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Abstract

Cancer stands as a significant global mortality factor. Timely detection and proper treatment, such as intensity-
modulated radiation therapy (IMRT), can hinder cancer progression. IMRT is crucial for targeting tumors while
safeguarding healthy tissues. This study proposes a robust mathematical model addressing uncertainties in the dose
delivered to the tumor as treatment sessions progress, using a polyhedral uncertainty set. The model employs linear
constraints and a quadratic objective function derived from dose calculations. Variations of Newton-barrier and
reduced gradient algorithms are utilized to solve the problem using real patient data, particularly from a prostate cancer
case. Notably, the proposed method reduces penalties for healthy organs by approximately nine percent while
maintaining an adequate dose delivered to the tumor.
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1. Introduction

Cancer is a type of disease in which specific cells in the body undergo abnormal proliferation. These newly created
cells can also affect nearby cells and organs. Every year, cancer is the cause of death for ten million people (American
Cancer Society, 2023). In 2025, it is estimated that cancer will cause the death of approximately 618,00 people in the
United States alone (American Cancer Society 2024). However, if detected and treated early enough, the mortality
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rate can be reduced. Cancer treatment planning typically includes radiation therapy, chemotherapy, and/or surgery
(Bortfeld 2006). This research focuses primarily on radiation therapy, specifically intensity-modulated radiation
therapy (IMRT), and associated mathematical programming.Radiation therapy is defined as a treatment in which the
growth of cancerous cells and tissues is prevented using ionizing beams. These beams affect both healthy and
cancerous cells; however, due to their intact DNA, healthy cells still retain the ability to reproduce. An effective
treatment plan aims to deliver the desired dosage to the tumor while minimizing damage to healthy organs.

IMRT is an advanced form of radiation therapy that ensures targeted delivery of dosages to cancerous cells while
minimizing damage to healthy tissues, achieved through the use of a linear accelerator. IMRT provides a high level
of conformity between the shape of the planning target volume (PTV) and the radiation beams, especially when
dealing with non-convex and complex PTV shapes. While IMRT improves treatment quality compared to other
radiation therapy methods, it also increases the number of possible treatment plans and their corresponding parameters.
Therefore, a trial-and-error approach is insufficient for developing a treatment plan, making inverse treatment planning
necessary. In inverse treatment planning, the objective is to optimize all treatment plan parameters to maximize the
effectiveness of the plan. As can be seen, this cannot be achieved without the help of optimization tools (Ehrgott et al.
2010).

The treatment planning process usually begins with a CT scan of the tumor area. Based on the CT scan images and
different contouring of the tumor region and the nearby healthy organs, the treatment team calculates the dose strength
pattern that best matches the tumor shape (Cancer Research UK, n.d.). The process of calculating the dose strength
pattern is time-consuming and may take up to two weeks, so it is only done once at the start of the treatment.

Optimization can be helpful in various aspects of IMRT treatment planning, one of which is fluence map optimization.
Fluence map optimization refers to the process of determining the most effective distribution of radiation intensity
across the treatment area (Cho et al.1998). In IMRT, several mathematical models have been developed, all of which
are based on the concept of "discretization." To mathematically formulate the problems encountered in IMRT, each
beam is divided into a set of beamlets or bixels. Additionally, within the patient’s body, voxels (small volumetric
elements) are defined to represent specific locations or coordinates; this is what discretization means (Rocha et al.,
2012). Suppose we have k=I,...,p beams, each with j=/,...,n beamlets, and we have i=/,...,m voxels. Then, D
represents the amount of dose absorbed in voxel i from bixel j of the k" beam. The standard model of IMRT for the
dose absorbed by the i voxel in the target area, 1, is as follows:

n
j=1
2. Literature Review

In the domain of IMRT, fluence map optimization has been studied more extensively than other sub-problems (Dias
et al. 2016; Gao 2016; Ma et al.2020; ten Eikelder et al. 2021; Zaghian et al. 2014). The first reason for this is that
modeling the problem of fluence map optimization is more computationally tractable. The second reason is that an
optimal fluence map has a higher impact on the overall quality of the treatment and can directly affect other aspects
of IMRT, such as leaf sequencing (Men et al. 2007; Shepard et al. 2002).There are multiple ways to approach fluence
maps: Physical or biological approaches, which focus on how doses are accumulated in the body or determining
whether the map remains constant or changes throughout the treatment sessions. Additionally, we can incorporate
uncertainty into the fluence map and examine how those uncertainties affect the quality of the treatment plan.

Biological models utilize biological concepts, such as the reaction of cells to radiation, as their basis. These models
primarily focus on tumor control probability (TCP) or the probability of normal tissue complication (NTCP) (Thomas
et al. 2005). On the other hand, physical models aim to define metrics and variables that facilitate the calculation of
the dose received by each tissue. Many researchers have proposed linear mathematical formulations that incorporate
constraints, such as a lower bound on the dose received by tumor cells or an upper bound on the dose received by
healthy tissues or organs at risk (Romeijn et al. 2006). These constraints can also be integrated into the objective
function. However, by employing nonlinear formulations, one can more accurately capture the reality of dose delivery
to the patient’s body. One highly popular objective function in nonlinear programming is the harmonic least squares,
which aims to minimize the square of the difference between the prescribed dose and the received dose for healthy
tissues, organs at risk, and tumorous regions (Wu & Mohan 2000). Depending on the significance of the healthy
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organs, varying weights can be assigned to the squared difference, allowing for flexible prioritization.One metric used
for evaluating physical dose is Dose-Volume Histograms (DVH) (Mukherjee et al. 2020). This histogram displays the
percentage of each organ receiving a specific dose. In an ideal scenario, one hundred percent of the tumor volume
should receive one hundred percent of the prescribed dose, and then the curve should have a steep slope approaching
Zero.

In IMRT treatment planning, fractionation is defined as dividing the prescribed dose, as determined by the medical
team, into a series of daily dose deliveries. The purpose of fractionation is to allow normal tissues to recover from
radiation exposure. The number of treatment sessions usually ranges from 25 to 35. In the literature, mathematical
modeling of fluence maps delivered in each treatment session is categorized into two main areas: fixed or dynamic
fluence maps. For example, in fixed fluence maps, if a dose of 50 grays is prescribed for the PTV, it will be
administered over 25 sessions with a prescribed dose of 2 grays per session (50/25=2 grays); however, this constant
prescribed dose is not the case for dynamic delivery of the dose.

The main rationale behind dynamic dose delivery in each session, along with its accompanying dynamic fluence maps,
is to ensure maximum conformity to the treatment plan drafted by the medical team. Some research has demonstrated
that dynamic fluence maps can also aid in reducing the deviation between the prescribed and delivered dose caused
by uncertainties in the parameters (Ajdari & Ghate 2016). For instance, Nohadani et al. employed dynamic fluence
maps to address uncertainties related to certain biological characteristics of tumors, such as the process of re-
oxygenation (Nohadani & Roy 2017). Adibi et al.’s research has shown that utilizing dynamic fluence maps can result
in a higher dose being delivered to the tumor (Adibi & Salari 2018). However, this might also be true for healthy
organs. Gaddy et al. tackled this issue by using an optimization model in which an objective function penalizes
deviations from the prescribed dose for these organs (Gaddy et al. 2019). Furthermore, many studies have explored
the use of dynamic fluence maps in the simultaneous treatment of radiation therapy and chemotherapy (Salari et al.
2015).

In physical models with dynamic fluence maps, the value for the dose absorbed by the it" voxel in the t** session of
the treatment is as follows:

n
dtizz Dyxy, Vicl,vtcl.
=

The use of mathematical programming in treatment planning offers numerous merits; however, the presence of
uncertainties can hinder the planning process and potentially affect the quality of treatment. These uncertainties arise
from the fact that each patient will react differently to the treatment. Some of the mentioned uncertainties include
variations in the definition of the treatment region, such as gross tumor volume (GTV) or clinical target volume (CTV),
uncertainties in the prescribed dose amount, uncertainties in the tolerance of healthy tissues and organs, and the most
significant one: uncertainties in the amount of dose received by the patient due to setup errors or patient movement
throughout the treatment session. Typically, in radiation therapy treatment, the approach to address uncertainties
caused by the patient’s movements is to incorporate Margins’ like PTV so we can plan for a larger region, but this
method is outdated due to its low accuracy (Biston et al. 2020). As a result, the development of probabilistic and robust
optimization techniques has emerged as an alternative method to handle these uncertainties.

Stochastic optimization is commonly utilized when a distribution function can be assigned to the behavior of the
uncertainty being dealt with. In IMRT treatment planning, stochastic programming can be used to optimize the
expected value of squared penalty functions, the average value of TCP-based objective functions, or objective
functions based on the average estimate of the accumulated dose (Bohoslavsky et al. 2013; Fontanarosa et al.2013;
Witte et al., 2007). In contrast, robust optimization methods are employed in cases where a distribution function for
parameters with uncertainties cannot be defined, and only the minimum and maximum values of the parameters are
known. The goal is to find a solution that is acceptable for all scenarios. In the context of IMRT, robust optimization
techniques are usually employed to address uncertainties arising from organ movement due to patients’ breathing and
their various breathing patterns (P. Chan et al.2008; T. C. Y. Chan et al. 2014).

To the best of our knowledge, despite the advantages of a dynamic treatment plan, not much research has been carried
out on this subject due to the complexity of the solution space. While some previous literature exists on dealing with
uncertainties in the parameters of biological models, patient movements (especially breathing movements), errors in
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execution, and other factors, no research has so far focused on the gradual process of tumor shrinkage and its effect
on the quality of treatment plans. Radiation therapy targets cancer cells by damaging their DNA, inhibiting their
growth, and causing the tumor to gradually shrink in comparison to its original size, as observed in CT images.
However, this shrinkage can pose challenges for treatment planning, as it necessitates adjustments to minimize harm
to surrounding healthy tissues. Consequently, the focus of this research is to develop a treatment strategy capable of
adapting to reductions in tumor size, thereby optimizing the quality of treatment plans.

In the first step, we develop a mathematical model of the problem that can yield multiple treatment plans during
treatment sessions. This type of modeling, which is less discussed in the literature, aims to provide a treatment plan
that closely adheres to the ideal treatment plan and is stable against changes in the tumor’s shape. This ensures
acceptable dose absorption by the tumor tissue while minimizing radiation absorption by healthy tissues and organs
at risk. In the second step, we employ robust optimization approaches to create a robust counterpart for the non-
deterministic lower limit allowed for the tumor after a certain number of sessions has progressed. This approach seeks
to reduce the dose received by healthy tissues while ensuring the tumor receives the necessary dose.

3. Problem Formulation and Methods

Optimization techniques are highly utilized in IMRT treatment planning. Mathematical programming based on
physical constraints has been widely used due to its linear space. This research introduces a mathematical model
featuring a quadratic objective function and linear constraints. The primary aim is to minimize the radiation dose
absorbed by healthy organs while ensuring that the tumor receives the necessary prescribed dose. As discussed in
Section 2, during the treatment sessions, the proliferation of tumor cells gradually stops, leading to tumor shrinkage.
This transformed tumor may require a different dosage, introducing the need for a lower limit for the tumor region.
However, this lower limit is not a known and fixed value and can be considered a parameter with uncertainty. To
address this uncertainty, we use a polyhedral uncertainty set and formulate a new robust counterpart.

3.1 Indices and Parameters

In this section, the key indices and parameters essential for understanding the presented formulation are introduced.
Index of the voxels of the treatment region (from 1 to m)

Index of the beamlets (from 1 to n)

Index of the treatment sessions (from 1 to q)

Set of beamlets

Set of treatment sessions

Set of healthy organs voxels

Set of tumor voxels

Set of treatment regions (includes two subsets T and H)

Set of healthy organs (from 1 to k)

Total number of healthy organs

pres The prescribed dose for tumor

i The upper bound for the j** beamlet

TLB  The accepted lower bound for tumor

TUB  The accepted upper bound for tumor

Dj; The amount of dose absorbed by the it" voxel from the unit beam radiated from the j¢"* beamlet
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T
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3.3 Modeling the Deterministic Treatment Plan

Below, the basic formulation for the IMRT problem without any uncertainties is presented:

K q
1
min, ) (=) > (@)
k=1 AetD  feny
TLB<d;, VieT,VteLl )
d;; <TUB VieT,VtelL 2)

0<x,<U VjeJvtelL (3
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The objective function aims to minimize the gap between the received dose by the patient and the ideal prescribed
dose for healthy organs, which is zero. This quadratic objective function is a common choice in the literature of fluence
map mathematical modeling problems. Constraints 1 and 2 establish the lower and upper dose boundaries for the
tumor. These boundaries, denoted by TLB and TUB respectively, ensure that each tumor cell receives a minimum
dose while avoiding excessive exposure. Furthermore, Constraint 3 sets the non-negativity and upper limit for x;,
ensuring the overall treatment optimization.

3.4 Modeling the uncertainty and the robust counterpart

As previously mentioned, as the treatment sessions progress, the proliferation of tumor cells is anticipated to stop,
necessitating the consideration of a new treatment plan. Typically, treatment sessions are initially designed based
solely on the information obtained from the first CT scan. However, leveraging optimization tools enables us to re-
calibrate the treatment sessions without requiring additional inputs, such as a secondary CT scan. In a study conducted
by Nohadani et al., it was observed that after one-third of the sessions have passed, the initial information of the system
derived from cell reactions in the treatment section changes to a point where the initial treatment plan may no longer
be optimal (Nohadani & Roy 2017). Consequently, in this research, a new lower bound for the tumor is determined
after one-third of the sessions. Recognizing the uncertainty associated with this value, we define it as an uncertainty
parameter. Consequently, constraint 1 is transformed into constraints 4 and 5.

TLB<dy VieTvts<| 4)

TIB <dy VieTvtx|i|+1 (5)

TLB is the uncertain parameter we have here serving as the lower bound for the tumor area in the final two-thirds of
the sessions. To construct the robust counterpart of this constraint, with the help of a new variable y, = —1, TLB is
moved to the left-hand side of the constraint. As a result, constraint 5 will be transformed into the following form of
the constraint.

AT T . q
{-d;—TLBy,<0 VieTvt= [gj +1y,=-1
TLB is equal to TLB + €TLB. Here, TLB represents the nominal value of the parameter, TLB represents positive

constant perturbation, and € is an independent random variable corresponding to uncertainty. Therefore, we can
substitute the expression for TLB with TLB + €TLB in the set of constraints mentioned above:

Py , q
{~dy; —TLBy, — €TLBy, <0 Vi€TVt> [gj +1y,=-1

In the robust optimization approach, the goal is to find a solution that is feasible for all values of € so the uncertainty
set would be safe against all in-feasibility. Meaning:

{~d, — TLBy, — max(eTLBy,)) <0 Vi€T,Vt 2 [gj +1y,=-1

The decision regarding the space of € can be reflected in the formulation of the robust counterpart. To write the
robust counterpart of this problem, we have used a polyhedral uncertainty set. This approach was first introduced by
Bertsimas and Sim, and one of its main advantages is the linearity of its uncertain space formulation. The polyhedral
uncertainty set is defined as follows:

U={el) lgl<1)
Jj

In which 7 is an adjustable parameter that will define the size of the uncertainty set. So, the robust counter part of
the set would be:
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~dy +TLB+77<0 ViET,VtZ[gJ+1
z>TLB

Here, z is a decision variable introduced into our problem, with its value always constrained to be less than the positive
constant perturbation of the uncertain parameter. Thus, the formulation of our problem, along with its robust
counterpart, can be summarized as follows:

q

K
, 1
min) |\ 2, @
X NH
k=1
m

kt=1 ieH

dti =Z Dijx]'t, Vi EB,VtEL

j=1

TLB<d, VieTVt< [%J

—dy; +TLB+21 <0 VieT,Vtz[%J+1

z>TLB
d;<TUB Vi€TVteL
0<x;,<U VjeJVvtel

3.5 Methodology

In fluence map optimization problems, usually, each voxel is considered as a decision variable, making the problem
both large and complicated. For instance, in the case study presented in Section 5, there are approximately 26,000
voxels, and therefore, decision variables, for the target region. The complexity is further heightened by considerations
of dynamic fluence maps and uncertainties. Adding to the challenge, our problem formulation involves a quadratic
objective function. Given these factors, it becomes evident that there is a need for algorithms that can expedite the
process of finding the optimal solution since using regular methods such as Simplex may consume significant time
and computing resources. To address problems with a convex and linear feasible region and a quadratic objective
function, several algorithms exist to aid in speeding up the process. In this research, we have chosen to utilize the
Newton-barrier method implemented in GAMS/XPRESS and the Reduced Gradient algorithm implemented in
GAMS/MINOS.

3.5.1 Newton-barrier Method

The Simplex method, widely used for solving linear programming problems, searches through the boundary points in
order to find a better solution. However, this is opposite for Newton-barrier algorithms, where the search is highly
focused on only the internal points or vertices of the feasible region. Most of the time, it will be able to find only an
approximation of the optimal solution due to some degree of non-linearity in the feasible region or objective function.

The algorithm begins by initializing a set of x,. Subsequently, the constraints’ values are computed, and if they are
not satisfied, a new function called the Barrier function is introduced. The purpose of this function is to penalize x
values that violate the constraints. The severity of these penalties can vary based on an internal parameter we denote
ast. Subsequently, this barrier function is incorporated into the objective function. The resultant objective function
F(x) becomes:

F(x) =f(x)+tB(x)

Where B(t) is the barrier function and f (x) is the initial objective function. In the subsequent step, Newton’s
method is employed to minimize the new objective function, F (x). The updated x is calculated as follows:

Xp1 = X — [V2F ()] 7 VF ()
The optimization process will continue until the changes in x;,; and x; become sufficiently small. This method,

known as the Newton-barrier method, is implemented in the commercial optimization solver GAMS under the name
XPRESS (FICO, n.d.).
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3.5.2 Reduced Gradient method
When the non-linearity of the problem lies only in the objective function and all the constraints are in their linear form,
the solver GAMS/MINOS uses a reduced-gradient algorithm, first introduced by Wolfe, combined with a quasi-
Newton algorithm (Murtagh & Saunders, 1978). In the reduced gradient method, the set of constraints Ax + Is = 0
is transformed into:

Bxp + Sxs+ Nx, =0

Where x; is the set of super-basic variables and x5 and xy are sets of basic and non-basic variables, respectively. For
every solution, usually, super-basic and basic variables stay within their bounds while the non-basic variables have a
value of zero. When both the objective function and the constraints are linear, the reduced-gradient method works in
the same manner as the simplex method, where the goal of moving variables is to reduce in-feasibility or improve the
objective function value.

In the reduced-gradient algorithm provided by GAMS/MINOS, a quasi-Newton algorithm is implemented to optimize
the super-basic variables. Consider Z as below (General Algebraic Modeling System (GAMS), 1992):

(-B71s10).
The search direction q can be calculated using the formulation:

RTRq=-Z"g
Where g is the gradient of the non-linear part of the objective function and R is an upper triangular matrix. Once q is
found, the search direction for all variables is defined as p = Zq. This process will continue until the reduced gradient
of the objective function is sufficiently close to zero, typically 107°. This variation of the reduced-gradient method is
implemented and can be found in a solver named GAMS/MINOS.

4. Data Collection

To analyze the effectiveness of the proposed model in Section 3, we will use a real-world dataset from the >’Common
Optimization for Radiation Therapy (CORT)’ project (Craft et al., 2014). This data set, obtained from Massachusetts
General Hospital, includes multiple cases. For this research, we have chosen a patient undergoing prostate cancer
treatment from the CORT dataset. Figure 1, sourced from the dataset’s research paper, shows a CT scan image of
the patient with prostate cancer. Colored lines delineate all essential tissues for planning. PTV-68 represents the
primary tumor region in the prostate, while PTV-56 includes a portion of the tumor region and the lymph nodes.
Other tissues exposed to radiation include the bladder, left and right femoral heads, rectum, and the surrounding
healthy tissues of PTV-68 and PTV-56.

Figure 1. Different regions for prostate cancer patient

The proposed robust mathematical model was solved using both Newton-barrier and reduced-gradient methods on a
computer with 16 cores and 16 gigabytes of RAM. These methods, available as solvers in GAMS under the names
XPRESS and MINOS, can be customized by adjusting their parameters.
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For this research, the default settings of these solvers were utilized. Table 1 lists the values of all parameters chosen
for the prostate cancer problem. Additionally, Table 2 presents the values required for the robust counterpart of this
problem.

Table 1. Input values for the problem parameters

Parameter Value

Number of beams’ directions 5 angles
Number of beamlets in all angles 863

Number of treatment sessions 34

Number of tumor’s voxels 6770

Number of bladder’s voxels 11596

Number of femoral heads’ voxels 5957

Number of rectum’s voxels 1764

The allowed lower bound for tumor in each session | 95% X 2 = 1.9
The allowed upper bound for tumor in each session | 107% x 2 = 2.14
Maximum beam intensity for the j** beamlet 50

Table 2: Input values for the problem robust parameters

Parameter Value

Minimum value for TLB 1

Maximum value for TLB 1.9

Value of T 0.8
TLB 0.45

5. Results and Discussion
With the mentioned inputs in Table 1, the model was solved using reduced gradient and Newton Barrier methods,
and a summary of the computation time and results for both methods is shown in Table 3.

5.1 Numerical Results

By examining Table 3, it can be deduced that the proposed radiation delivery method in this research successfully
achieved a lower value for the objective function. This indicates that healthy organs received a lower dosage
compared to the fixed fluence map method, which does not account for re-planning for the tumor.

Table 3. Computation time and results for NB and RG methods.

NB RG
CPU time (in minutes) 212 | 65
Number of Iterations 51 72

Objective function value in the basic state | 3251 | 3251
Objective function value in the robust state | 2942 | 2942
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Table 4. The percentage of the bladder receiving specific dosage.

25 Gy | 40 Gy | 64 Gy
% of Volume (Base) 51 36 17
% of Volume (Robust) | 49 34 11

Table 5. The percentage of the rectum receiving specific dosage.

32 Gy | 40 Gy | 50 Gy
% of Volume (Base) 55 55 27
% of Volume (Robust) | 49 49 23

Table 6. The percentage of the femoral head receiving specific dosage.

15Gy | 20 Gy | 25 Gy
% of Volume (Base) 34 22 8
% of Volume (Robust) 29 19 6

5.2 Graphical Results

The solution of a 3-D treatment plan comprises numerous outputs, and sometimes interpreting these outputs can be
challenging. One way to address this issue is through the use of Dose-Volume Histograms (DVHs). DVHs summarize
the dose distribution in the treatment region and the tissues surrounding the tumor, which is of high importance. In
DVHs, the horizontal axis typically shows the amount of dose in Grays, and the vertical axis shows the percentage of
a specific organ receiving that dose. In this study, DVHs are utilized for two primary objectives: the first is to verify
whether the tumor region is receiving the required dose, and the second is to evaluate the radiation absorbed by healthy
organs.

DOSE-VOLUME HISTOGRAM
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0 3 6 9121518212427303336394245485154576063 66697275

Primary s Robust

Figure 2. Dose-Volume histogram for tumor region

Figure 3 shows the dose-volume histograms of healthy organs, including the bladder, rectum, and the left femoral
head. Tables 5, 6 and 7 compare the dosage received by healthy organs in the proposed method with that in the base
method. In the case of the bladder, there was a 54% reduction in the volume exposed to 64 Grays. This same pattern
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is observed with other healthy organs as well. Reducing radiation exposure to healthy organs can lower the risk of
genitourinary and gastrointestinal toxicities for prostate cancer patients, and the reductions observed in this case may
help mitigate that risk as well.

By examining the figures and tables, we can observe that transitioning from a fixed treatment plan to allowing re-
planning of treatment sessions significantly reduces the dosage delivered to the healthy organs of the bladder and
rectum. Additionally, there is a less significant but still positive effect on the femoral heads. For example, according
to Table 7, in the robust method, the femoral head receives 14.7% less exposure to doses exceeding 15 Grays and 25%
less exposure to 25 Grays.

DOSE-VOLUME HISTOGRAM DOSE-VOLUME HISTOGRAM

120 120
100 § 100 4
GV | 80 :
0 60
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Figure 3. Dose-Volume histograms for bladder (top-left), rectum (top-right) and femoral head (bottom-center)

5.3 Proposed Improvements

The results indicate that even when the dose received by the healthy organ is reduced, the tumor still obtains a
significant percentage of its prescribed dose, as illustrated in Figure 2.In the fixed fluence map method, 95% of the
tumor region receives 65 Grays, with the entire tumor receiving 64 Grays. After implementing the proposed method
on this dataset, we observed a lower dose absorption by the tumor. However, despite the reduced dose absorbed by
healthy organs, the tumor still received a substantial amount of its required radiation. According to Table 4, 94 percent
of the tumor received 92.6 percent of the prescribed dose. Table 4 also details the percentage of the tumor volume that
received specific doses relative to the prescribed amount.

Table 7. The percentage of the tumor receiving different fractions of the prescribed dosage.

94% | 96% | 98%
% of Volume (Base) 100 | 89 80
% of Volume (Robust) | 87 63 48

By looking at Figure 2, it can be observed that in the base method, 95% of the prescribed dose, which is 64 Gy, was
received by one hundred percent of the tumor, while in the proposed robust method, 91% of the prescribed dose was
received by 100% of the tumor.
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Figure 3 shows the dose-volume histograms of healthy organs, including the bladder, rectum, and the left femoral
head. Tables 5, 6 and 7 compare the dosage received by healthy organs in the proposed method with that in the base
method. In the case of the bladder, there was a 54% reduction in the volume exposed to 64 Grays. This same pattern
is observed with other healthy organs as well.

By examining the figures and tables, we can observe that transitioning from a fixed treatment plan to allowing re-
planning of treatment sessions significantly reduces the dosage delivered to the healthy organs of the bladder and
rectum. Additionally, there is a less significant but still positive effect on the femoral heads. For example, according
to Table 7, in the robust method, the femoral head receives 14.7% less exposure to doses exceeding 15 Grays and 25%
less exposure to 25 Grays.

5.4 Sensitivity Analysis
This model was only tested on one case of a patient going through prostate cancer but in order to make sure that the

model is working and can be generalized, a sensitivity analysis is done on the uncertainty parameter. T shows the level
of conservatistms and Figure 4 illustrates the impact of different Tvalues (ranging from zero to one) on the objective

function. As expected, increasing T leads to greater conservatism, which compromises the optimality of the objective
function while ensuring feasibility.

Figure 4. Sensitivity analysis of the outcomes to different values of T

6. Conclusion

One out of every six deaths is attributed to cancer. However, when cancer is accurately diagnosed and treated early,
its mortality rate can be significantly reduced. Radiation therapy, a prominent cancer treatment, stops tumor cell
growth by damaging DNA, yet its timing and mechanism remain unclear. In this study, this observation is exploited
to devise a novel treatment strategy, aiming to target tumors effectively while sparing healthy tissues. Employing
mathematical modeling, a linear model with a quadratic objective function is introduced, and then the Newton-barrier
and reduced gradient methods are used for solving the proposed model. Validating our model with a case study on
prostate cancer, results are presented via dose-volume diagrams for thorough evaluation. The key outcomes of this
research are as follows:

Regarding tumor control, the results show that the proposed model effectively controls tumor growth throughout the
sessions, ensuring the accurate delivery of the required dose. Notably, 80 percent of the tumor still receives 95 percent
of the intended dose, indicating the model’s capability to achieve precise targeting and successful dose delivery to the
tumor while safeguarding healthy tissues from excessive radiation.

Another primary objective of this research was to mitigate excessive radiation exposure to healthy organs. Figure 3
clearly demonstrates that the proposed model significantly reduces the dose received by healthy tissues in the bladder,
rectum, and femoral heads. This reduction effectively prevents potential damage to the DNA of these organs. By
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carefully controlling the radiation distribution, the proposed model prioritizes the protection of healthy tissues while
delivering the required dose to the tumor site. This aspect of the model contributes to enhancing the safety and overall
effectiveness of radiation therapy treatment. The objective functions in both the basic model and the proposed model
of this problem are defined as the summation of average penalties for the dose received by each voxel in healthy tissue,
measured against the ideal state where the recommended dose is zero. Based on the results, there is a significant
reduction in penalties, resulting in a 9.2 percent improvement in the objective function aimed at minimizing fines.
Consequently, the proposed model demonstrates superior performance in optimizing the treatment plan and reducing
potential harm to healthy tissues, making it a more effective and efficient approach for radiation therapy.

This research has introduced a dynamic fluence map as a solution to address the inflexibility observed in treatment
plans using a fixed fluence map. The variable fluence map allows for potential rescheduling of certain parameters
after one-third of the treatment sessions have been completed, without the need for new inputs that could slow down
the treatment schedule. In future research, it would be interesting to explore treatment plans that can be re-programmed
multiple times while maintaining the same procedure. This could involve investigating how changes in the system
after secondary programming might necessitate further reprogramming. Identifying these critical points and
developing models to address them could be a promising area of study for expanding research in this field.
Additionally, researchers can also consider setup errors and patients’ movement during the session as factors
influencing tumor shrinkage and the need for re-planning.

The International Commission on Radiation Units and Measurements (ICRU) guidelines aim to ensure adequate tumor
coverage and dose uniformity. For example, the guideline for tumor region is that the prescribed dose should cover at
least 95% of the PTV, balancing efficacy and safety. In this research this dose level is slightly below traditional ICRU
recommendations. Robust optimization prioritizes maintaining target coverage under a range of anatomical and setup
uncertainties, potentially improving overall treatment reliability. Furthermore, partial underdosage may be acceptable
if the dose distribution remains within clinically validated thresholds and tumor control probability is not significantly
compromised. Ultimately, this trade-off reflects a shift from idealized static plans to more realistic and resilient
treatment strategies. However advanced models can be studied to see the effect of more re-planning on the fact of
tumor underdosing.

This study focuses on fluence map optimization but the proposed re-planning approach after one-third of treatment
sessions can be extended to other radiation therapy problems, such as joint optimization of fluence maps with beam
angles, sequencing (DAO), and VMAT. Fluence map optimization is particularly challenging due to its scale—
spanning millions of voxels—and the added complexity of session-specific variability. To manage this, the study uses
a polyhedral uncertainty set. Future work could explore alternative uncertainty models, such as ellipsoidal, box, or
hybrid sets, to assess their impact on planning performance.
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