Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

Proceedings of the International Conference on Industrial Engineering and Operations Management

Publisher: IEOM Society International, USA DOI: 10.46254/IN05.20250097
Published: November 6, 2025

Hybrid Metaheuristics for Pareto-based Bi-objective
Optimization in a JIT Unrelated Parallel Machine
Scheduling Problem

Sona Babu and B. S. Girish
Department of Aerospace Engineering
Indian Institute of Space Science and Technology
Valiamala, Thiruvananthapuram, Kerala, India
sonababu.sct@gmail.com, girish@iist.ac.in

Abstract

This paper considers the simultaneous optimization of makespan and total weighted earliness-tardiness in an unrelated
parallel machine scheduling problem in a just-in-time manufacturing environment, with distinct due windows,
machine eligibility constraints and sequence-dependent setup times, permitting idle times in the schedules. Two hybrid
metaheuristics are proposed to tackle the NP-hard problem. The paper presents an exact method for generating a
piecewise linear convex trade-off curve between the objectives for a particular job sequence. The Pareto front of the
trade-off curves obtained for multiple job sequences, generated by the hybrid metaheuristics, is constructed using a
method from the literature. The comparative performance evaluation reveals that the proposed hybrid multi-objective
particle swarm optimization — local search (MOPSO-LS) algorithm shows superior performance for smaller problem
instances, and the proposed hybrid Pareto archived multi-objective cuckoo search — local search (PAMOCS-LS)
algorithm shows superior performance for larger problem instances.

Keywords

Metaheuristics, Makespan, Total weighted earliness-tardiness, Pareto optimization, Parallel machine scheduling

1. Introduction

Parallel machine scheduling problem (PMSP) is one of the extensively researched machine scheduling problems in
the literature (Sterna, 2021; Ying et al., 2024). PMSPs are classified into three categories, namely identical PMSP,
non-identical or uniform PMSP and unrelated PMSP (Ying et al., 2024). The findings of a cluster analysis of the
literature on PMSP, performed by Ying et al. (2024), revealed that the majority of the research in PMSP focused on
unrelated parallel machines, emphasizing the significance of the problem in today’s industry. The unrelated parallel
machine scheduling problem (UPMSP) is also the closest to real-world manufacturing environments and is complex
to solve (Wang et al., 2023). In this paper, we have considered a UPMSP in a just-in-time (JIT) manufacturing
environment.

Machine scheduling problems in JIT manufacturing systems involve assigning optimal completion times to a set of
jobs that are to be delivered at their associated due dates or due windows, the deviations from which incur earliness
and tardiness penalties (Babu and Girish, 2025). The necessity for a trade-off between earliness and tardiness penalties
resulted in numerous works in the literature on the simultaneous optimization of earliness and tardiness in JIT-UPMSP
(Sterna, 2021), most of which are based on the weighted sum optimization method. Assigning weights to earliness
and tardiness objectives according to their respective priorities in the weighted sum optimization approach has resulted
in the total weighted earliness-tardiness (TWET) objective, the minimization of which is one of the objectives
considered in this paper. Optimizing TWET in scheduling problems results in scheduling the jobs closer to their
earliest due dates with idle times inserted in the schedule, resulting in the jobs forming clusters in the schedule (Girish

© IEOM Society International

https://doi.org/10.46254/IN05.20250097

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

et al., 2022). The time of completion of the last job in the schedule, across all the machines in a PMSP, termed
makespan, is another scheduling objective widely discussed in the UPMSP (Ying et al., 2024). Though the
minimization of TWET ensures JIT production in the system, makespan has to be minimized in conjunction with
TWET to ensure the efficient utilization of available resources and better throughput (Babu and Girish, 2025). Most
works in the literature on the simultaneous optimization of makespan and TWET in UPMSP, have used the weighted-
sum optimization approach, employing heuristics and metaheuristics to solve the problem (Purasevi¢ and Jakobovi¢,
2023). The weighted sum optimization approach provides a single optimal solution for each job sequence
corresponding to the priorities for the objectives, which are assigned as weights. Therefore, the weighted-sum
optimization approach requires the end users to specify their preferences for the objectives prior to scheduling
(Neufeld et al., 2023). In contrast, the Pareto-based optimization approach provides several optimal solutions on a
Pareto front. This allows the end users to choose a solution from the Pareto solution set, according to their priorities
for the objectives (Neufeld et al., 2023). However, there exists no work in the literature on the simultaneous
optimization of makespan and TWET in UPMSP using Pareto-based approaches, except Azevedo et al. (2023). In this
paper, we have addressed the simultaneous optimization of makespan and TWET using a Pareto-based optimization
approach.

The UPMSP has also been widely researched for the multi-objective optimization of several other objectives,
considering additional parameters and constraints, viz., machine eligibility constraints, sequence-dependent setup
times (SDST), etc. (Ying et al., 2024). It is evident from the literature that most works on the simultaneous
optimization of makespan and TWET in the UPMSP have employed heuristics and metaheuristics (Ying et al., 2024).
This is because the UPMSP is strongly NP-hard, even without considering the additional parameters and constraints
(Purasevi¢ and Jakobovi¢, 2023). This paper considers the simultaneous optimization of makespan and TWET in a
UPMSP with distinct due windows, machine eligibility constraints and sequence-dependent setup times, permitting
idle times in the schedules, which is clearly NP-hard. We have adapted two population-based metaheuristic algorithms,
namely the Pareto archived multi-objective cuckoo search (PAMOCS) algorithm and the multi-objective particle
swarm optimization (MOPSO) algorithm, and hybridized each of them with a local search (LS) procedure that
generates multiple job sequences. A job sequence may result in a piecewise linear convex trade-off curve between
makespan and TWET since the problem permits inserting idle times into the schedules, similar to the works in the
literature (Babu and Girish, 2024, 2025; Jacquin et al., 2018). No existing studies on the Pareto-based optimization of
makespan and TWET in UPMSP have considered the insertion of idle times into the schedules. We have therefore
adapted an exact method from the literature (Babu and Girish, 2025) to generate piecewise linear convex trade-off
curves between makespan and TWET for the sequences of jobs generated by the hybrid metaheuristics. The Pareto
front of the trade-off curves obtained for multiple sequences of jobs, generated using an exact Pareto front generation
method adopted from the literature (Babu and Girish, 2024), which is also composed of line segments and points,
provides the end users with a Pareto solution set from which they can choose the solutions that best satisfy their
preferences and priorities. This is the first study to present an exact timing algorithm for the generation of all possible
trade-offs between makespan and TWET for a given sequence of jobs in a UPMSP, allowing the insertion of idle
times in the schedule. This is also the first study to present hybrid population-based metaheuristics for a bi-objective
UPMSP in a JIT production environment, generating a Pareto front composed of line segments and points.

The subsequent sections of the paper are structured as follows. Section 2 discusses the mathematical formulation of
the problem. Section 3 discusses the proposed exact method for the generation of the trade-off curve between
makespan and TWET. Section 4 discusses the proposed hybrid metaheuristics. Section 5 discusses the performance
evaluation of the proposed hybrid metaheuristics. Section 6 discusses the practical implications, and Section 7
concludes with the possible avenues for future research.

2. Mathematical formulation of the problem

The UPMSP addressed in this paper assumes n jobs released simultaneously to be processed non-preemptively on m
parallel machines. Let i, j(i,j = 1,2, ...,n) denote the job index, and k(k = 1,2, ..., m) denote the machine index.
Each job i requires processing exactly one operation on a machine, and the set of all the machines eligible for
processing job i is denoted by M;. Let Py; denote the processing time of job i on machine k: k € M;. Let Sj;; denote
the setup time to switch to job j from job i on machine k. Let [de;, dt;] denote the due window of job i, where de;
and dt; respectively represent the earliest and latest due dates. All job descriptors are predefined and deterministic,
and all the machines are continuously available. Let C; denote the completion time of job i. Then, the earliness is
expressed as E; = max(0,de; — C;), and the tardiness is expressed as T; = max(0,C; — dt;). Let a; and f5;,

© IEOM Society International

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

respectively, denote the penalties imposed for early and tardy completion of job i. The mathematical representation of
the problem is as follows (Nogueira et al., 2014).

Input Parameters:
M;: Set of all the machines eligible for processing job i
Jx: Set of all the jobs eligible for allocation on machine %, including the dummy job 0

Decision Variables:

X = { 1:if job j succeeds job i on machine k
kij 0: otherwise

C; = completion time of job i

E; = earliness of job i

T; = tardiness of job i

Objective:

Minimize Y;[-,(a;E; + B;T;) €))
Minimize max; (C;))
Subject to:

Yjej Xroj = 1 Vk ?3)
Yiej Xkio = 1 Vk 4)
Ykem Ljegjei Xeij = 1 Viti=12,..,n (5)
Liem; Diejeizj Xpij =1 Vj:j =12,..,mn (6)
Diejeinj Xkij = Diejiej Xiji VK Jj1j € [& #0 (7N
G = Tem,(Pej-Xiof)s VjiJ = 1,2, .,m 8)
C;=Ci— M+ (Pj + Siij + M) Xpij Vh,i,jii €], & € Jiyi £ 0,j # 0 9)
T, = C;—dt; Vi, k (10)
E; >de; — C; Vi,k (11)
Crax =Ci Vi:i=12,..,n (12)
Xij €{0,1} Vk,i,j: i € Ji,j € Jo L # j (13)
E;>0,T; >0 Vi:i=12,..,n (14)

Constraint (3) ensures there is a dummy job at the start of every machine and exactly one job succeeding it. Constraint
(4) ensures there is a dummy job at the end of every machine and exactly one job preceding it. The activities succeeding
and preceding the dummy activities in constraints (3) and (4), respectively, can be a dummy job, implying that no job
is allocated to the machine. Constraint (5) guarantees that each job i is allocated to a unique machine and is succeeded
by exactly one job j, which can be a dummy job. Constraint (6) guarantees that each job j is allocated to a unique
machine and is preceded by exactly one job i, which can be a dummy job. Constraint (7) guarantees that a job is
allocated to a unique machine, and that if a job j has a preceding job i, then j also has a succeeding job I, where i and
l can be dummy activities. Constraint (8) guarantees that the completion time of the first job on each machine is at
least equal to its processing time. Constraint (9) associates the completion times of a job j and its preceding job i on
a machine k. M denotes a large positive integer. Constraints (10) and (11) respectively relate the tardiness and
earliness of each job with its completion time and due windows. Constraint (12) establishes the maximum completion
time. Constraints (13) and (14) establish the variable bounds.

3. Proposed exact algorithm for the TWET-makespan trade-off curve generation

The proposed metaheuristics represent a solution as a permutation of job indices, indicating the sequences of jobs
allocated for processing on each of the unrelated parallel machines in the scheduling environment. Let u (14 =
{1,2, ..., m}) represent the set of m parallel machines and o (¢ = {0y, 05, ..., 0., }) represent a set of job sequences
allocated to each of the machines, where each job sequence g,, represents an ordered set of n,, jobs allocated to the
machine p Vp € u. Let g, [k] denote the job identifier at the k" position index of ,. The generation of the trade-off
curve between makespan and TWET, for a given o, begins by generating the TWET-optimal schedule, and
subsequently optimizing its makespan iteratively. The generation of the TWET-optimal schedule for a given o in
PMSP is equivalent to separately generating the TWET-optimal schedules Va,, € o on the corresponding p based on

© IEOM Society International

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

exact algorithms discussed in the literature for a single machine scheduling problem (SMSP) (Babu and Girish, 2025).
The TWET-optimal schedule, hence generated for the UPMSP, denoted by C (C = {C;, C;, ..., C,,}), is input to
Algorithm 1, and the corresponding values of TWET and makespan are saved as the first trade-off point, as shown in
steps 1-2. The time of completion of the last job on the machines with the maximum makespan in schedule C are then
iteratively left shifted, generating the remaining trade-off points. This is implemented by suitably adapting an exact
method of trade-off curve generation presented by Babu and Girish (2025) for an SMSP to the UPMSP, as shown in
Algorithms 1 and 2.

Algorithm 1: TWET-makespan trade-off curve generation procedure
Data: o, u, de;, dt;, a;, B;, Vi € 0, Vk, P Vk, i, S VK, i,i'":k €, i,i" € op,i #1'

1 C « Optimal TWET schedule,t « 1,PSL «< 0
2 SAVE_BREAK_POINT(t)

3 while (¢;4;.! = 0) do

4 for (Vp € ppay) do © Pmax IS the set of machines with makespan equal to the maximum makespan
5 B, <0

6 if(n, = 1)

7 | B, < {,[n,1}

8 else

9 for (i = n,to2)do

10 if (Cap[iﬂ] + Ppoyli] T Spoyli-1lopli] = Cap[i]) then
1 | B, < B, U (g,[i]}

12 else

13 | break

14 end

15 end

16 end

17 SL, < 0

18 for (Vj € B,) do

19 if (Co,1 < deg,) then

20 | SLy < SLy - ag,

21 else if (Cap[j] > dtapm) then

2 | SLy «SLy +Bopj)

23 end

24 end

25 end

26 OSL < Ypepnae Sk

27 if (OSL # PSL) then

28 | tet+1, PSL < 0sL

29 end

30 C « LEFT_SHIFT (Pmax)

31 end

32 Function SAVE_BREAK_POINT(t)

33 Gy « Y (a; max {0,de; — C;} + B;max{0,C; — dt;})
34 M, <58 {i<izm, (Co}}

35 end

In Algorithm 1, p,,4, € u represents the set of machines with the maximum makespan in schedule C at a given time,
and the time of completion of the last job on every p € pp,q, are simultaneously left shifted. Let o, [k — 1] and g, [k]
represent two successive jobs on a machine p. If the last job 0,,[n,] on any p € pp,4, has contiguously scheduled jobs
preceding it, as implied by the equality condition in step 10, the contiguous jobs are left shifted together as a block,
denoted by B,,. Steps 5-16 identify the block of jobs B, to be left-shifted on p Vp € prmqy. Steps 17-24 calculate the

© IEOM Society International

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

TWET cost function slope of block B, denoted by SL,, Vp € ppq, (Girish et al., 2022). The cost function slope

contributed by the blocks on all the machines belonging to p;,,4,, denoted by OSL, is then calculated, and the identified
BLVD € Pmay is passed to the function LEFT_SHIFT, described in Algorithm 2.

Algorithm 2: Left shifting procedure
Function LEFT_SHIFT (Pmax)

1

2 §<M, 8, «M,l, < |By| VD € Prnax o> M is a large positive integer
3 for (Vp € pmax) do

4 t; < 0Vvie(l,23,4}

5 if (0,[1] € B,) then

6 | 8p < Copa) = Poy)

7 end

8 if (6, > 0) then

9 if (I, < np) then

10 a < op[n, — 1,1, b < op[n, — 1, +1]
11 ty < Cp = Pyp = Spap — Ca

12 end

13 t ffelllgzl {Cap[i] — dtg,n ¢ Copy > dtap[i]}r t3 « Tlfelll?zl {Cap[i] — deg, ¢ deg,y < Corp < dtap[i]}
14 e min {C oplnp] ~ Ca,[n,]}

15 8, < min {§, min {t; : i € {1,2,3,4},t; > 0}}
16 else

17 6«0

18 break

19 end

20 end

21 if (8! = 0) then

22 6 min (5,)

23 for (Vp € ppay) do

24 | Copli) < Coply =6 VI EB,y

25 end

26 SAVE_BREAK _POINT(t)

27 else

28 | tiae < 0

29 end

31 end

Let & represent the maximum units of time by which the jobs in B, Vp € p;;4, can be simultaneously left shifted and
&, represent the maximum units of time by which the jobs in each B,, can be left shifted on the corresponding p €
Pmax Subject to non-overlapping constraints on job completion times for the jobs in a,,. For each p € ppay, 6, is the
maximum time units of left shifting possible until either no idle time is available before the last job in B, in the
corresponding a;,, or the completion time of a job in By, either becomes equal to its latest due date or earlier than its
earliest due date or equal to the completion time of the last job on any machine p’ € : p’ & Py, On left shifting.
This is as shown in steps 3-20. In scenarios where pp,q, comprises multiple machines, § is assigned the smallest &,
among p Vp € Ppqayx, as shown in step 22. The completion times of jobs in B,Vp € pq, are simultaneously left
shifted by & time units, and the TWET and makespan values of the left shifted schedule, denoted by G; and M,, are
saved as the subsequent breakpoint using the function SAVE_BREAK_POINT shown in steps 32-35 of Algorithm 1.
If the cost function slope, OSL, varies with left shifting (i.e., OSL # PSL), a new breakpoint is generated on the
trade-off curve, and the breakpoint identifier t is incremented by one, as shown in steps 26-29 of Algorithm 1.
However, if OSL = PSL, the break point that is stored at index ¢, in step 26 of Algorithm 2, is overwritten at the end

© IEOM Society International

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

of the subsequent iteration of left shift. Steps 4-30 of Algorithm 1 are repeated until the idle time preceding the first
job ;,[1] on one of the machines in pp,qy is eliminated, i.e., §, = 0 for any p € pyq,. The breakpoints obtained are
subsequently joined with line segments, resulting in the optimal piecewise linear convex trade-off curve between
makespan and TWET, which is effectively the Pareto-optimal front for the sequence o (Babu and Girish, 2025).

4. Proposed hybrid metaheuristics

This section presents the proposed hybrid metaheuristics, namely the hybrid Pareto archived multi-objective cuckoo
search — local search (PAMOCS-LS) algorithm and the hybrid multi-objective particle swarm optimization local
search (MOPSO-LS) algorithm. The local search employs pairwise swap and insertion neighbourhoods, denoted by
N, and N,, respectively, applied both within and across different machines.

4.1 Initial solution construction

The initial solution set for the proposed hybrid metaheuristics was generated by suitably adapting the initial solution
generation procedure described by Babu and Girish (2025) for an SMSP. The construction of initial solutions for the
UPMSP begins with an empty set o with m subsets, to which n unscheduled jobs are sequentially added according to
a probabilistic rule guided by heuristic desirability. Each subset o), € 0:y € {1,2, ..., m} denotes the partial sequence
on one of the machines in the UPMSP. The heuristic desirability 7, of assigning a job b to position k in the y
subset of o is defined as

_ dep*kq (Zjeaypyj+Pyb+syab)*k2
Nykp = €XP | —— *exp |—

15
avg p SJ’avg ()
where de;, denotes the earliest due date of the job b, d ;4 denotes the average of the earliest due dates of the jobs
unassigned to o, k; and k, denote the scaling parameters associated with the due dates and the sum of processing
times and setup times (P, + S, ,), respectively. P, denotes the processing time of the job b on machine y, and
> jeay Py ; denotes the sum of the processing times of all the jobs in the partial sequence g,,. S, , denotes the setup
time between jobs b and its preceding job in g,, denoted by a, and PS,, denotes the average of the processing times

g

and setup times between the jobs unassigned to g,,. The job j to be assigned at each positionin o, € g:y € {1,2, ..., m}
is selected probabilistically based on the value of the random variable S drawn according to a probability i, defined
for each unassigned job b € U, as shown in Eq. (16).

Nykb
Yuev(Myku)

(16)

Hykp =

where U denotes the set of jobs not assigned to g. For each position k in o, the cumulative value of u,,,Vb € U is
evaluated, and the job b corresponding to the interval of the random variable S is assigned to k. This process iterates
until all the n jobs are appended to some g, € 0. The sequences hence constructed comprise the initial solution set,
denoted by P, in the population-based metaheuristic algorithms presented in the following sections.

4.2 The hybrid PAMOCS-LS algorithm

Cuckoo search is a population-based metaheuristic algorithm inspired by the brood parasitism behaviour of cuckoo
birds. A cuckoo represents a candidate solution on which one or more search strategies are applied to generate new
candidate solutions, termed eggs. The eggs laid by each cuckoo are placed in a habitat that the cuckoo randomly picks
from the solution space, termed a nest. The eggs in the selected nest, along with the newly laid ones, are evaluated for
objective values to preserve the good ones in Pareto archives and discard the bad ones, analogous to host birds rejecting
foreign eggs. The proposed hybrid PAMOCS-LS is inspired by the PAMOCS algorithm presented by Nartu et al.
(2019) for a multi-objective minimization problem, where each candidate solution results in a single trade-off point
on the Pareto front. In this paper, we have suitably extended their methodology for a multi-objective UPMSP where
each job sequence results in multiple line segments on the Pareto front. The proposed hybrid PAMOCS-LS, shown in
Algorithm 3, begins by generating the trade-off curves between makespan and TWET Vo € P, using the exact
algorithm presented in Section 3, and subsequently constructing the global Pareto front of the trade-off curves using
a method adopted from the literature (Babu and Girish, 2024), denoted by A, as shown in steps 1-2. Nests denoted by
Nest,, corresponding to each o € P are initialized with the respective o as the first egg, the set of which is denoted

by N, where p is the nest identifier. Local Pareto fronts of the solutions belonging to each nest p are also generated,

© IEOM Society International

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

denoted by A Nest, VO € P, as shown in steps 4-8. The search for optimal solutions begins with randomly selecting a

candidate solution, denoted as Cuckoo, from a randomly selected nest p’ € N, and subjecting it to N, randomly to
generate k new candidate solutions, the set of which is denoted as Eggs. The non-dominated candidate solutions in
set Eggs, belonging to the Pareto front Agy g4, update the local Pareto front A Nest, corresponding to the randomly

selected nest p € N. This is as shown in steps 10-16. The solutions belonging to A Nest,, are further subjected to local
search using N; and N,, as shown in steps 17-25. For every ¢ € Anest,, visited_flag(o, Ny) VN, € {N;,N,}is a

binary variable that ensures that o is subjected to local search using a particular Ny, only once. The solutions in the
Pareto front A’ of the set of neighbourhoods belonging to set M iteratively updates the local Pareto front ANestp

corresponding to nest p, following which A Nest, updates the global Pareto front A. The search procedure in steps 10-

26 repeats until a predefined maximum computation time, denoted by CPU_TimeLimit, after which the global Pareto
front A comprises the optimal solutions to the problem.

Algorithm 3: The hybrid PAMOCS-LS algorithm

1 P « InitialPopulationGeneration()

2 A « ParetoOptimalFrontGeneration(P)

3 p « 0, N « 0,visited_flag(o,{N;,N,}) < false Vo € A

4 for (Vo € P)do

5 pep+1

6 Nest, < o,N « N U {Nest,}

7 ANesr,, « ParetoOptimalFrontGeneration(Nestp)

8 end

9 while (CPU_Time < CPU_TimeLimit) do

10 p' « SelectNest(N)

11 Cuckoo « Select]obSequence(ANesEp,)

12 Eggs < GenerateRandomNeighbourhoods(Cuckoo, N,)
13 Agggs < ParetoOptimalFrontGeneration(Eggs)

14 visited_flag(a,{Ny, N;}) < false Vo € Agggs

15 p « SelectNest(N)

16 ANestp « ParetoOptimalFrontUpdate(ANestp U Agggs)
17 for (VN € {Ny,N,}) do

18 while (visited_flag(a,Ny) # true Vo € Ayeg,) do
19 M « GenerateNeighbourhoods(c,Ny) Yo € Ayeg,,: visited_flag(o, Ny)=false
20 visited flag(o, Ny) < true Vo € Apest,

21 A' « ParetoOptimal FrontGeneration(M)

22 visited flag(a, Ny « false Vo € A’

23 Apest, < ParetoOptimalFrontUpdate(Ayest, U A”)
24 end

25 end

26 A « ParetoOptimalFrontUpdate(A U Ayest,,)

27 end

4.3 The hybrid MOPSO-LS algorithm

Particle swarm optimization is a population-based metaheuristic algorithm inspired by the collective movement of
birds towards a food source. Each candidate solution, termed a particle, has an associated position and velocity, which
it updates while moving through the solution space, interacting with other particles, the group of which is termed
swarm. The velocity and position of each particle are updated based on the personal best position in their own memory
and the best position discovered by the swarm, thus gradually converging towards the optimal solutions. The proposed
hybrid MOPSO-LS is inspired by the PSO algorithm presented by Girish and Jawahar (2009) for a single objective
job shop scheduling problem, which we have suitably adapted for the bi-objective UPMSP. The proposed hybrid
MOPSO-LS, is as shown in Algorithm 4.

© IEOM Society International

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

Algorithm 4: The hybrid MOPSO-LS algorithm

1 P « InitialPopulationGeneration()

2 A « ParetoOptimalFrontGeneration(P)

3 A, < ParetoOptimalFrontGeneration(o) Vo € P

4 visited_flag(o,{N;, N,}) « false Yo € A

5 while (CPU_Time < CPU_TimeLimit) do

6 for (Vo € P)do

7 k « NearestLineSegment(ag, A)

8 Ogpest < JobSequence(k, A)

9 k' « NearestLineSegment (o, A,)

10 Oppest < JobSequence(k', A,)

11 d, « {Insertion Moves on o to reach oy, .}

12 d, « {Insertion Moves on o toreachay,, .}

13 for (Vvd € d,) do

14 if (randNum < gprob) then o randNum € [0,1]
15 | 0 « InsertionMove(a,d,)

16 end

17 end

18 for (vd € d,)do

19 if (randNum < pprob) then

20 o « InsertionMove(o, d,)

21 end

22 end

23 end

24 for (Vo € P)do

25 A;' < ParetoOptimalFrontGeneration(o)

26 A, < ParetoOptimalFrontUpdate(A, U A,")

27 for (YN, € {N;,N,}) do

28 while (visited_flag(o,N,) # true Vo € A,) do
29 M « GenerateNeighbourhoods(o,Ny) Vo € A,: visited flag(a, Ny)=false
30 visited flag(o, Ny) < true Vo € A,

31 Ag" < ParetoOptimalFrontGeneration(M)
32 visited_flag(c, Ny) « false Vo € A,"

33 A, < ParetoOptimalFrontUpdate(A, U A,"")
34 end

35 end

36 A « ParetoOptimalFrontUpdate(A U A,)

37 end

38 end

The proposed hybrid MOPSO-LS algorithm begins by constructing a global Pareto front of the solutions belonging to
P, denoted by A, and local Pareto fronts corresponding to each o € P, denoted by A4,, as shown in steps 1-3. The
search for optimal solutions begins by identifying the global and personal best solutions corresponding to each ¢ € P,
denoted by 0gpest and Tppesr, respectively, as shown in steps 7-10. 0gpese and gppes: for each o € P refer to the
sequences associated with the nearest line segments, indexed k and k', on the respective Pareto fronts A and A, from
the trade-off curve associated with o. The nearest line segment on a Pareto front to the trade-off curve associated with
a given o, is obtained using the point of closest approach algorithm presented by Sunday (2006). Further, the insertion
moves to transition o to o, . and g, are identified and stored in sets d; and d,, respectively. Sets d; and d,
are ordered in descending order of the positional differences between the jobs in ¢ and the jobs in o, . and gy, .,
respectively, such that the insertion moves between machines are prioritized over the insertion moves within a
machine. The insertion moves in sets d; and d, are then applied successively on o with the respective probabilities

© IEOM Society International

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

gprob and pprob, as shown in steps 13-22. The improved sequence o is then subjected to local search using N; and
N,, as shown in steps 27-35. The Pareto front A,"’, of the neighbourhoods belonging to set M iteratively updates the
local Pareto front 4,, following which A, updates the global Pareto front A. The search procedure in steps 6-37 is
performed until the CPU_TimeLimit, after which the global Pareto front A comprises the optimal solutions to the
problem.

5. Performance evaluation

This section discusses the comparative performance evaluation of the proposed hybrid metaheuristics, implemented
in C and executed using the Intel C++ Compiler v2022.2.1 on a Linux workstation featuring dual 2.6 GHz Intel Xeon
Gold 6132 processors with 32 cores and 128 GB RAM. The neighbourhood generation procedure in the proposed
metaheuristics was parallelized using OpenMP for efficient multi-core execution (Babu and Girish, 2025). The -fp-
model flag was configured to strict during compilation to ensure floating point precision. The compiler optimization
level was fixed at —00, to disable possible optimization at runtime.

5.1 Test instance generation

As the literature presents no known benchmark data for the bi-objective UPMSP considered in this work, problem
instances of different sizes were developed using the methodology described by Lee and Pinedo (1997). The number
of jobs and machines in each problem instance, denoted by n and m respectively, are selected from the corresponding
sets {20,30,40} and {3, 5} for small-sized instances, {50, 75,100} and {4, 6, 8} for medium-sized instances, and
{200,300,400} and {10, 20, 30} for large-sized instances. The processing time Py, for a job i on a machine k, was
generated uniformly in [50,150]. The setup time Sy;;7 between two jobs (i,i"):i # i’ on each machine k, was
generated uniformly in [1, 25jp] where 7 is the setup time severity factor and P is the average processing time per job
per machine, defined as P = (X Y; Px;) /mn. The earliness and tardiness penalties, e; and 8;, of each job i were
generated uniformly in [1, 100]. The due windows were generated uniformly in [(1 — R)d, d] with a probability T
and, in [d, d + (Cpqy — d)R] with a probability 1 — T, where 7 is the due date tightness factor, R is the due date
range factor, d is the average due date, and C,,,,, is the makespan. d and Cnax are defined as d= Chax(1—1) and
Cax = (B§ + P)pu, respectively, where Sisthe average setup time. The coefficient 8 accounts for the effect of setup
time on makespan and is defined as f# = [0. 4+ % - g], where p is the job-machine factor defined as p = n/m. The

values of {n, T, R} were fixed at {0.2,0.3,0.25}, respectively, based on trial-and-error. For each problem size
category, n * m test instances were generated, which resulted in 3x2 + 3x3 + 3x3 = 24 problem instances that
follow the naming convention Psize_Jn_Mm: Psize € (S, M, L}, where, S, M and L, respectively, denote the small,
medium and large size problem categories.

5.2 Optimal parameter settings
The parameters in the proposed hybrid metaheuristics were optimized by solving selected problem instances using the
hybrid metaheuristics for ten runs. The optimal settings are listed below.

Parameter Optimal setting
In PAMOCS-LS: kg =2;k; =2k, =1
In MOPSO-LS: ko =2;ky =3;k, =2
4,n <100
|

Scaling parameters in initial solution generation

Number of eggs in PAMOCS-LS 6,100 < n <400

8,n =400
Probabilities in MOPSO-LS gprob = 0.4;pprob = 0.8
L L. . , . . (50xnseconds,n < 40
Termination criterion for all algorithms CPU_TimeLimit = {8 5 xn seconds. n > 40

5.3 Performance comparison

This section compares the performance efficiency of the two hybrid metaheuristics using the hypervolume metric
adopted from the literature (Babu and Girish, 2025). Table 1 shows the percentage deviations of the average
hypervolume from the best average hypervolume computed for the Pareto fronts obtained by the proposed hybrid
metaheuristics for 24 problem instances in ten runs. The percentage deviations in hypervolume close to 0 for an
algorithm indicate its superior convergence over the other. Table 1 shows that the hybrid MOPSO-LS algorithm has
superior convergence for most problem instances with up to 75 jobs, the two hybrid metaheuristic algorithms converge

© IEOM Society International

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

competitively for problem instances with 100 to 200 jobs, and the hybrid PAMOCS-LS algorithm has superior
convergence for all problem instances with 300 to 400 jobs. This is also evident from Figure 1 that shows the Pareto
fronts obtained by the two hybrid metaheuristics for small and large-sized problem instances. The superior
performance of the hybrid MOPSO-LS for smaller problem instances can be attributed to its large extent of
exploitation of the solution space, resulting in faster convergence. The MOPSO algorithm performs a guided
exploration of the solution space, and hybridizing the MOPSO algorithm with local search further enhances its
exploitation. However, the hybrid MOPSO-LS algorithm tends to converge prematurely or get trapped in local optima
for large-sized problems with large solution spaces due to insufficient exploration. The superior performance of the
hybrid PAMOCS-LS for large problem instances can be attributed to its balanced exploitation and exploration of the
solution space. The PAMOCS algorithm performs a random exploration of the solution space by Levy flights.
Hybridizing it with local search balances its exploration with exploitation, leading to faster convergence for larger
problem instances. However, for smaller problem instances, the increased exploration spreads the computational
efforts over many new solutions, rather than exploiting the solution space, thereby performing inferior.

Table 1. Comparison of the hypervolume obtained by the proposed metaheuristics

. .) % Deviation in hypervolume
S1. No. No. of jobs No. of machines Problem instance
PAMOCS-LS MOPSO-LS

1 20 3 S J20 M3 19.14 0
2 20 5 S J20 M5 8.10 0
3 30 3 S J30 M3 32.95 0
4 30 5 S J30 M5 15.41 0
5 40 3 S J40 M3 22.08 0
6 40 5 S J40 M5 2.07 0
7 50 4 M J50 M4 17.70 0
8 50 6 M J50 M6 5.46 0
9 50 8 M J50 M8 3.27 0
10 75 4 M J75 M4 0 3.90
11 75 6 M J75 M6 2.70 0
12 75 8 M J75 M8 12.67 0
13 100 4 M J100 M4 20.56 0
14 100 6 M J100 M6 0 9.72
15 100 8 M J100 M8 0 3.00
16 200 10 L J200 M10 1.79 0
17 200 20 L J200 M20 2.88 0
18 200 30 L J200 M30 0 8.37
19 300 10 L J300 M10 0 50.94
20 300 20 L J300 M20 0 3.49
21 300 30 L J300 M30 0 4.27
22 400 10 L J400 M10 0 8.18
23 400 20 L J400 M20 0 7.28
24 400 30 L J400 M30 0 9.14

Average 6.95 4.51

Pareto-Chart for TWET vs Makespan for L_J300_M30

Pareto-Chart for TWET vs Makespan for S_J40_M5 «— PSO —— Cuckao
- PSO == Cuckoo 1600000
220000 15000001 %

200000 1400000

180000 1300000
* 1200000
160000

T 1100000

140000 % 1000000

TWET

120000 900000

800000
100000
700000

80000 500000

60000 500000

40000
400005 - pam

540 560 580 600 620 640 650 650 700 720 700 750 600 850 200 950

Makespan Makespan

Figure 1. Pareto fronts obtained by the proposed metaheuristics for two problem instances

© IEOM Society International

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

6. Practical implications

The scheduling algorithms presented in this paper find their significance in identifying the processing sequences and
schedules that are simultaneously optimal in makespan and TWET objectives for a given set of jobs in unrelated
parallel machine scheduling environments operating in a just-in-time setting. The simultaneous optimization of the
two objectives is particularly crucial in JIT manufacturing systems striving to minimize the penalty costs due to the
early or late completion of jobs, while maintaining efficient utilization of resources and better throughput through
continuous production. The scheduling environment characteristics, optimization objectives and problem constraints
considered in this paper closely reflect real-world manufacturing setups. However, no work in the literature has
presented computationally efficient solution methodologies to solve the problem, which is of NP-hard complexity, for
large-sized problem instances that may be encountered in real-world applications. The Pareto-optimal solutions
identified using the timing algorithm and the population-based hybrid metaheuristics presented in this paper provide
the decision-makers with the necessary insights to choose a solution from the Pareto-optimal solution set, in
accordance with their relative priorities for the objectives. Providing the decision makers with such flexibility in
choosing from the set of optimal solutions, each corresponding to different trade-offs between the objectives, is crucial
in determining the process efficiency and resource utilization of manufacturing industries under fluctuating market
demands. Furthermore, the hybrid metaheuristic algorithms presented for the UPMSP in this paper can be easily
extended to several real-world manufacturing settings, with diverse scheduling environments such as job shops, flow
shops, etc., thereby broadening their practical applicability in the real-world manufacturing contexts.

7. Conclusions and future scope

The paper proposes two hybrid metaheuristics, namely the hybrid PAMOCS-LS algorithm and the hybrid MOPSO-
LS algorithm, for the simultaneous optimization of makespan and TWET in a JIT-UPMSP. The hybrid metaheuristics
generate several job sequences, corresponding to each of which, the proposed exact procedure for trade-off curve
generation generates either a piecewise linear convex trade-off curve composed of line segments or a single trade-off
point. The Pareto front of multiple trade-off curves, hence obtained, constructed using a method from the literature, is
also composed of line segments and points. The comparative performance evaluation of the hybrid metaheuristics
shows that the proposed hybrid MOPSO-LS shows superior performance for smaller problem instances, and the
proposed hybrid PAMOCS-LS shows superior performance for larger problem instances. This is the first study to
present an optimal timing algorithm for the bi-objective optimization of makespan and TWET in a UPMSP, allowing
the insertion of idle times in the schedule. This is also the first study to present hybrid population-based metaheuristics
for a multi-objective UPMSP in a JIT manufacturing environment, generating a Pareto front composed of line
segments and points.

The scheduling complexities that the proposed multi-objective machine scheduling algorithms have addressed not
only advance the state of research in scheduling but also open new opportunities for research in diverse scheduling
environments across multiple combinations of objectives, thereby contributing towards the operational efficiency of
manufacturing systems in JIT environments. The future possibilities of research include suitably adapting other
metaheuristic algorithms and comparing their performance with the proposed hybrid population-based metaheuristics,
and further studying their performance for different combinations of objectives in the JIT-UPMSP. Another promising
research direction is to extend the hybrid population-based metaheuristic algorithms proposed for the UPMSP to
diverse scheduling environments such as job shop scheduling, open shop scheduling, flow shop scheduling, etc.
Though the proposed hybrid population-based metaheuristics can be easily adapted to diverse machine scheduling
environments, every scheduling environment demands developing a unique optimal timing algorithm to generate
optimal schedules for a given sequence of jobs between a given set of objectives. This also involves tailoring the
operators and techniques within the hybrid population-based meta-heuristics to the specific problem. Additionally, the
proposed hybrid population-based metaheuristic algorithms have computational limitations when applied to extremely
large-scale problem instances or adaptability limitations when required to dynamically respond to changing problem
characteristics, as this research has been restricted to static scheduling environments.

References

Azevedo, B. F., Montanfio-Vega, R., Varela, M. L. R., and Pereira, A., Bio-inspired multi-objective algorithms applied
on production scheduling problems, International Journal of Industrial Engineering Computations, vol. 14, no.
2, pp. 415-436, 2023.

Babu, S., and Girish, B. S., Parcto-optimal front generation for the bi-objective JIT scheduling problems with a
piecewise linear trade-off between objectives, Operations Research Perspectives, vol. 12, Article 100299, 2024.

© IEOM Society International

Proceedings of the 5" Indian International Conference on Industrial Engineering and Operations Management,
Vellore, Tamil Nadu, India, November 6-8, 2025

Babu, S., and Girish, B. S., Neighbourhood search-based metaheuristics for the bi-objective Pareto optimization of
total weighted earliness-tardiness and makespan in a JIT single machine scheduling problem, Operations
Research Perspectives, vol. 14, Article 100335, 2025.

De CM Nogueira, J.P., Arroyo, J.E.C., Villadiego, H.M.M. and Gongalves, L.B., Hybrid GRASP heuristics to solve
an unrelated parallel machine scheduling problem with earliness and tardiness penalties, Electronic Notes in
Theoretical Computer Science, vol. 302, pp. 53-72, 2014.

Purasevi¢, M., and Jakobovi¢, D., Heuristic and Metaheuristic Methods for the Parallel Unrelated Machines
Scheduling Problem: A Survey, Artificial Intelligence Review, vol. 56, pp. 3181-3289, 2023.

Girish, B. S., Habibullah, H., and Dileeplal, J., Minimizing the total makes for a sequence of operations in job shops,
RAIRO-Oper. Res., vol. 56, no. 4. pp. 2621-2649, 2022.

Girish, B. S., and Jawahar, N., A particle swarm optimization algorithm for flexible job shop scheduling problem,
Proceedings of the 2009 IEEFE International Conference on Automation Science and Engineering, pp. 298-303,
Bangalore, India, September 9, 2009.

Jacquin, S., Dufossé, F., and Jourdan, L., An exact algorithm for the bi-objective timing problem, Optimization Letters,
vol. 12, no. 4, pp. 903-914, 2018.

Lee, Y. H., and Pinedo, M., Scheduling jobs on parallel machines with sequence-dependent setup times. European
Journal of Operational Research, vol. 100, no. 3, pp. 464—474, 1997.

Nartu, T. R., Matta, M. S., Koratana, S., and Bodda, R. K., A fuzzified Pareto multiobjective cuckoo search algorithm
for power losses minimization incorporating SVC, Soft Computing, vol. 23, no. 21, pp. 10811-10820, 2019.
Neufeld, J. S., Schulz, S., and Buscher, U., A systematic review of multi-objective hybrid flow shop scheduling.

European Journal of Operational Research, vol. 309, no. 1, pp. 1-23, 2023.

Sterna, M., Late and early work scheduling: A survey. Omega, vol. 104, Article 102453, 2021.

Sunday, D., Distance between Lines and Segments with their Closest Point Approach, Available:
http://geometryalgorithms.com/Archive/algorithm0106/algorithm0106.htm, 2006.

Wang, H., Li, R., and Gong, W., Minimizing tardiness and makespan for distributed heterogencous unrelated parallel
machine scheduling by knowledge and Pareto-based memetic algorithm, Egyptian Informatics Journal, vol. 24,
no. 3, Article 100383, 2023.

Ying, K.-C., Pourhejazy, P., and Huang, X.-Y., Revisiting the development trajectory of parallel machine scheduling,

Computers & Operations Research, vol. 168, Article 106709, 2024.

Biographies

Sona Babu is a PhD Scholar in the Department of Aerospace Engineering at the Indian Institute of Space Science and
Technology, Thiruvananthapuram, Kerala, India. She has over three years of academic research experience in
Industrial Engineering and Operations Research, and more than four years of professional experience as a Software
Engineer in the IT industry. She holds a BTech in Electronics and Communication Engineering from the University
of Kerala (2018) and an MBA in Operations from The ICFAI University, Tripura (2021). Her research focuses on
developing computationally efficient scheduling algorithms for just-in-time manufacturing systems. Her work has
been published in top-quartile journals and was recognized with the Third Best Paper Award under the PhD Scholar
category at the 2023 ORSI-ICBAI conference jointly organized by IISc Bangalore and IIM Bangalore.

Dr. B. S. Girish is working as an Associate Professor in the Department of Aerospace Engineering at the Indian
Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India. He holds a BTech degree in
Production Engineering from the University of Calicut (2001), ME in Manufacturing Technology from Regional
Engineering College Tiruchirapalli (2003), and PhD in Mechanical Engineering from Anna University Chennai
(2009). He has over 21 years of academic experience and has published papers in reputed journals and conferences.
His research mainly focuses on developing efficient exact and heuristic optimization approaches for various
manufacturing systems as well as aerospace systems. He has been a reviewer for several reputed international journals
and conferences and received a best reviewer award and a couple of best paper awards in international conferences.

© IEOM Society International

	1. Introduction
	The subsequent sections of the paper are structured as follows. Section 2 discusses the mathematical formulation of the problem. Section 3 discusses the proposed exact method for the generation of the trade-off curve between makespan and TWET. Section...
	2. Mathematical formulation of the problem
	Constraint (3) ensures there is a dummy job at the start of every machine and exactly one job succeeding it. Constraint (4) ensures there is a dummy job at the end of every machine and exactly one job preceding it. The activities succeeding and preced...
	3. Proposed exact algorithm for the TWET-makespan trade-off curve generation
	4. Proposed hybrid metaheuristics
	5. Performance evaluation
	5.1 Test instance generation
	As the literature presents no known benchmark data for the bi-objective UPMSP considered in this work, problem instances of different sizes were developed using the methodology described by Lee and Pinedo (1997). The number of jobs and machines in eac...
	5.2 Optimal parameter settings
	5.3 Performance comparison
	6. Practical implications
	7. Conclusions and future scope

