10)
𝐸𝐸𝑖𝑖 ≥ 𝑑𝑑𝑑𝑑𝑖𝑖 − 𝐶𝐶𝑖𝑖 ∀𝑖𝑖, 𝑘𝑘 (11)
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝐶𝐶𝑖𝑖 ∀𝑖𝑖: 𝑖𝑖 = 1,2, … , 𝑛𝑛 (12)
𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘 ∈ {0,1} ∀𝑘𝑘, 𝑖𝑖, 𝑗𝑗: 𝑖𝑖 ∈ 𝐽𝐽𝑘𝑘, 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘, 𝑖𝑖 ≠ 𝑗𝑗 (13)
𝐸𝐸𝑖𝑖 ≥ 0, 𝑇𝑇𝑖𝑖 ≥ 0 ∀𝑖𝑖: 𝑖𝑖 = 1,2, … , 𝑛𝑛 (14)

Constraint (3) ensures there is a dummy job at the start of every machine and exactly one job succeeding it. Constraint
(4) ensures there is a dummy job at the end of every machine and exactly one job preceding it. The activities succeeding
and preceding the dummy activities in constraints (3) and (4), respectively, can be a dummy job, implying that no job
is allocated to the machine. Constraint (5) guarantees that each job 𝒊𝒊 is allocated to a unique machine and is succeeded
by exactly one job 𝒋𝒋, which can be a dummy job. Constraint (6) guarantees that each job 𝒋𝒋 is allocated to a unique
machine and is preceded by exactly one job 𝒊𝒊, which can be a dummy job. Constraint (7) guarantees that a job is
allocated to a unique machine, and that if a job 𝒋𝒋 has a preceding job 𝒊𝒊, then 𝒋𝒋 also has a succeeding job 𝒍𝒍, where 𝒊𝒊 and
𝒍𝒍 can be dummy activities. Constraint (8) guarantees that the completion time of the first job on each machine is at
least equal to its processing time. Constraint (9) associates the completion times of a job 𝒋𝒋 and its preceding job 𝒊𝒊 on
a machine 𝒌𝒌. 𝑴𝑴 denotes a large positive integer. Constraints (10) and (11) respectively relate the tardiness and
earliness of each job with its completion time and due windows. Constraint (12) establishes the maximum completion
time. Constraints (13) and (14) establish the variable bounds.

3. Proposed exact algorithm for the TWET-makespan trade-off curve generation
The proposed metaheuristics represent a solution as a permutation of job indices, indicating the sequences of jobs
allocated for processing on each of the unrelated parallel machines in the scheduling environment. Let 𝜇𝜇 (𝜇𝜇 =
{1,2, … , 𝑚𝑚}) represent the set of 𝑚𝑚 parallel machines and 𝜎𝜎 (𝜎𝜎 = {𝜎𝜎1, 𝜎𝜎2, … , 𝜎𝜎𝑚𝑚}) represent a set of job sequences
allocated to each of the machines, where each job sequence 𝜎𝜎𝑝𝑝 represents an ordered set of 𝑛𝑛𝑝𝑝 jobs allocated to the
machine 𝑝𝑝 ∀𝑝𝑝 ∈ 𝜇𝜇. Let 𝜎𝜎𝑝𝑝[𝑘𝑘] denote the job identifier at the 𝑘𝑘th position index of 𝜎𝜎𝑝𝑝. The generation of the trade-off
curve between makespan and TWET, for a given 𝜎𝜎 , begins by generating the TWET-optimal schedule, and
subsequently optimizing its makespan iteratively. The generation of the TWET-optimal schedule for a given 𝜎𝜎 in
PMSP is equivalent to separately generating the TWET-optimal schedules ∀𝜎𝜎𝑝𝑝 ∈ 𝜎𝜎 on the corresponding 𝑝𝑝 based on

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

exact algorithms discussed in the literature for a single machine scheduling problem (SMSP) (Babu and Girish, 2025).
The TWET-optimal schedule, hence generated for the UPMSP, denoted by 𝐶𝐶 (𝐶𝐶 = {𝐶𝐶1, 𝐶𝐶2, … , 𝐶𝐶𝑛𝑛}) , is input to
Algorithm 1, and the corresponding values of TWET and makespan are saved as the first trade-off point, as shown in
steps 1-2. The time of completion of the last job on the machines with the maximum makespan in schedule 𝐶𝐶 are then
iteratively left shifted, generating the remaining trade-off points. This is implemented by suitably adapting an exact
method of trade-off curve generation presented by Babu and Girish (2025) for an SMSP to the UPMSP, as shown in
Algorithms 1 and 2.

In Algorithm 1, 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝜇𝜇 represents the set of machines with the maximum makespan in schedule 𝐶𝐶 at a given time,
and the time of completion of the last job on every 𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 are simultaneously left shifted. Let 𝜎𝜎𝑝𝑝[𝑘𝑘 − 1] and 𝜎𝜎𝑝𝑝[𝑘𝑘]
represent two successive jobs on a machine 𝑝𝑝. If the last job 𝜎𝜎𝑝𝑝[𝑛𝑛𝑝𝑝] on any 𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 has contiguously scheduled jobs
preceding it, as implied by the equality condition in step 10, the contiguous jobs are left shifted together as a block,
denoted by 𝐵𝐵𝑝𝑝. Steps 5-16 identify the block of jobs 𝐵𝐵𝑝𝑝 to be left-shifted on 𝑝𝑝 ∀𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚. Steps 17-24 calculate the

Algorithm 1: TWET-makespan trade-off curve generation procedure

 Data: 𝜎𝜎, 𝜇𝜇, 𝑑𝑑𝑑𝑑𝑖𝑖 , 𝑑𝑑𝑑𝑑𝑖𝑖 , 𝛼𝛼𝑖𝑖 , 𝛽𝛽𝑖𝑖 , ∀𝑖𝑖 ∈ 𝜎𝜎, 𝑛𝑛𝑘𝑘∀𝑘𝑘, 𝑃𝑃𝑘𝑘𝑘𝑘∀𝑘𝑘, 𝑖𝑖, 𝑆𝑆𝑘𝑘𝑘𝑘𝑖𝑖′ ∀ 𝑘𝑘, 𝑖𝑖, 𝑖𝑖′: 𝑘𝑘 ∈ 𝜇𝜇, 𝑖𝑖, 𝑖𝑖′ ∈ 𝜎𝜎𝑘𝑘 , 𝑖𝑖 ≠ 𝑖𝑖′
1 𝐶𝐶 ← 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑡𝑡 ← 1, 𝑃𝑃𝑃𝑃𝑃𝑃 ← 0
2 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)
3 while (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖! = 0) do
4 for (∀𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚) do ⊳ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 is the set of machines with makespan equal to the maximum makespan
5 𝐵𝐵𝑝𝑝 ← ∅
6 if (𝑛𝑛𝑝𝑝 = 1)
7 𝐵𝐵𝑝𝑝 ← {𝜎𝜎𝑝𝑝[𝑛𝑛𝑝𝑝]}
8 else
9 for (𝑖𝑖 = 𝑛𝑛𝑝𝑝 𝑡𝑡𝑡𝑡 2) do

10

if (𝐶𝐶𝜎𝜎𝑝𝑝[𝑖𝑖−1] + 𝑃𝑃𝑝𝑝𝜎𝜎𝑝𝑝[𝑖𝑖] + 𝑆𝑆𝑝𝑝𝜎𝜎𝑝𝑝[𝑖𝑖−1]𝜎𝜎𝑝𝑝[𝑖𝑖] = 𝐶𝐶𝜎𝜎𝑝𝑝[𝑖𝑖]) then

11 𝐵𝐵𝑝𝑝 ← 𝐵𝐵𝑝𝑝 ∪ {𝜎𝜎𝑝𝑝[𝑖𝑖]}
12 else
13 break
14 end
15 end
16 end
17 𝑆𝑆𝑆𝑆𝑝𝑝 ← 0
18 for (∀𝑗𝑗 ∈ 𝐵𝐵𝑝𝑝) do
19 if (𝐶𝐶𝜎𝜎𝑝𝑝[𝑗𝑗] ≤ 𝑑𝑑𝑑𝑑𝜎𝜎𝑝𝑝[𝑗𝑗]) then

20 𝑆𝑆𝑆𝑆𝑝𝑝 ← 𝑆𝑆𝑆𝑆𝑝𝑝 – 𝛼𝛼𝜎𝜎𝑝𝑝[𝑗𝑗]

21 else if (𝐶𝐶𝜎𝜎𝑝𝑝[𝑗𝑗] > 𝑑𝑑𝑑𝑑𝜎𝜎𝑝𝑝[𝑗𝑗]) then

22 𝑆𝑆𝑆𝑆𝑝𝑝 ← 𝑆𝑆𝑆𝑆𝑝𝑝 + 𝛽𝛽𝜎𝜎𝑝𝑝[𝑗𝑗]

23 end
24 end
25 end
26 𝑂𝑂𝑂𝑂𝑂𝑂 ← ∑ 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝∈𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
27 if (𝑂𝑂𝑂𝑂𝑂𝑂 ≠ 𝑃𝑃𝑃𝑃𝑃𝑃) then
28 𝑡𝑡 ← 𝑡𝑡 + 1, 𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝑂𝑂𝑂𝑂𝑂𝑂
29 end
30 𝐶𝐶 ← 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)
31 end
32 Function 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)
33 𝐺𝐺𝑡𝑡 ← ∑ (𝛼𝛼𝑖𝑖 max {0, 𝑑𝑑𝑑𝑑𝑖𝑖 − 𝐶𝐶𝑖𝑖} + 𝛽𝛽𝑖𝑖 max {0, 𝐶𝐶𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑖𝑖})𝑛𝑛

𝑖𝑖=1
34 𝑀𝑀𝑡𝑡 ← { {𝐶𝐶𝜎𝜎[𝑖𝑖]}1≤𝑖𝑖≤𝑛𝑛𝑞𝑞

𝑚𝑚𝑚𝑚𝑚𝑚 }𝑞𝑞∈𝜇𝜇
𝑚𝑚𝑚𝑚𝑚𝑚

35 end

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

TWET cost function slope of block 𝐵𝐵𝑝𝑝, denoted by 𝑆𝑆𝑆𝑆𝑝𝑝 ∀𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 (Girish et al., 2022). The cost function slope
contributed by the blocks on all the machines belonging to 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, denoted by 𝑂𝑂𝑂𝑂𝑂𝑂, is then calculated, and the identified
𝐵𝐵𝑝𝑝∀𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 is passed to the function LEFT_SHIFT, described in Algorithm 2.

Let 𝛿𝛿 represent the maximum units of time by which the jobs in 𝐵𝐵𝑝𝑝 ∀𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 can be simultaneously left shifted and
𝛿𝛿𝑝𝑝 represent the maximum units of time by which the jobs in each 𝐵𝐵𝑝𝑝 can be left shifted on the corresponding 𝑝𝑝 ∈
𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 subject to non-overlapping constraints on job completion times for the jobs in 𝜎𝜎𝑝𝑝. For each 𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, 𝛿𝛿𝑝𝑝 is the
maximum time units of left shifting possible until either no idle time is available before the last job in 𝐵𝐵𝑝𝑝 in the
corresponding 𝜎𝜎𝑝𝑝, or the completion time of a job in 𝐵𝐵𝑝𝑝 either becomes equal to its latest due date or earlier than its
earliest due date or equal to the completion time of the last job on any machine 𝑝𝑝′ ∈ 𝜇𝜇: 𝑝𝑝′ ∉ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, on left shifting.
This is as shown in steps 3-20. In scenarios where 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 comprises multiple machines, 𝛿𝛿 is assigned the smallest 𝛿𝛿𝑝𝑝
among 𝑝𝑝 ∀𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , as shown in step 22. The completion times of jobs in 𝐵𝐵𝑝𝑝∀𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 are simultaneously left
shifted by 𝛿𝛿 time units, and the TWET and makespan values of the left shifted schedule, denoted by 𝐺𝐺𝑡𝑡 and 𝑀𝑀𝑡𝑡, are
saved as the subsequent breakpoint using the function 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 shown in steps 32-35 of Algorithm 1.
If the cost function slope, 𝑂𝑂𝑂𝑂𝑂𝑂, varies with left shifting (𝑖𝑖. 𝑒𝑒. , 𝑂𝑂𝑂𝑂𝑂𝑂 ≠ 𝑃𝑃𝑃𝑃𝑃𝑃), a new breakpoint is generated on the
trade-off curve, and the breakpoint identifier 𝑡𝑡 is incremented by one, as shown in steps 26-29 of Algorithm 1.
However, if 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑃𝑃𝑃𝑃𝑃𝑃, the break point that is stored at index 𝑡𝑡, in step 26 of Algorithm 2, is overwritten at the end

Algorithm 2: Left shifting procedure
1

Function 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)
 2 𝛿𝛿 ← 𝑀𝑀, 𝛿𝛿𝑝𝑝 ← 𝑀𝑀 , 𝑙𝑙𝑝𝑝 ← |𝐵𝐵𝑝𝑝| ∀𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ⊳ 𝑀𝑀 is a large positive integer

3 for (∀𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚) do
4 𝑡𝑡𝑖𝑖 ← 0 ∀𝑖𝑖 ∈ {1, 2, 3, 4}
5

if (𝜎𝜎𝑝𝑝[1] ∈ 𝐵𝐵𝑝𝑝) then

6 𝛿𝛿𝑝𝑝 ← 𝐶𝐶𝜎𝜎𝑝𝑝[1] – 𝑃𝑃𝜎𝜎𝑝𝑝[1]

7 end
8 if (𝛿𝛿𝑝𝑝 > 0) then
9 if (𝑙𝑙𝑝𝑝 < 𝑛𝑛𝑝𝑝) then
10

𝑎𝑎 ← 𝜎𝜎𝑝𝑝[𝑛𝑛𝑝𝑝 − 𝑙𝑙𝑝𝑝], 𝑏𝑏 ← 𝜎𝜎𝑝𝑝[𝑛𝑛𝑝𝑝 − 𝑙𝑙𝑝𝑝 + 1]

11 𝑡𝑡1 ← 𝐶𝐶𝑏𝑏 − 𝑃𝑃𝑝𝑝𝑝𝑝 − 𝑆𝑆𝑝𝑝𝑎𝑎𝑎𝑎 − 𝐶𝐶𝑎𝑎
12 end

13 𝑡𝑡2 ← 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈𝐵𝐵𝑝𝑝

�𝐶𝐶𝜎𝜎𝑝𝑝[𝑖𝑖] − 𝑑𝑑𝑑𝑑𝜎𝜎𝑝𝑝[𝑖𝑖] ∶ 𝐶𝐶𝜎𝜎𝑝𝑝[𝑖𝑖] > 𝑑𝑑𝑑𝑑𝜎𝜎𝑝𝑝[𝑖𝑖]� , 𝑡𝑡3 ← 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈𝐵𝐵𝑝𝑝

�𝐶𝐶𝜎𝜎𝑝𝑝[𝑖𝑖] − 𝑑𝑑𝑑𝑑𝜎𝜎𝑝𝑝[𝑖𝑖] ∶ 𝑑𝑑𝑑𝑑𝜎𝜎𝑝𝑝[𝑖𝑖] < 𝐶𝐶𝜎𝜎𝑝𝑝[𝑖𝑖] ≤ 𝑑𝑑𝑑𝑑𝜎𝜎𝑝𝑝[𝑖𝑖]�

14 𝑡𝑡4 ← 𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟∈𝜇𝜇:𝑟𝑟∉𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

�𝐶𝐶𝜎𝜎𝑝𝑝�𝑛𝑛𝑝𝑝� − 𝐶𝐶𝜎𝜎𝑟𝑟[𝑛𝑛𝑟𝑟]�

15 𝛿𝛿𝑝𝑝 ← min {𝛿𝛿, min {𝑡𝑡𝑖𝑖 ∶ 𝑖𝑖 ∈ {1,2,3,4}, 𝑡𝑡𝑖𝑖 > 0}}

16 else
17 𝛿𝛿 ← 0
18 break
19 end
20 end
21 if (𝛿𝛿! = 0) then

22 𝛿𝛿 ← 𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝∈𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

(𝛿𝛿𝑝𝑝)

23 for (∀𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚) do
24 𝐶𝐶𝜎𝜎𝑝𝑝[𝑗𝑗] ← 𝐶𝐶𝜎𝜎𝑝𝑝[𝑗𝑗] − 𝛿𝛿 ∀𝑗𝑗 ∈ 𝐵𝐵𝑝𝑝

25 end
26 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)
27 else
28 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ← 0
29 end
31 end

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

of the subsequent iteration of left shift. Steps 4-30 of Algorithm 1 are repeated until the idle time preceding the first
job 𝜎𝜎𝑝𝑝[1] on one of the machines in 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 is eliminated, i.e., 𝛿𝛿𝑝𝑝 = 0 for any 𝑝𝑝 ∈ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚. The breakpoints obtained are
subsequently joined with line segments, resulting in the optimal piecewise linear convex trade-off curve between
makespan and TWET, which is effectively the Pareto-optimal front for the sequence 𝜎𝜎 (Babu and Girish, 2025).

4. Proposed hybrid metaheuristics
This section presents the proposed hybrid metaheuristics, namely the hybrid Pareto archived multi-objective cuckoo
search – local search (PAMOCS-LS) algorithm and the hybrid multi-objective particle swarm optimization local
search (MOPSO-LS) algorithm. The local search employs pairwise swap and insertion neighbourhoods, denoted by
𝑁𝑁1 and 𝑁𝑁2, respectively, applied both within and across different machines.

4.1 Initial solution construction
The initial solution set for the proposed hybrid metaheuristics was generated by suitably adapting the initial solution
generation procedure described by Babu and Girish (2025) for an SMSP. The construction of initial solutions for the
UPMSP begins with an empty set 𝜎𝜎 with 𝑚𝑚 subsets, to which 𝑛𝑛 unscheduled jobs are sequentially added according to
a probabilistic rule guided by heuristic desirability. Each subset 𝜎𝜎𝑦𝑦 ∈ 𝜎𝜎: 𝑦𝑦 ∈ {1,2, … , 𝑚𝑚} denotes the partial sequence
on one of the machines in the UPMSP. The heuristic desirability 𝜂𝜂𝑦𝑦𝑦𝑦𝑦𝑦 of assigning a job 𝑏𝑏 to position 𝑘𝑘 in the 𝑦𝑦th
subset of 𝜎𝜎 is defined as

𝜂𝜂𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑑𝑑𝑑𝑑𝑏𝑏∗𝑘𝑘1
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎

� ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 �−
(∑ 𝑃𝑃𝑦𝑦𝑦𝑦𝑗𝑗∈𝜎𝜎𝑦𝑦 +𝑃𝑃𝑦𝑦𝑦𝑦+𝑆𝑆𝑦𝑦𝑎𝑎𝑎𝑎)∗𝑘𝑘2

𝑃𝑃𝑆𝑆𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎
� (15)

where 𝑑𝑑𝑑𝑑𝑏𝑏 denotes the earliest due date of the job 𝑏𝑏, 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 denotes the average of the earliest due dates of the jobs
unassigned to 𝜎𝜎, 𝑘𝑘1 and 𝑘𝑘2 denote the scaling parameters associated with the due dates and the sum of processing
times and setup times (𝑃𝑃𝑦𝑦𝑏𝑏 + 𝑆𝑆𝑦𝑦𝑎𝑎𝑎𝑎), respectively. 𝑃𝑃𝑦𝑦𝑦𝑦 denotes the processing time of the job 𝑏𝑏 on machine 𝑦𝑦, and
∑ 𝑃𝑃𝑦𝑦𝑦𝑦𝑗𝑗∈𝜎𝜎𝑦𝑦 denotes the sum of the processing times of all the jobs in the partial sequence 𝜎𝜎𝑦𝑦. 𝑆𝑆𝑦𝑦𝑎𝑎𝑎𝑎 denotes the setup
time between jobs 𝑏𝑏 and its preceding job in 𝜎𝜎𝑦𝑦, denoted by 𝑎𝑎, and 𝑃𝑃𝑃𝑃𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎 denotes the average of the processing times
and setup times between the jobs unassigned to 𝜎𝜎𝑦𝑦. The job 𝑗𝑗 to be assigned at each position in 𝜎𝜎𝑦𝑦 ∈ 𝜎𝜎: 𝑦𝑦 ∈ {1,2, … , 𝑚𝑚}
is selected probabilistically based on the value of the random variable 𝑆𝑆 drawn according to a probability 𝜇𝜇𝑦𝑦𝑦𝑦𝑦𝑦 defined
for each unassigned job 𝑏𝑏 ∈ 𝑈𝑈, as shown in Eq. (16).

𝜇𝜇𝑦𝑦𝑦𝑦𝑦𝑦 =

𝜂𝜂𝑦𝑦𝑦𝑦𝑦𝑦
∑ (𝜂𝜂𝑦𝑦𝑦𝑦𝑦𝑦)𝑢𝑢∈𝑈𝑈

 (16)

where 𝑈𝑈 denotes the set of jobs not assigned to 𝜎𝜎. For each position 𝑘𝑘 in 𝜎𝜎, the cumulative value of 𝜇𝜇𝑦𝑦𝑦𝑦𝑦𝑦∀𝑏𝑏 ∈ 𝑈𝑈 is
evaluated, and the job 𝑏𝑏 corresponding to the interval of the random variable 𝑆𝑆 is assigned to 𝑘𝑘. This process iterates
until all the 𝑛𝑛 jobs are appended to some 𝜎𝜎𝑦𝑦 ∈ 𝜎𝜎. The sequences hence constructed comprise the initial solution set,
denoted by 𝑃𝑃, in the population-based metaheuristic algorithms presented in the following sections.

4.2 The hybrid PAMOCS-LS algorithm
Cuckoo search is a population-based metaheuristic algorithm inspired by the brood parasitism behaviour of cuckoo
birds. A cuckoo represents a candidate solution on which one or more search strategies are applied to generate new
candidate solutions, termed eggs. The eggs laid by each cuckoo are placed in a habitat that the cuckoo randomly picks
from the solution space, termed a nest. The eggs in the selected nest, along with the newly laid ones, are evaluated for
objective values to preserve the good ones in Pareto archives and discard the bad ones, analogous to host birds rejecting
foreign eggs. The proposed hybrid PAMOCS-LS is inspired by the PAMOCS algorithm presented by Nartu et al.
(2019) for a multi-objective minimization problem, where each candidate solution results in a single trade-off point
on the Pareto front. In this paper, we have suitably extended their methodology for a multi-objective UPMSP where
each job sequence results in multiple line segments on the Pareto front. The proposed hybrid PAMOCS-LS, shown in
Algorithm 3, begins by generating the trade-off curves between makespan and TWET ∀𝜎𝜎 ∈ 𝑃𝑃 , using the exact
algorithm presented in Section 3, and subsequently constructing the global Pareto front of the trade-off curves using
a method adopted from the literature (Babu and Girish, 2024), denoted by 𝐴𝐴, as shown in steps 1-2. Nests denoted by
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 corresponding to each 𝜎𝜎 ∈ 𝑃𝑃 are initialized with the respective 𝜎𝜎 as the first egg, the set of which is denoted
by 𝑁𝑁, where 𝑝𝑝 is the nest identifier. Local Pareto fronts of the solutions belonging to each nest 𝑝𝑝 are also generated,

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

denoted by 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝∀𝜎𝜎 ∈ 𝑃𝑃, as shown in steps 4-8. The search for optimal solutions begins with randomly selecting a
candidate solution, denoted as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, from a randomly selected nest 𝑝𝑝′ ∈ 𝑁𝑁, and subjecting it to 𝑁𝑁2 randomly to
generate 𝑘𝑘 new candidate solutions, the set of which is denoted as 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. The non-dominated candidate solutions in
set 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, belonging to the Pareto front 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, update the local Pareto front 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 corresponding to the randomly
selected nest 𝑝𝑝 ∈ 𝑁𝑁. This is as shown in steps 10-16. The solutions belonging to 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 are further subjected to local
search using 𝑁𝑁1 and 𝑁𝑁2, as shown in steps 17-25. For every 𝜎𝜎 ∈ 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜎𝜎, 𝑁𝑁𝑘𝑘) ∀𝑁𝑁𝑘𝑘 ∈ {𝑁𝑁1, 𝑁𝑁2} is a
binary variable that ensures that 𝜎𝜎 is subjected to local search using a particular 𝑁𝑁𝑘𝑘, only once. The solutions in the
Pareto front 𝐴𝐴′ of the set of neighbourhoods belonging to set 𝑀𝑀 iteratively updates the local Pareto front 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝
corresponding to nest 𝑝𝑝, following which 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 updates the global Pareto front 𝐴𝐴. The search procedure in steps 10-
26 repeats until a predefined maximum computation time, denoted by 𝐶𝐶𝐶𝐶𝐶𝐶_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, after which the global Pareto
front 𝐴𝐴 comprises the optimal solutions to the problem.

4.3 The hybrid MOPSO-LS algorithm
Particle swarm optimization is a population-based metaheuristic algorithm inspired by the collective movement of
birds towards a food source. Each candidate solution, termed a particle, has an associated position and velocity, which
it updates while moving through the solution space, interacting with other particles, the group of which is termed
swarm. The velocity and position of each particle are updated based on the personal best position in their own memory
and the best position discovered by the swarm, thus gradually converging towards the optimal solutions. The proposed
hybrid MOPSO-LS is inspired by the PSO algorithm presented by Girish and Jawahar (2009) for a single objective
job shop scheduling problem, which we have suitably adapted for the bi-objective UPMSP. The proposed hybrid
MOPSO-LS, is as shown in Algorithm 4.

Algorithm 3: The hybrid PAMOCS-LS algorithm
1 𝑃𝑃 ← 𝐼𝐼()
2 𝐴𝐴 ← 𝑃𝑃(𝑃𝑃)
3 𝑝𝑝 ← 0, 𝑁𝑁 ← 0, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜎𝜎, {𝑁𝑁1, 𝑁𝑁2}) ← 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∀𝜎𝜎 ∈ 𝐴𝐴
4 for (∀𝜎𝜎 ∈ 𝑃𝑃) do
5 𝑝𝑝 ← 𝑝𝑝 + 1
6 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 ← 𝜎𝜎, 𝑁𝑁 ← 𝑁𝑁 ∪ {𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝}
7 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 ← 𝑃𝑃�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝�

8 end
9 while (𝐶𝐶𝐶𝐶𝐶𝐶_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 < 𝐶𝐶𝐶𝐶𝐶𝐶_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) do
10 𝑝𝑝′ ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁)
11 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝′)

12 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ← 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑁𝑁2)
13 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ← 𝑃𝑃(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
14 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜎𝜎, {𝑁𝑁1, 𝑁𝑁2}) ← 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∀𝜎𝜎 ∈ 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
15 𝑝𝑝 ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁)
16 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 ← 𝑃𝑃(𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 ∪ 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

17 for (∀𝑁𝑁𝑘𝑘 ∈ {𝑁𝑁1, 𝑁𝑁2}) do
18 while (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜎𝜎, 𝑁𝑁𝑘𝑘) ≠ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∀𝜎𝜎 ∈ 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝) do

19 𝑀𝑀 ← 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎, 𝑁𝑁𝑘𝑘) ∀𝜎𝜎 ∈ 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝: visited_flag(𝜎𝜎, 𝑁𝑁𝑘𝑘)=false

20 visited_flag(𝜎𝜎, 𝑁𝑁𝑘𝑘) ← true ∀𝜎𝜎 ∈ 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝

21 𝐴𝐴′ ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀)
22 visited_flag(𝜎𝜎, 𝑁𝑁𝑘𝑘) ← false ∀𝜎𝜎 ∈ 𝐴𝐴′
23 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 ← 𝑃𝑃(𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 ∪ 𝐴𝐴′)

24 end
25 end
26 𝐴𝐴 ← 𝑃𝑃(𝐴𝐴 ∪ 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝)

27 end

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

The proposed hybrid MOPSO-LS algorithm begins by constructing a global Pareto front of the solutions belonging to
𝑃𝑃, denoted by 𝐴𝐴, and local Pareto fronts corresponding to each 𝜎𝜎 ∈ 𝑃𝑃, denoted by 𝐴𝐴𝜎𝜎, as shown in steps 1-3. The
search for optimal solutions begins by identifying the global and personal best solutions corresponding to each 𝜎𝜎 ∈ 𝑃𝑃,
denoted by 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , respectively, as shown in steps 7-10. 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 for each 𝜎𝜎 ∈ 𝑃𝑃 refer to the
sequences associated with the nearest line segments, indexed 𝑘𝑘 and 𝑘𝑘′, on the respective Pareto fronts 𝐴𝐴 and 𝐴𝐴𝜎𝜎 from
the trade-off curve associated with 𝜎𝜎. The nearest line segment on a Pareto front to the trade-off curve associated with
a given 𝜎𝜎, is obtained using the point of closest approach algorithm presented by Sunday (2006). Further, the insertion
moves to transition 𝜎𝜎 to 𝜎𝜎𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝜎𝜎𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 are identified and stored in sets 𝑑𝑑1 and 𝑑𝑑2, respectively. Sets 𝑑𝑑1 and 𝑑𝑑2
are ordered in descending order of the positional differences between the jobs in 𝜎𝜎 and the jobs in 𝜎𝜎𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝜎𝜎𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,
respectively, such that the insertion moves between machines are prioritized over the insertion moves within a
machine. The insertion moves in sets 𝑑𝑑1 and 𝑑𝑑2 are then applied successively on 𝜎𝜎 with the respective probabilities

Algorithm 4: The hybrid MOPSO-LS algorithm
1 𝑃𝑃 ← 𝐼𝐼()
2 𝐴𝐴 ← 𝑃𝑃(𝑃𝑃)
3 𝐴𝐴𝜎𝜎 ← 𝑃𝑃(𝜎𝜎) ∀𝜎𝜎 ∈ 𝑃𝑃
4 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜎𝜎, {𝑁𝑁1, 𝑁𝑁2}) ← 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∀𝜎𝜎 ∈ 𝐴𝐴
5 while (𝐶𝐶𝐶𝐶𝐶𝐶_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 < 𝐶𝐶𝐶𝐶𝐶𝐶_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) do
6 for (∀𝜎𝜎 ∈ 𝑃𝑃) do
7 𝑘𝑘 ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜎𝜎, 𝐴𝐴)
8 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ← 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽(𝑘𝑘, 𝐴𝐴)
9 𝑘𝑘′ ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜎𝜎, 𝐴𝐴𝜎𝜎)
10 𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽(𝑘𝑘′, 𝐴𝐴𝜎𝜎)
11 𝑑𝑑1 ← {𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝜎𝜎 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝜎𝜎𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺}
12 𝑑𝑑2 ← {𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝜎𝜎 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝜎𝜎𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃}

13 for (∀𝑑𝑑 ∈ 𝑑𝑑1) do
14 if (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) then ⊳ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ [0,1]
15 𝜎𝜎 ← 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝜎𝜎, 𝑑𝑑1)
16 end
17 end
18 for (∀𝑑𝑑 ∈ 𝑑𝑑2) do
19 if (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) then
20 𝜎𝜎 ← 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝜎𝜎, 𝑑𝑑2)
21 end
22 end
23 end
24 for (∀𝜎𝜎 ∈ 𝑃𝑃) do
25 𝐴𝐴𝜎𝜎′ ← 𝑃𝑃(𝜎𝜎)
26 𝐴𝐴𝜎𝜎 ← 𝑃𝑃(𝐴𝐴𝜎𝜎 ∪ 𝐴𝐴𝜎𝜎

′)
27 for (∀𝑁𝑁𝑘𝑘 ∈ {𝑁𝑁1, 𝑁𝑁2}) do
28 while (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜎𝜎, 𝑁𝑁𝑘𝑘) ≠ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∀𝜎𝜎 ∈ 𝐴𝐴𝜎𝜎) do
29 𝑀𝑀 ← 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎, 𝑁𝑁𝑘𝑘) ∀𝜎𝜎 ∈ 𝐴𝐴𝜎𝜎: visited_flag(𝜎𝜎, 𝑁𝑁𝑘𝑘)=false
30 visited_flag(𝜎𝜎, 𝑁𝑁𝑘𝑘) ← true ∀𝜎𝜎 ∈ 𝐴𝐴𝜎𝜎
31 𝐴𝐴𝜎𝜎′′ ← 𝑃𝑃(𝑀𝑀)
32 visited_flag(𝜎𝜎, 𝑁𝑁𝑘𝑘) ← false ∀𝜎𝜎 ∈ 𝐴𝐴𝜎𝜎′′
33 𝐴𝐴𝜎𝜎 ← 𝑃𝑃(𝐴𝐴𝜎𝜎 ∪ 𝐴𝐴𝜎𝜎

′′)
34 end
35 end
36 𝐴𝐴 ← 𝑃𝑃(𝐴𝐴 ∪ 𝐴𝐴𝜎𝜎)
37 end
38 end

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, as shown in steps 13-22. The improved sequence 𝜎𝜎 is then subjected to local search using 𝑁𝑁1 and
𝑁𝑁2, as shown in steps 27-35. The Pareto front 𝐴𝐴𝜎𝜎′′, of the neighbourhoods belonging to set 𝑀𝑀 iteratively updates the
local Pareto front 𝐴𝐴𝜎𝜎, following which 𝐴𝐴𝜎𝜎 updates the global Pareto front 𝐴𝐴. The search procedure in steps 6-37 is
performed until the 𝐶𝐶𝐶𝐶𝐶𝐶_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, after which the global Pareto front 𝐴𝐴 comprises the optimal solutions to the
problem.

5. Performance evaluation
This section discusses the comparative performance evaluation of the proposed hybrid metaheuristics, implemented
in C and executed using the Intel C++ Compiler v2022.2.1 on a Linux workstation featuring dual 2.6 GHz Intel Xeon
Gold 6132 processors with 32 cores and 128 GB RAM. The neighbourhood generation procedure in the proposed
metaheuristics was parallelized using OpenMP for efficient multi-core execution (Babu and Girish, 2025). The -fp-
model flag was configured to strict during compilation to ensure floating point precision. The compiler optimization
level was fixed at −O0, to disable possible optimization at runtime.

5.1 Test instance generation
As the literature presents no known benchmark data for the bi-objective UPMSP considered in this work, problem
instances of different sizes were developed using the methodology described by Lee and Pinedo (1997). The number
of jobs and machines in each problem instance, denoted by 𝒏𝒏 and 𝒎𝒎 respectively, are selected from the corresponding
sets {𝟐𝟐𝟐𝟐, 𝟑𝟑𝟑𝟑, 𝟒𝟒𝟒𝟒} and {𝟑𝟑, 𝟓𝟓} for small-sized instances, {𝟓𝟓𝟓𝟓, 𝟕𝟕𝟕𝟕, 𝟏𝟏𝟏𝟏𝟏𝟏} and {𝟒𝟒, 𝟔𝟔, 𝟖𝟖} for medium-sized instances, and
{𝟐𝟐𝟐𝟐𝟐𝟐, 𝟑𝟑𝟑𝟑𝟑𝟑, 𝟒𝟒𝟒𝟒𝟒𝟒} and {𝟏𝟏𝟏𝟏, 𝟐𝟐𝟐𝟐, 𝟑𝟑𝟑𝟑} for large-sized instances. The processing time 𝑷𝑷𝒌𝒌𝒌𝒌, for a job 𝒊𝒊 on a machine 𝒌𝒌, was
generated uniformly in [𝟓𝟓𝟓𝟓, 𝟏𝟏𝟏𝟏𝟏𝟏]. The setup time 𝑺𝑺𝒌𝒌𝒌𝒌𝒊𝒊′ between two jobs (𝒊𝒊, 𝒊𝒊’): 𝒊𝒊 ≠ 𝒊𝒊’ on each machine 𝒌𝒌, was
generated uniformly in [𝟏𝟏, 𝟐𝟐𝜼𝜼𝒑𝒑] where 𝜼𝜼 is the setup time severity factor and 𝑷𝑷 is the average processing time per job
per machine, defined as 𝑷𝑷 = (∑ ∑ 𝑷𝑷𝒌𝒌𝒌𝒌𝒊𝒊)𝒌𝒌 /𝒎𝒎𝒎𝒎. The earliness and tardiness penalties, 𝜶𝜶𝒊𝒊 and 𝜷𝜷𝒊𝒊, of each job 𝒊𝒊 were
generated uniformly in [𝟏𝟏, 𝟏𝟏𝟏𝟏𝟏𝟏]. The due windows were generated uniformly in [(𝟏𝟏 − 𝑹𝑹)𝒅𝒅, 𝒅𝒅] with a probability 𝝉𝝉
and, in [𝒅𝒅, 𝒅𝒅 + (𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒅𝒅)𝑹𝑹] with a probability 𝟏𝟏 − 𝝉𝝉, where 𝝉𝝉 is the due date tightness factor, 𝑹𝑹 is the due date
range factor, 𝒅𝒅 is the average due date, and 𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎 is the makespan. 𝒅𝒅 and 𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎 are defined as 𝒅𝒅 = 𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎(𝟏𝟏 − 𝝉𝝉) and
𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎 = (𝜷𝜷𝑺𝑺 + 𝑷𝑷)𝝁𝝁, respectively, where 𝑺𝑺 is the average setup time. The coefficient 𝜷𝜷 accounts for the effect of setup
time on makespan and is defined as 𝜷𝜷 = �𝟎𝟎. 𝟒𝟒 + 𝟏𝟏𝟏𝟏

𝝁𝝁𝟐𝟐 − 𝜼𝜼
𝟕𝟕
�, where 𝝁𝝁 is the job-machine factor defined as 𝝁𝝁 = 𝒏𝒏/𝒎𝒎. The

values of {𝜼𝜼, 𝝉𝝉, 𝑹𝑹} were fixed at {𝟎𝟎. 𝟐𝟐, 𝟎𝟎. 𝟑𝟑, 𝟎𝟎. 𝟐𝟐𝟐𝟐}, respectively, based on trial-and-error. For each problem size
category, 𝒏𝒏 ∗ 𝒎𝒎 test instances were generated, which resulted in 𝟑𝟑𝟑𝟑𝟑𝟑 + 𝟑𝟑𝟑𝟑𝟑𝟑 + 𝟑𝟑𝟑𝟑𝟑𝟑 = 𝟐𝟐𝟐𝟐 problem instances that
follow the naming convention 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷_𝑱𝑱𝑱𝑱_𝑴𝑴𝑴𝑴: 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 ∈ (𝑺𝑺, 𝑴𝑴, 𝑳𝑳}, where, 𝑺𝑺, 𝑴𝑴 and 𝑳𝑳, respectively, denote the small,
medium and large size problem categories.

5.2 Optimal parameter settings
The parameters in the proposed hybrid metaheuristics were optimized by solving selected problem instances using the
hybrid metaheuristics for ten runs. The optimal settings are listed below.

5.3 Performance comparison
This section compares the performance efficiency of the two hybrid metaheuristics using the hypervolume metric
adopted from the literature (Babu and Girish, 2025). Table 1 shows the percentage deviations of the average
hypervolume from the best average hypervolume computed for the Pareto fronts obtained by the proposed hybrid
metaheuristics for 24 problem instances in ten runs. The percentage deviations in hypervolume close to 0 for an
algorithm indicate its superior convergence over the other. Table 1 shows that the hybrid MOPSO-LS algorithm has
superior convergence for most problem instances with up to 75 jobs, the two hybrid metaheuristic algorithms converge

Parameter Optimal setting

Scaling parameters in initial solution generation In PAMOCS-LS: 𝑘𝑘0 = 2; 𝑘𝑘1 = 2; 𝑘𝑘2 = 1
In MOPSO-LS: 𝑘𝑘0 = 2; 𝑘𝑘1 = 3; 𝑘𝑘2 = 2

Number of eggs in PAMOCS-LS 𝑘𝑘 = �
4, 𝑛𝑛 < 100

6, 100 ≤ 𝑛𝑛 < 400
8, 𝑛𝑛 ≥ 400

Probabilities in MOPSO-LS 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.4; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.8

Termination criterion for all algorithms 𝐶𝐶𝐶𝐶𝐶𝐶_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �50 x 𝑛𝑛 seconds, 𝑛𝑛 ≤ 40
85 x 𝑛𝑛 seconds, 𝑛𝑛 > 40

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

competitively for problem instances with 100 to 200 jobs, and the hybrid PAMOCS-LS algorithm has superior
convergence for all problem instances with 300 to 400 jobs. This is also evident from Figure 1 that shows the Pareto
fronts obtained by the two hybrid metaheuristics for small and large-sized problem instances. The superior
performance of the hybrid MOPSO-LS for smaller problem instances can be attributed to its large extent of
exploitation of the solution space, resulting in faster convergence. The MOPSO algorithm performs a guided
exploration of the solution space, and hybridizing the MOPSO algorithm with local search further enhances its
exploitation. However, the hybrid MOPSO-LS algorithm tends to converge prematurely or get trapped in local optima
for large-sized problems with large solution spaces due to insufficient exploration. The superior performance of the
hybrid PAMOCS-LS for large problem instances can be attributed to its balanced exploitation and exploration of the
solution space. The PAMOCS algorithm performs a random exploration of the solution space by Levy flights.
Hybridizing it with local search balances its exploration with exploitation, leading to faster convergence for larger
problem instances. However, for smaller problem instances, the increased exploration spreads the computational
efforts over many new solutions, rather than exploiting the solution space, thereby performing inferior.

Table 1. Comparison of the hypervolume obtained by the proposed metaheuristics

Figure 1. Pareto fronts obtained by the proposed metaheuristics for two problem instances

Sl. No. No. of jobs No. of machines Problem instance
% Deviation in hypervolume

PAMOCS-LS MOPSO-LS
1 20 3 S J20 M3 19.14 0
2 20 5 S_J20_M5 8.10 0
3 30 3 S_J30_M3 32.95 0
4 30 5 S_J30_M5 15.41 0
5 40 3 S_J40_M3 22.08 0
6 40 5 S_J40_M5 2.07 0
7 50 4 M_J50_M4 17.70 0
8 50 6 M_J50_M6 5.46 0
9 50 8 M_J50_M8 3.27 0
10 75 4 M_J75_M4 0 3.90
11 75 6 M_J75_M6 2.70 0
12 75 8 M_J75_M8 12.67 0
13 100 4 M_J100_M4 20.56 0
14 100 6 M_J100_M6 0 9.72
15 100 8 M_J100_M8 0 3.00
16 200 10 L_J200_M10 1.79 0
17 200 20 L J200 M20 2.88 0
18 200 30 L J200 M30 0 8.37
19 300 10 L J300 M10 0 50.94
20 300 20 L_J300_M20 0 3.49
21 300 30 L_J300_M30 0 4.27
22 400 10 L_J400_M10 0 8.18
23 400 20 L_J400_M20 0 7.28
24 400 30 L_J400_M30 0 9.14

Average 6.95 4.51

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

6. Practical implications
The scheduling algorithms presented in this paper find their significance in identifying the processing sequences and
schedules that are simultaneously optimal in makespan and TWET objectives for a given set of jobs in unrelated
parallel machine scheduling environments operating in a just-in-time setting. The simultaneous optimization of the
two objectives is particularly crucial in JIT manufacturing systems striving to minimize the penalty costs due to the
early or late completion of jobs, while maintaining efficient utilization of resources and better throughput through
continuous production. The scheduling environment characteristics, optimization objectives and problem constraints
considered in this paper closely reflect real-world manufacturing setups. However, no work in the literature has
presented computationally efficient solution methodologies to solve the problem, which is of NP-hard complexity, for
large-sized problem instances that may be encountered in real-world applications. The Pareto-optimal solutions
identified using the timing algorithm and the population-based hybrid metaheuristics presented in this paper provide
the decision-makers with the necessary insights to choose a solution from the Pareto-optimal solution set, in
accordance with their relative priorities for the objectives. Providing the decision makers with such flexibility in
choosing from the set of optimal solutions, each corresponding to different trade-offs between the objectives, is crucial
in determining the process efficiency and resource utilization of manufacturing industries under fluctuating market
demands. Furthermore, the hybrid metaheuristic algorithms presented for the UPMSP in this paper can be easily
extended to several real-world manufacturing settings, with diverse scheduling environments such as job shops, flow
shops, etc., thereby broadening their practical applicability in the real-world manufacturing contexts.

7. Conclusions and future scope
The paper proposes two hybrid metaheuristics, namely the hybrid PAMOCS-LS algorithm and the hybrid MOPSO-
LS algorithm, for the simultaneous optimization of makespan and TWET in a JIT-UPMSP. The hybrid metaheuristics
generate several job sequences, corresponding to each of which, the proposed exact procedure for trade-off curve
generation generates either a piecewise linear convex trade-off curve composed of line segments or a single trade-off
point. The Pareto front of multiple trade-off curves, hence obtained, constructed using a method from the literature, is
also composed of line segments and points. The comparative performance evaluation of the hybrid metaheuristics
shows that the proposed hybrid MOPSO-LS shows superior performance for smaller problem instances, and the
proposed hybrid PAMOCS-LS shows superior performance for larger problem instances. This is the first study to
present an optimal timing algorithm for the bi-objective optimization of makespan and TWET in a UPMSP, allowing
the insertion of idle times in the schedule. This is also the first study to present hybrid population-based metaheuristics
for a multi-objective UPMSP in a JIT manufacturing environment, generating a Pareto front composed of line
segments and points.

The scheduling complexities that the proposed multi-objective machine scheduling algorithms have addressed not
only advance the state of research in scheduling but also open new opportunities for research in diverse scheduling
environments across multiple combinations of objectives, thereby contributing towards the operational efficiency of
manufacturing systems in JIT environments. The future possibilities of research include suitably adapting other
metaheuristic algorithms and comparing their performance with the proposed hybrid population-based metaheuristics,
and further studying their performance for different combinations of objectives in the JIT-UPMSP. Another promising
research direction is to extend the hybrid population-based metaheuristic algorithms proposed for the UPMSP to
diverse scheduling environments such as job shop scheduling, open shop scheduling, flow shop scheduling, etc.
Though the proposed hybrid population-based metaheuristics can be easily adapted to diverse machine scheduling
environments, every scheduling environment demands developing a unique optimal timing algorithm to generate
optimal schedules for a given sequence of jobs between a given set of objectives. This also involves tailoring the
operators and techniques within the hybrid population-based meta-heuristics to the specific problem. Additionally, the
proposed hybrid population-based metaheuristic algorithms have computational limitations when applied to extremely
large-scale problem instances or adaptability limitations when required to dynamically respond to changing problem
characteristics, as this research has been restricted to static scheduling environments.

References
Azevedo, B. F., Montanño-Vega, R., Varela, M. L. R., and Pereira, A., Bio-inspired multi-objective algorithms applied

on production scheduling problems, International Journal of Industrial Engineering Computations, vol. 14, no.
2, pp. 415–436, 2023.

Babu, S., and Girish, B. S., Pareto-optimal front generation for the bi-objective JIT scheduling problems with a
piecewise linear trade-off between objectives, Operations Research Perspectives, vol. 12, Article 100299, 2024.

Proceedings of the 5th Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

© IEOM Society International

Babu, S., and Girish, B. S., Neighbourhood search-based metaheuristics for the bi-objective Pareto optimization of
total weighted earliness-tardiness and makespan in a JIT single machine scheduling problem, Operations
Research Perspectives, vol. 14, Article 100335, 2025.

De CM Nogueira, J.P., Arroyo, J.E.C., Villadiego, H.M.M. and Gonçalves, L.B., Hybrid GRASP heuristics to solve
an unrelated parallel machine scheduling problem with earliness and tardiness penalties, Electronic Notes in
Theoretical Computer Science, vol. 302, pp. 53-72, 2014.

Đurasević, M., and Jakobović, D., Heuristic and Metaheuristic Methods for the Parallel Unrelated Machines
Scheduling Problem: A Survey, Artificial Intelligence Review, vol. 56, pp. 3181–3289, 2023.

Girish, B. S., Habibullah, H., and Dileeplal, J., Minimizing the total makes for a sequence of operations in job shops,
RAIRO-Oper. Res., vol. 56, no. 4. pp. 2621–2649, 2022.

Girish, B. S., and Jawahar, N., A particle swarm optimization algorithm for flexible job shop scheduling problem,
Proceedings of the 2009 IEEE International Conference on Automation Science and Engineering, pp. 298–303,
Bangalore, India, September 9, 2009.

Jacquin, S., Dufossé, F., and Jourdan, L., An exact algorithm for the bi-objective timing problem, Optimization Letters,
vol. 12, no. 4, pp. 903–914, 2018.

Lee, Y. H., and Pinedo, M., Scheduling jobs on parallel machines with sequence-dependent setup times. European
Journal of Operational Research, vol. 100, no. 3, pp. 464–474, 1997.

Nartu, T. R., Matta, M. S., Koratana, S., and Bodda, R. K., A fuzzified Pareto multiobjective cuckoo search algorithm
for power losses minimization incorporating SVC, Soft Computing, vol. 23, no. 21, pp. 10811–10820, 2019.

Neufeld, J. S., Schulz, S., and Buscher, U., A systematic review of multi-objective hybrid flow shop scheduling.
European Journal of Operational Research, vol. 309, no. 1, pp. 1–23, 2023.

Sterna, M., Late and early work scheduling: A survey. Omega, vol. 104, Article 102453, 2021.
Sunday, D., Distance between Lines and Segments with their Closest Point Approach, Available:

http://geometryalgorithms.com/Archive/algorithm0106/algorithm0106.htm, 2006.
Wang, H., Li, R., and Gong, W., Minimizing tardiness and makespan for distributed heterogeneous unrelated parallel

machine scheduling by knowledge and Pareto-based memetic algorithm, Egyptian Informatics Journal, vol. 24,
no. 3, Article 100383, 2023.

Ying, K.-C., Pourhejazy, P., and Huang, X.-Y., Revisiting the development trajectory of parallel machine scheduling,
Computers & Operations Research, vol. 168, Article 106709, 2024.

Biographies
Sona Babu is a PhD Scholar in the Department of Aerospace Engineering at the Indian Institute of Space Science and
Technology, Thiruvananthapuram, Kerala, India. She has over three years of academic research experience in
Industrial Engineering and Operations Research, and more than four years of professional experience as a Software
Engineer in the IT industry. She holds a BTech in Electronics and Communication Engineering from the University
of Kerala (2018) and an MBA in Operations from The ICFAI University, Tripura (2021). Her research focuses on
developing computationally efficient scheduling algorithms for just-in-time manufacturing systems. Her work has
been published in top-quartile journals and was recognized with the Third Best Paper Award under the PhD Scholar
category at the 2023 ORSI–ICBAI conference jointly organized by IISc Bangalore and IIM Bangalore.

Dr. B. S. Girish is working as an Associate Professor in the Department of Aerospace Engineering at the Indian
Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India. He holds a BTech degree in
Production Engineering from the University of Calicut (2001), ME in Manufacturing Technology from Regional
Engineering College Tiruchirapalli (2003), and PhD in Mechanical Engineering from Anna University Chennai
(2009). He has over 21 years of academic experience and has published papers in reputed journals and conferences.
His research mainly focuses on developing efficient exact and heuristic optimization approaches for various
manufacturing systems as well as aerospace systems. He has been a reviewer for several reputed international journals
and conferences and received a best reviewer award and a couple of best paper awards in international conferences.

	1. Introduction
	The subsequent sections of the paper are structured as follows. Section 2 discusses the mathematical formulation of the problem. Section 3 discusses the proposed exact method for the generation of the trade-off curve between makespan and TWET. Section...
	2. Mathematical formulation of the problem
	Constraint (3) ensures there is a dummy job at the start of every machine and exactly one job succeeding it. Constraint (4) ensures there is a dummy job at the end of every machine and exactly one job preceding it. The activities succeeding and preced...
	3. Proposed exact algorithm for the TWET-makespan trade-off curve generation
	4. Proposed hybrid metaheuristics
	5. Performance evaluation
	5.1 Test instance generation
	As the literature presents no known benchmark data for the bi-objective UPMSP considered in this work, problem instances of different sizes were developed using the methodology described by Lee and Pinedo (1997). The number of jobs and machines in eac...
	5.2 Optimal parameter settings
	5.3 Performance comparison
	6. Practical implications
	7. Conclusions and future scope

